Jdp2 Downregulates Trp53 Transcription to Promote Leukaemogenesis in the Context of Trp53 Heterozygosity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and Sumoylation
International Journal of Molecular Sciences Article Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and SUMOylation Chiung-Min Wang 1, Raymond X. Wang 1, Runhua Liu 2 and Wei-Hsiung Yang 1,* 1 Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; [email protected] (C.-M.W.); [email protected] (R.X.W.) 2 Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-912-721-8203; Fax: +1-912-721-8268 Academic Editor: William Chi-shing Cho Received: 15 December 2016; Accepted: 26 January 2017; Published: 31 January 2017 Abstract: Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between −1320 and −720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that −830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. -
Wild-Type P53 Can Down-Modulate the Activity of Various Promoters
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9979-9983, November 1991 Biochemistry Wild-type p53 can down-modulate the activity of various promoters DORON GINSBERG*, FATIMA MECHTAt, MOSHE YANIVt, AND MOSHE OREN*t *Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel; and tDepartment of Biotechnology, Pasteur Institute, 75724 Paris Cedex 15, France Communicated by Robert A. Weinberg, August 16, 1991 ABSTRACT The wild-type (wt) p53 protein is the product out whether it could also modulate c-fos expression. We of a tumor suppressor gene that is a frequent target for report here that wt p53 can inhibit c-fos gene expression. This inactivation in many types of tumors. The nuclear localization effect of wt p53 is rapid, suggesting that it may precede ofthe protein, as well as additional features, suggest that it may growth arrest. In addition, cotransfection experiments indi- be involved in the regulation ofgene expression. To explore this cate that wt p53 can down-modulate the activity of a number possibility, the effects of overproduced wt p53 were investi- of promoters. While the effect of wt p53 appeared to be gated in a number of systems. Induction of growth arrest via relatively nonspecific, it probably did not reflect a general- the antiproliferative effect ofwt p53 greatly impaired the ability ized transcriptional shut-off. Our findings suggest that wt p53 of cells to exhibit an increase in c-fos mRNA upon serum may contribute to growth inhibition by down-modulating, stimulation. Experiments in which cells were cotransfected directly or indirectly, the expression of genes that are re- with p53 expression plasmids together with a reporter gene quired for ongoing cell proliferation. -
Original Article Regulation of Exogenous P53 Combined with Dickkopf-1 on Human Osteosarcoma MG-63 Cells
Int J Clin Exp Med 2017;10(6):9252-9258 www.ijcem.com /ISSN:1940-5901/IJCEM0052476 Original Article Regulation of exogenous P53 combined with Dickkopf-1 on human osteosarcoma MG-63 cells Fuyu Gao, Benjun Bi, Guangjun Liao Department of Orthopedic Surgery, Yantaishan Hospital, Yantai, Shandong, China Received March 8, 2017; Accepted April 22, 2017; Epub June 15, 2017; Published June 30, 2017 Abstract: Objective: To regulate the growth of human osteosarcoma cell strain MG-63 in vitro through the combined drugs of exogenous P53 gene and Dickkopf-1 and to explore its possible mechanisms in order to provide the refer- ence for clinical treatment of osteosarcoma. Methods: Human osteosarcoma MG-63 cell strain was subcultured in vitro, and exogenous P53 and Dickkopf-1 were used separately or jointly to act on MG-63 cells. The proliferation and apoptosis of MG-63 cells were respectively detected by trypan blue exclusion and flow cytometry; the expres- sion levels of tumor suppressor gene P53 and oncogene c-fos and c-myc were detected by real-time fluorescent quantitative and western blot in mRNA and protein levels. Results: The proliferation test results showed that the combination of exogenous P53 and Dickkopf-1 could significantly inhibit the growth of MG-63 cells, compared with the single drug using (P<0.05), and cell cycle assay found that the combined drugs caused the cell cycle arrest at G0/G1 phase (P<0.05). Flow cytometry assay indicated the apoptosis of MG-63 cells caused by the combined drugs was significantly higher than that of using exogenous P53 or Dickkopf-1 alone, and the results of western blot manifested the combined drugs could down-regulate the expression levels of c-fos and c-myc whichwere related to the proliferation and differentiation of MG-63 cells, and increase the expression of tumor suppressor gene P53. -
Carcinogeninduced Hepatic Tumors in KLF6+/ Mice Recapitulate
HEPATOBILIARY MALIGNANCIES Carcinogen-Induced Hepatic Tumors in KLF61/2 Mice Recapitulate Aggressive Human Hepatocellular Carcinoma Associated with p53 Pathway Deregulation Mirko Tarocchi,1,2 Rebekka Hannivoort,1,3 Yujin Hoshida,4 Ursula E. Lee,1 Diana Vetter,1 Goutham Narla,5,6 Augusto Villanueva,7,8 Moshe Oren,8 Josep M. Llovet,1,7,9 and Scott L. Friedman1 Inactivation of KLF6 is common in hepatocellular carcinoma (HCC) associated with hepa- titis C virus (HCV) infection, thereby abrogating its normal antiproliferative activity in liver cells. The aim of the study was to evaluate the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis in vivo. In patients with surgically resected HCC, reduced tumor expression of KLF6 was associated with decreased survival. Consistent with its role as a tumor suppressor, KLF61/2 mice developed significantly more tumors in response to the chemical carcinogen diethyl nitrosamine (DEN) than wild-type animals. Gene expression signatures in both surrounding tissue and tumors of KLF61/2 mice closely recapitulated those associated with aggressive human HCCs. Expression microarray profiling also revealed an increase in Mdm2 mRNA in tumors from KLF61/2 compared with KLF61/1 mice, which was validated by way of quantitative real-time polymerase chain reaction and western blot analysis in both human HCC and DEN-induced murine tumors. Moreover, chromatin immunoprecipitation and cotransfection assays established the P2 intronic promoter of Mdm2 as a bona fide transcriptional target repressed by KLF6. Whereas KLF6 overexpression in HCC cell lines and primary hepatocytes led to reduced MDM2 levels and increased p53 protein and transcriptional activity, reduction in KLF6 by small interfering RNA led to increased MDM2 and reduced p53. -
Teacher Background on P53 Tumor Suppressor Protein
Cancer Lab p53 – Teacher Background on p53 Tumor Suppressor Protein Note: The Teacher Background Section is meant to provide information for the teacher about the topic and is tied very closely to the PowerPoint slide show. For greater understanding, the teacher may want to play the slide show as he/she reads the background section. For the students, the slide show can be used in its entirety or can be edited as necessary for a given class. What Is p53 and Where Is the Gene Located? While commonly known as p53, the official name of this gene is Tumor Protein p53 and its official symbol is TP53. TheTP53 gene codes for the TP53 (p53) protein which acts as a tumor suppressor and works in response to DNA damage to orchestrate the repair of damaged DNA. If the DNA cannot be repaired, the p53 protein prevents the cell from dividing and signals it to undergo apoptosis (programmed cell death). The name p53 is due to protein’s 53 kilo-Dalton molecular mass. The gene which codes for this protein is located on the short (p) arm of chromosome 17 at position 13.1 (17p13.1). The gene begins at base pair 7,571,719 and ends at base pair 7, 590,862 making it 19,143 base pairs long. (1, 2) What Does the p53 Gene Look Like When Translated Into Protein? The TP53 gene has 11 exons and a very large 10 kb intron between exons 1 and 2. In humans, exon 1 is non-coding and it has been shown that this region could form a stable stem-loop structure which binds tightly to normal p53 but not to mutant p53 proteins. -
860.Full.Pdf
Repression of IL-2 Promoter Activity by the Novel Basic Leucine Zipper p21 SNFT Protein This information is current as Milena Iacobelli, William Wachsman and Kathleen L. of September 29, 2021. McGuire J Immunol 2000; 165:860-868; ; doi: 10.4049/jimmunol.165.2.860 http://www.jimmunol.org/content/165/2/860 Downloaded from References This article cites 49 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/165/2/860.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Repression of IL-2 Promoter Activity by the Novel Basic Leucine Zipper p21SNFT Protein1,2 Milena Iacobelli,* William Wachsman,† and Kathleen L. McGuire3* IL-2 is the major autocrine and paracrine growth factor produced by T cells upon T cell stimulation. The inducible expression of IL-2 is highly regulated by multiple transcription factors, particularly AP-1, which coordinately activate the promoter. -
RB1 and P53 at the Crossroad of EMT and Triple Negative Breast Cancer
PERSPECTIVE PERSPECTIVE Cell Cycle 10:10, 1-8; May 15, 2011; © 2011 Landes Bioscience RB1 and p53 at the crossroad of EMT and triple negative breast cancer Zhe Jiang,1 Robert Jones,1 Jeff C. Liu,1 Tao Deng,1 Tyler Robinson,1 Philip E.D. Chung,1 Sharon Wang,1 Jason I. Herschkowitz,2 Sean E. Egan,3 Charles M. Perou4 and Eldad Zacksenhaus1,* 1Division of Cell and Molecular Biology; Toronto General Research Institute; University Health Network; Toronto, Ontario, Canada; 2Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA; 3Program in Developmental and Stem Cell Biology; The Hospital for Sick Children; Department of Molecular Genetics; University of Toronto; Toronto, Ontario, Canada; 4Lineberger Comprehensive Cancer Center; Department of Genetics and Pathology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA riple negative breast cancer (TNBC) NEU-positive and Triple Negative (TN) Tis a heterogeneous disease that tumors, the latter of which do not express includes Basal-like and Claudin-low hormone receptors or HER2.1-7 TNBC tumors. The Claudin-low tumors are affects 15–30% of patients. By IHC it can enriched for features associated with be further divided into Basal-like breast epithelial-to-mesenchymal transition cancer and non-basal tumors, some of (EMT) and possibly for tumor initiating which exhibit features of EMT.8 Basal-like cells. Primary TNBCs respond relatively BCs express the basal cytokeratins (CK) well to conventional chemotherapy; CK5/6, CK14, CK17, and/or epidermal © 2011 Landes Bioscience. Landes ©2011 however, metastatic disease is virtually growth factor receptor (EGFR), whereas incurable. -
Crucial Role of C-Jun Phosphorylation at Ser63/73 Mediated by PHLPP Protein Degradation in the Cheliensisin a Inhibition of Cell Transformation
Published OnlineFirst October 3, 2014; DOI: 10.1158/1940-6207.CAPR-14-0233 Cancer Prevention Research Article Research Crucial Role of c-Jun Phosphorylation at Ser63/73 Mediated by PHLPP Protein Degradation in the Cheliensisin A Inhibition of Cell Transformation Junlan Zhu1,2, Jingjie Zhang1, Haishan Huang1,2, Jingxia Li1, Yonghui Yu1, Honglei Jin1,2, Yang Li1,2, Xu Deng3, Jimin Gao2, Qinshi Zhao3, and Chuanshu Huang1 Abstract Cheliensisin A (Chel A), as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been demonstrated to have an inhibition of EGF-induced Cl41 cell transformation via stabilizing p53 protein in a Chk1-dependent manner, suggesting its chemopreventive activity in our previous studies. However, its underlying molecular mechanisms have not been fully characterized yet. In the current study, we found that Chel A treatment could increase c-Jun protein phosphorylation and activation, whereas the inhibition of c-Jun phosphorylation, by ectopic expression of a dominant-negative mutant of c-Jun, TAM67, reversed the Chel A inhibition of EGF-induced cell transformation and impaired Chel A induction of p53 protein and apoptosis. Moreover, our results indicated that Chel A treatment led to a PHLPP downregulation by promoting PHLPP protein degradation. We also found that PHLPP could interact with and bind to c-Jun protein, whereas ectopic PHLPP expression blocked c-Jun activation, p53 protein and apoptotic induction by Chel A, and further reversed the Chel A inhibition of EGF-induced cell transformation. With the findings, we have demonstrated that Chel A treatment promotes a PHLPP protein degradation, which can bind to c-Jun and mediates c-Jun phosphorylation, and further leading to p53 protein induction, apoptotic responses, subsequently resulting in cell transformation inhibition and chemopreventive activity of Chel A. -
The Rich World of P53 DNA Binding Targets: the Role of DNA Structure
International Journal of Molecular Sciences Review The Rich World of p53 DNA Binding Targets: The Role of DNA Structure Václav Brázda * and Miroslav Fojta Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-541-517-231 Received: 11 October 2019; Accepted: 8 November 2019; Published: 9 November 2019 Abstract: The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 50RRRCWWGYYY30 sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions. Keywords: p53; protein-DNA interactions; consensus sequence; cruciform; local DNA structures 1. Introduction p53 is the most often mutated tumor suppressor in humans and is studied intensively from different points of view due to its crucial role in malignant transformation [1–3]. -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. -
JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation?
International Journal of Molecular Sciences Review JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Gerhild Euler 1,* , Jens Kockskämper 2, Rainer Schulz 1 and Mariana S. Parahuleva 3 1 Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; [email protected] 2 Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; [email protected] 3 Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-0641-9947246; Fax: +49-0641-9947219 Abstract: Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target. Citation: Euler, G.; Kockskämper, J.; Keywords: heart failure; atrial fibrillation; transcription factor; remodeling Schulz, R.; Parahuleva, M.S. JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Int. -
Regulation of Runx2 Accumulation and Its Consequences
Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 ©2016 Junko Shimazu All Rights Reserved ABSTRACT Regulation of Runx2 Accumulation and Its Consequences Junko Shimazu Osteoblasts are bone-forming cells and therefore they are responsible of the synthesis of type I collagen, the main component of bone matrix. However, there is an apparent disconnect between the regulation of osteoblast differentiation and bone formation since the synthesis of Type I collagen precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. Recently, genetic experiments in the mouse have revealed the existence of an unexpected cross-regulation between bone and other organs. In particular this body of work has highlighted the importance of osteoblasts as endocrine cells to regulate whole-body glucose homeostasis by secretion of a hormone, osteocalcin. However, the fundamental question of why bone regulates glucose homeostasis remained to be answered. Therefore, in my thesis, considering that bone is a metabolically demanding organ that constantly renews itself, I hypothesized that characterizing the connection between the need of glucose as a main nutrient in osteoblasts and bone development will provide a key to deeper understanding of why bone regulates glucose homeostasis. My work shows here that glucose uptake through GLUT1 in osteoblasts is needed for osteoblast differentiation by suppressing the AMPK-dependent activation by phosphorylation at S148 of Smurf1 that targets Runx2 for degradation. I also uncovered the mechanism of action of Smurf1 in this setting.