Cell Growth Regulatory Role of Runx2 During Proliferative Expansion of Preosteoblasts

Total Page:16

File Type:pdf, Size:1020Kb

Cell Growth Regulatory Role of Runx2 During Proliferative Expansion of Preosteoblasts University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2003-09-23 Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts Jitesh Pratap University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Repository Citation Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi J, Komori T, Stein JL, Lian JB, Stein GS, Van Wijnen AJ. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Open Access Articles. Retrieved from https://escholarship.umassmed.edu/oapubs/357 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. [CANCER RESEARCH 63, 5357–5362, September 1, 2003] Cell Growth Regulatory Role of Runx2 during Proliferative Expansion of Preosteoblasts1 Jitesh Pratap,2 Mario Galindo,2 S. Kaleem Zaidi, Diana Vradii, Bheem M. Bhat, John A. Robinson, Je-Yong Choi, Toshisha Komori, Janet L. Stein, Jane B. Lian, Gary S. Stein, and Andre J. van Wijnen3 Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655 [J. P., M. G., S. K. Z., D. V., J. L. S., J. B. L., G. S. S., A. J. v. W.]; Bone Metabolism/Osteoporosis, Women’s Health Research Institute, Wyeth Research, Collegeville, Pennsylvania 19426 [B. M. B., J. A. R.]; Department of Biochemistry, Kyungpook National University, Daegu, Republic of Korea 700-422 [J-Y. C.]; and Department of Molecular Medicine, Osaka University Medical School, Osaka, Japan 565-0871 [T. K.] ABSTRACT is required for normal osteogenesis. Runx2 deficiency or mutations affecting the function of Runx2 protein cause severe bone abnormal- ␣ The Runx2 (CBFA1/AML3/PEBP2 A) transcription factor promotes ities in mouse and human (2–5). Deletion of the COOH terminus of lineage commitment and differentiation by activating bone phenotypic Runx2, which interacts with a series of cell signaling responsive genes in postproliferative osteoblasts. However, the presence of Runx2 in actively dividing osteoprogenitor cells suggests that the protein may also cofactors, generates bone defects that are comparable with the Runx2 participate in control of osteoblast growth. Here, we show that Runx2 is null mouse (5). Runx2 is up-regulated during osteoblast differentia- stringently regulated with respect to cell cycle entry and exit in osteo- tion to support the activation of bone-specific genes. However, Runx2 blasts. We addressed directly the contribution of Runx2 to bone cell is already expressed at early stages of chondrogenesis (6–9), in proliferation using calvarial osteoblasts from wild-type and Runx2-defi- actively proliferating immature osteoblasts (10, 11), and in C2C12 cient mice (i.e., Runx2؊/؊ and Runx2⌬C/⌬C). Runx2⌬C/⌬C mice express a myoblast cells before BMP-2-dependent osteogenic differentiation protein lacking the Runx2 COOH terminus, which integrates several cell (10–12). The expression of Runx2 in distinct proliferating mesenchy- proliferation-related signaling pathways (e.g., Smad, Yes/Src, mitogen- mal cell types does not necessarily result in activation of mature bone activated protein kinase, and retinoblastoma protein). Calvarial cells but phenotypic markers. These observations raise the question of whether not embryonic fibroblasts from Runx2؊/؊ or Runx2⌬C/⌬C mutant mice Runx2 has a regulatory function in proliferating osteoblasts before exhibit increased cell growth rates as reflected by elevations of DNA osteoblast maturation. synthesis and G1-S phase markers (e.g., cyclin E). Reintroduction of Runx2 into Runx2؊/؊ calvarial cells by adenoviral delivery restores strin- In this study, we provide evidence that Runx2 is tightly regulated gent cell growth control. Thus, Runx2 regulates normal osteoblast prolif- during entry into and exit from the cell cycle, and that Runx2 supports eration, and the COOH-terminal region is required for this biological stringent control of osteoblast cell growth. Hence, our results indicate that function. We propose that Runx2 promotes osteoblast maturation at a key Runx2 has a dual biological role in the osteogenic lineage by attenuating developmental transition by supporting exit from the cell cycle and acti- osteoblast growth and promoting bone phenotype maturation. vating genes that facilitate bone cell phenotype development. INTRODUCTION MATERIALS AND METHODS Stringent positive and negative control of the proliferative expan- Cell Growth Analysis. The osteoblastic cell line MC3T3-E1 was main- sion of mesenchymal cells, osteoprogenitor cells, and immature os- tained in ␣-MEM supplemented with 10% FBS.4 Cells were seeded in either teoblasts is critical for normal skeletal development and bone forma- six-well or 100-mm plates at 0.08 ϫ 106 cells/well or 0.4 ϫ 106 cells/plate, tion. Osteoprogenitors represent mesenchymal cells that are respectively. The growth medium was changed every 2 days and cultured until committed to the bone lineage and can differentiate into osteoblasts, confluent (at 8 days). For serum deprivation experiments, cells were grown for ␣ which are the principal cells that contribute to skeletogenesis by 3 days, then washed three times in PBS, and refed with MEM plus 10, 5, 2.5, 1, or 0% FBS. Cells were maintained in culture for 2 days before harvesting. mediating extracellular matrix mineralization. Osteoprogenitors pro- Growth rates were assessed by cell counting and FACS analysis. liferate in response to mitotic growth factors and must expand into the MC3T3 cells were synchronized in the G0/G1 phase of the cell cycle by appropriate number of osteoblasts to support normal formation of serum starvation. Briefly, exponentially growing cells in ␣-MEM plus 10% distinct skeletal elements. Osteoprogenitor expansion reflects the bal- FBS were washed three times in PBS on day 3 and cultured in serum-free ance of cell growth and survival. This balance is controlled by both medium for 48 h. Then, the cells were stimulated to progress through the cell circulating factors (e.g., growth factors, cytokines, and steroid hormones) cycle by removing medium and adding ␣-MEM plus 10% FBS. After serum and tissue architecture-related signals (e.g., cell-cell contact and cell stimulation, cells were harvested at selected time points for Western blot adhesion) that have either growth-stimulatory or inhibitory effects. analysis and FACS analysis. Cell growth control is mediated in part at the transcriptional level, The distribution of cells at specific cell cycle stages was evaluated by flow and there are cell cycle stage-specific demands for de novo synthesis cytometry. Cells were trypsinized, washed with PBS, and fixed in 70% ethanol at Ϫ20°C overnight. Cells were stained with propidium iodide and subjected of proteins (e.g., histones and cyclins; Ref. 1). Yet, there is a paucity to FACS analysis based on DNA content (13). The samples (1 ϫ 106 cells) of data on transcription factors known to control cell growth of were analyzed for cell cycle distribution using the FACStar cell sorter and osteoblasts. The Runt-related transcription factor Runx2 has a well- Consort 30 software (Becton Dickinson, Mountain View, CA). defined role in mediating the final stages of osteoblast maturation and Calvarial osteoblasts were isolated from wild-type and homozygous mouse embryos at 17.5 dpc. Runx2-deficient mice were identified by soft X-ray Received 3/21/03; revised 5/29/03; accepted 6/9/03. analysis and genotyped by using PCR analysis as described previously (5). The costs of publication of this article were defrayed in part by the payment of page Normal diploid osteoblasts are obtained from the central bone area (i.e. charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 1 Supported by NIH Grants AR39588 and AR48818. 4 The abbreviations used are: FBS, fetal bovine serum; FACS, fluorescence-activated 2 These authors contributed equally to this study. cell sorter; TCA, trichloroacetic acid; RT-PCR, reverse transcription-PCR; dpc, days 3 To whom requests for reprints should be addressed, at Department of Cell Biology postcoitum; GFP, green fluorescent protein; FGF, fibroblast growth factor; FGFR, fibro- and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, blast growth factor receptor; TGF, transforming growth factor; CDK, cyclin-dependent Worcester, MA 01655. Phone: (508) 856-5625; Fax: (508) 856-6800; E-mail: andre. kinase; CBFA, core binding factor alpha; PEBP, polyoma enhancer binding protein; [email protected]. AML, acute myelogenous leukemia; BMP, bone morphogenetic protein. 5357 RUNX2 CONTROL OF OSTEOBLAST PROLIFERATION removing suture tissue) of calvaria from 17.5 dpc embryos. Cells were isolated and maintained as described previously (14). Briefly, calvaria were minced and subjected to three sequential digestions (8, 10, and 26 min) with collagenase P (Roche Molecular Biochemicals, Indiana, IN) at 37°C. Osteoblasts in the third digest were collected and resuspended in ␣-MEM supplemented with 10% FBS. Cells were plated at a density of 1 ϫ 106 cells/six-well plate. Measurement of DNA synthesis in calvarial cells was performed by [3H]thymidine incorporation (15). Briefly, calvarial cells isolated from wild- type or homozygotes were plated in 12-well plates at 5 ϫ 104 cell/well. After 24 h, [3H]thymidine was added to culture medium to a final concentration of 5 ␮Ci/ml and incubated at 37°C for 30 min. Medium was removed by aspiration, and cells were washed twice with ice-cold serum-free ␣-MEM. Cells were extracted twice with 10% TCA on ice for 5 min. TCA precipitates were solubilized by adding 10% SDS for 2 min at room temperature. Cells were harvested, and the amount of radioactivity was measured by liquid scintillation counting (Beckman Instruments, Inc., Fullerton, CA).
Recommended publications
  • Jdp2 Downregulates Trp53 Transcription to Promote Leukaemogenesis in the Context of Trp53 Heterozygosity
    Oncogene (2013) 32, 397 --402 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION Jdp2 downregulates Trp53 transcription to promote leukaemogenesis in the context of Trp53 heterozygosity L van der Weyden1, AG Rust1,4, RE McIntyre1,4, CD Robles-Espinoza1, M del Castillo Velasco-Herrera1, R Strogantsev2, AC Ferguson-Smith2, S McCarthy1, TM Keane1, MJ Arends3 and DJ Adams1 We performed a genetic screen in mice to identify candidate genes that are associated with leukaemogenesis in the context of Trp53 heterozygosity. To do this we generated Trp53 heterozygous mice carrying the T2/Onc transposon and SB11 transposase alleles to allow transposon-mediated insertional mutagenesis to occur. From the resulting leukaemias/lymphomas that developed in these mice, we identified nine loci that are potentially associated with tumour formation in the context of Trp53 heterozygosity, including AB041803 and the Jun dimerization protein 2 (Jdp2). We show that Jdp2 transcriptionally regulates the Trp53 promoter, via an atypical AP-1 site, and that Jdp2 expression negatively regulates Trp53 expression levels. This study is the first to identify a genetic mechanism for tumour formation in the context of Trp53 heterozygosity. Oncogene (2013) 32, 397--402; doi:10.1038/onc.2012.56; published online 27 February 2012 Keywords: p53; Jdp2; transposon; heterozygosity; lymphoma; mice INTRODUCTION targeted by transposon insertion events leading to upregulated Genetic alterations of TP53 are frequent events in tumourigenesis Jdp2 expression and a decrease in Trp53 expression levels. Further and promote genomic instability, impair apoptosis, and contribute we illustrate that Jdp2 regulates the Trp53 promoter via an atypical to aberrant self-renewal.1--4 The spectrum of mutations that occur AP-1 binding site.
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • Regulation of Runx2 Accumulation and Its Consequences
    Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 ©2016 Junko Shimazu All Rights Reserved ABSTRACT Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Osteoblasts are bone-forming cells and therefore they are responsible of the synthesis of type I collagen, the main component of bone matrix. However, there is an apparent disconnect between the regulation of osteoblast differentiation and bone formation since the synthesis of Type I collagen precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. Recently, genetic experiments in the mouse have revealed the existence of an unexpected cross-regulation between bone and other organs. In particular this body of work has highlighted the importance of osteoblasts as endocrine cells to regulate whole-body glucose homeostasis by secretion of a hormone, osteocalcin. However, the fundamental question of why bone regulates glucose homeostasis remained to be answered. Therefore, in my thesis, considering that bone is a metabolically demanding organ that constantly renews itself, I hypothesized that characterizing the connection between the need of glucose as a main nutrient in osteoblasts and bone development will provide a key to deeper understanding of why bone regulates glucose homeostasis. My work shows here that glucose uptake through GLUT1 in osteoblasts is needed for osteoblast differentiation by suppressing the AMPK-dependent activation by phosphorylation at S148 of Smurf1 that targets Runx2 for degradation. I also uncovered the mechanism of action of Smurf1 in this setting.
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Supplementary Information
    Osa et al Supplementary Information Clinical implications of monitoring nivolumab immunokinetics in previously treated non– small cell lung cancer patients Akio Osa, Takeshi Uenami, Shohei Koyama, Kosuke Fujimoto, Daisuke Okuzaki, Takayuki Takimoto, Haruhiko Hirata, Yukihiro Yano, Soichiro Yokota, Yuhei Kinehara, Yujiro Naito, Tomoyuki Otsuka, Masaki Kanazu, Muneyoshi Kuroyama, Masanari Hamaguchi, Taro Koba, Yu Futami, Mikako Ishijima, Yasuhiko Suga, Yuki Akazawa, Hirotomo Machiyama, Kota Iwahori, Hyota Takamatsu, Izumi Nagatomo, Yoshito Takeda, Hiroshi Kida, Esra A. Akbay, Peter S. Hammerman, Kwok-kin Wong, Glenn Dranoff, Masahide Mori, Takashi Kijima, Atsushi Kumanogoh Supplemental Figures 1 – 8 1 Osa et al Supplemental Figure 1. The frequency of nivolumab-bound T cells was maintained in patients who continued treatment. Nivolumab binding in CD8 and CD4 T cells was analyzed at two follow-up points, as indicated, in fresh peripheral blood from three representative cases from protocol 1 that continued treatment. 2 Osa et al Supplemental Figure 2. Long-term follow-up of nivolumab binding to T cells from fresh whole blood. Nivolumab binding was followed up in fresh peripheral blood from an additional case, Pt.7. 3 Osa et al Supplemental Figure 3. Long-term duration of nivolumab binding is due to sustained circulation of residual nivolumab in plasma. (A) PBMCs acquired from Pt.8 and 9 at pretreatment (pre PBMCs) and after a single dose (post 1 PBMCs) were cultured in regular medium without nivolumab (top and middle). Pre PBMCs were also incubated with 10 µg/ml nivolumab in vitro before the cultures were started (bottom). Nivolumab binding status was monitored at the indicated time points.
    [Show full text]
  • RUNX2 Regulates Leukemic Cell Metabolism and Chemotaxis in High-Risk T Cell Acute Lymphoblastic Leukemia
    RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia Filip Matthijssens, … , Pieter Van Vlierberghe, Ksenia Matlawska-Wasowska J Clin Invest. 2021;131(6):e141566. https://doi.org/10.1172/JCI141566. Research Article Oncology Graphical abstract Find the latest version: https://jci.me/141566/pdf The Journal of Clinical Investigation RESEARCH ARTICLE RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia Filip Matthijssens,1,2 Nitesh D. Sharma,3,4 Monique Nysus,3,4 Christian K. Nickl,3,4 Huining Kang,4,5 Dominique R. Perez,4,6 Beatrice Lintermans,1,2 Wouter Van Loocke,1,2 Juliette Roels,1,2 Sofie Peirs,1,2 Lisa Demoen,1,2 Tim Pieters,1,2 Lindy Reunes,1,2 Tim Lammens,2,7 Barbara De Moerloose,2,7 Filip Van Nieuwerburgh,8 Dieter L. Deforce,8 Laurence C. Cheung,9,10 Rishi S. Kotecha,9,10 Martijn D.P. Risseeuw,2,11 Serge Van Calenbergh,2,11 Takeshi Takarada,12 Yukio Yoneda,13 Frederik W. van Delft,14 Richard B. Lock,15 Seth D. Merkley,5 Alexandre Chigaev,4,6 Larry A. Sklar,4,6 Charles G. Mullighan,16 Mignon L. Loh,17 Stuart S. Winter,18 Stephen P. Hunger,19 Steven Goossens,1,2,20 Eliseo F. Castillo,5 Wojciech Ornatowski,21 Pieter Van Vlierberghe,1,2 and Ksenia Matlawska-Wasowska3,4 1Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. 2Cancer Research Institute Ghent (CRIG), Ghent, Belgium. 3Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
    [Show full text]
  • BMP9 Prevents Induction of Osteopontin in JNK-Inactivated
    International Journal of Biochemistry and Cell Biology 116 (2019) 105614 Contents lists available at ScienceDirect International Journal of Biochemistry and Cell Biology journal homepage: www.elsevier.com/locate/biocel BMP9 prevents induction of osteopontin in JNK-inactivated osteoblasts via Hey1-Id4 interaction T ⁎ Joji Kusuyamaa,b, , Changhwan Seonga,c, Toshiaki Nakamurad, Tomokazu Ohnishia, Muhammad Subhan Amira,c,e, Kaori Shimaf, Ichiro Sembaf, Kazuyuki Noguchid, Tetsuya Matsuguchia a Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan b Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA c Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8- 35-1 Sakuragaoka, Kagoshima, 890-8544, Japan d Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan e Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Campus A UNAIR, JL. Mayjen Professor Doktor Moestopo No. 47, Pacar Kembang, Tambaksari, Kota SBY, Surabaya, Jawa Timur, 60132, Indonesia f Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan ARTICLE INFO ABSTRACT Keywords: Osteopontin (OPN) is an osteoblast-derived secretory protein that plays a role in bone remodeling, osteoblast BMP9 responsiveness, and inflammation. We recently found that osteoblast differentiation is type-specific, with con- Osteopontin ditions of JNK inactivation inducing osteoblasts that preferentially express OPN (OPN-type).
    [Show full text]
  • The Role of P53-Induced Mir-145A in Senescence and Osteogenesis of Mesenchymal Stem Cells
    The Role of p53-induced miR-145a in Senescence and Osteogenesis of Mesenchymal Stem Cells Chao Xia Shanghai Jiaotong University School of Medicine Xinhua Hospital Tianyuan Jiang Shanghai Jiaotong University School of Medicine Xinhua Hospital Yonghui Wang Shanghai Jiaotong University School of Medicine Xinhua Hospital Xiaoting Chen Shanghai Jiaotong University School of Medicine Xinhua Hospital Yan Hu Shanghai Jiaotong University School of Medicine Xinhua Hospital Yanhong Gao ( [email protected] ) https://orcid.org/0000-0003-4173-4855 Research Keywords: microRNAs, osteogenesis, senescence, mesenchymal stem cells, p53, Cbfb Posted Date: March 17th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17497/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: The osteogenic differentiation capacity of senescent bone marrow mesenchymal stem cells (MSCs) is diminished. However, little is known about the mechanisms. p53 not only regulates cellular senescence but also, as a negative regulator, is involved in bone formation. This study investigated the molecular mechanism of p53 in cellular senescence and osteogenesis. Methods: The expression of p53 and its downstream gene p21 were measured during cellular senescence and osteogenesis differentiation of primary bone marrow MSCs. Then miR-145a was picked out from those p53-induced miRNAs as its expression change in bone marrow MSCs senescence and osteogenesis induced by H2O2 and BMP-9, respectively. The function of p53 induced miR-145a was analyzed by transfected with miRNA mimic in osteogenic differentiation of MSCs. Western blot and luciferase reporter assay were used for validating the target of miR-145a.
    [Show full text]
  • Estrogen Promotes Mandibular Condylar Fibrocartilage
    www.nature.com/scientificreports OPEN Estrogen Promotes Mandibular Condylar Fibrocartilage Chondrogenesis and Inhibits Received: 27 November 2017 Accepted: 18 May 2018 Degeneration via Estrogen Published: xx xx xxxx Receptor Alpha in Female Mice Jennifer L. Robinson 1,3, Paola Soria2, Manshan Xu2, Mark Vrana1, Jefrey Luchetti1, Helen H. Lu3, Jing Chen2 & Sunil Wadhwa2 Temporomandibular joint degenerative disease (TMJ-DD) is a chronic form of TMJ disorder that specifcally aficts people over the age of 40 and targets women at a higher rate than men. Prevalence of TMJ-DD in this population suggests that estrogen loss plays a role in the disease pathogenesis. Thus, the goal of the present study was to determine the role of estrogen on chondrogenesis and homeostasis via estrogen receptor alpha (ERα) during growth and maturity of the joint. Young and mature WT and ERαKO female mice were subjected to ovariectomy procedures and then given placebo or estradiol treatment. The efect of estrogen via ERα on fbrocartilage morphology, matrix production, and protease activity was assessed. In the young mice, estrogen via ERα promoted mandibular condylar fbrocartilage chondrogenesis partly by inhibiting the canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature mice, protease activity was partly inhibited with estrogen treatment via the upregulation and activity of protease inhibitor 15 (Pi15) and alpha-2- macroglobulin (A2m). The results from this work provide a mechanistic understanding of estradiol on TMJ growth and homeostasis and can be utilized for development of therapeutic targets to promote regeneration and inhibit degeneration of the mandibular condylar fbrocartilage. Temporomandibular joint degenerative disease (TMJ-DD) is marked by degradation and premature calcifcation of the extracellular matrix (ECM) of the articular mandibular condylar fbrocartilage.
    [Show full text]
  • Identification of Shared and Unique Gene Families Associated with Oral
    International Journal of Oral Science (2017) 9, 104–109 OPEN www.nature.com/ijos ORIGINAL ARTICLE Identification of shared and unique gene families associated with oral clefts Noriko Funato and Masataka Nakamura Oral clefts, the most frequent congenital birth defects in humans, are multifactorial disorders caused by genetic and environmental factors. Epidemiological studies point to different etiologies underlying the oral cleft phenotypes, cleft lip (CL), CL and/or palate (CL/P) and cleft palate (CP). More than 350 genes have syndromic and/or nonsyndromic oral cleft associations in humans. Although genes related to genetic disorders associated with oral cleft phenotypes are known, a gap between detecting these associations and interpretation of their biological importance has remained. Here, using a gene ontology analysis approach, we grouped these candidate genes on the basis of different functional categories to gain insight into the genetic etiology of oral clefts. We identified different genetic profiles and found correlations between the functions of gene products and oral cleft phenotypes. Our results indicate inherent differences in the genetic etiologies that underlie oral cleft phenotypes and support epidemiological evidence that genes associated with CL/P are both developmentally and genetically different from CP only, incomplete CP, and submucous CP. The epidemiological differences among cleft phenotypes may reflect differences in the underlying genetic causes. Understanding the different causative etiologies of oral clefts is
    [Show full text]
  • Impact of RUNX2 on Drug-Resistant Human Pancreatic Cancer Cells with P53 Mutations
    Ozaki et al. BMC Cancer (2018) 18:309 https://doi.org/10.1186/s12885-018-4217-9 REVIEWARTICLE Open Access Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations Toshinori Ozaki1*†, Meng Yu2†, Danjing Yin3, Dan Sun4, Yuyan Zhu4, Youquan Bu5 and Meixiang Sang3 Abstract Background: Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review: Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer andosteosarcoma,indicatingthat,inadditiontoits pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2.
    [Show full text]
  • Retinoblastoma Binding Protein-1 (RBP1) Is a Runx2 Coactivator and Promotes Osteoblastic Differentiation BMC Musculo- Skeletal Disorders 2010, 11:104
    Monroe et al. BMC Musculoskeletal Disorders 2010, 11:104 http://www.biomedcentral.com/1471-2474/11/104 RESEARCH ARTICLE Open Access RetinoblastomaResearch article binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation David G Monroe*, John R Hawse, Malayannan Subramaniam and Thomas C Spelsberg Abstract Background: Numerous transcription factors are involved in the establishment and maintenance of the osteoblastic phenotype, such as Runx2, osterix and Dlx5. The transcription factor retinoblastoma binding protein-1 (RBP1) was recently identified as an estrogen regulated gene in an osteosarcoma cell model. Since the function of RBP1 in osteoblastic differentiation and mineralization is unknown, we investigated the role of RBP1 in these processes. Methods: To create a cell model with suppressed RBP1 expression, primary calvarial osteoblasts were infected with a shRNA lentiviral vector specific for mouse RBP1 (CalOB-ΔRBP1) or a scrambled control shRNA lentivirus (CalOB-Control). Stable cell lines were generated and their mineralization potential was determined using osteoblastic differentiation medium, Alizarin Red staining, and quantitative PCR (QPCR) analyses. Runx2 coactivation by RBP1 was determined through the use of transient transfection assays. Results: Stable expression of the RBP1 shRNA lentivirus in CalOB-ΔRBP1 cells resulted in a 65-70% suppression of RBP1 expression. Osteoblastic mineralization assays demonstrated that suppression of RBP1 results in a potent delay in osteoblastic nodule formation in the CalOB-ΔRBP1 cells with a concomitant decrease in the expression of the osteogenic transcription factors Runx2 and osterix, along with decreases in BMP2, alkaline phosphatase, osteocalcin and bone sialoprotein. Regulation of Runx2 expression by RBP1 was shown to be mediated through the proximal P2 Runx2 promoter.
    [Show full text]