Structural Insights Into Binding of STAC Proteins to Voltage-Gated
Structural insights into binding of STAC proteins to PNAS PLUS voltage-gated calcium channels Siobhan M. Wong King Yuena,b, Marta Campiglioc, Ching-Chieh Tunga,b, Bernhard E. Flucherc, and Filip Van Petegema,b,1 aDepartment of Biochemistry and Molecular Biology, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; bThe Life Sciences Centre, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; and cDepartment of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria Edited by Kurt G. Beam, University of Colorado, Denver, Aurora, CO, and approved September 28, 2017 (received for review June 1, 2017) Excitation–contraction (EC) coupling in skeletal muscle requires degree of CaV1.1 expression, have a drastically reduced EC functional and mechanical coupling between L-type voltage- coupling. In addition, zebrafish embryos that are null for gated calcium channels (CaV1.1) and the ryanodine receptor STAC3 still have normal levels of CaV1.1, but display a highly (RyR1). Recently, STAC3 was identified as an essential protein reduced EC coupling (14). Finally, STAC2 and STAC3 have for EC coupling and is part of a group of three proteins that beenshowntoslowdowninactivationofCaV1.2 (15), an iso- can bind and modulate L-type voltage-gated calcium channels. form expressed in both the heart and the brain. This suggests a Here, we report crystal structures of tandem-SH3 domains of dif- possible role for STAC proteins in CaV regulation outside of ferent STAC isoforms up to 1.2-Å resolution. These form a rigid skeletal muscle. interaction through a conserved interdomain interface. We iden- STAC3 is the target for a disease mutation (W284S) linked to tify the linker connecting transmembrane repeats II and III in two Native American myopathy (NAM).
[Show full text]