Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 I I

Total Page:16

File Type:pdf, Size:1020Kb

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 I I SPACING MECHANISMS IN A HERMIT CRAB POPULATION Item Type text; Dissertation-Reproduction (electronic) Authors Snyder-Conn, Elaine Kay, 1948- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 22:24:01 Link to Item http://hdl.handle.net/10150/289616 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 I i 77-26,961 SNYDER-CONN, Elaine Kay, 1948- SPACING MECHANISMS IN A HERMIT CRAB POPULATION. The University of Arizona, Ph.D., 1977 Zoology Xerox University Microfilms, Ann Arbor, Michigan 48106 SPACING MECHANISMS IN A HERMIT CRAB POPULATION by Elaine Kay Snyder-Conn A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ZOOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 7 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Elaine Kay Snyder-Corm entitled Spacing Mechanisms in a Hermit Crab Population be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy !Q 71 Dissertation Director Date After inspection of the final copy of the dissertation, the follovzing members of the Final E:camination Committee concur in its approval and recommend its acceptance:"" /6 77 Ma-,.-21 \1 77 3, /f 7~~7 ~ JL~*. 7 m? This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination. The inclusion of this sheet bound into the library copy of the dissertation is evidence of satisfactory performance at the final examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduc­ tion of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author. SIGNED: - Clcrvyo-^ ACKNOWLEDGMENTS Foremost, I thank Dr. Elisabeth Stull and Dr. Donald Thomson for encouraging me in this study, for conferring creative and useful advice, and for their thorough attention to manuscripts evolving from this study. Dr. Peter Pickens aided in the identification of hermit crabs species and also assisted in the experimental design of some of the rhythm studies. Dr. Ronald Pulliam also provided assistance in the experimental design and statistical treatment of the results, as well as providing able criticism of the manuscript. Mr. John Skeoch of the Villa School assisted in many of the experiments described in the final chapter. Dr. Robert Hoshaw gave valuable time in reading this manu­ script. Dr. Brian Hazlett and Dr. Ernst Reese graciously supplied unpublished data and ideas, in addition to stimulating my greater interest in the biology of hermit crabs. Numerous other researchers contributed unpublished observations to Chapter 3, including Drs. Richard Vance, William Grant, Jr., Elliot Norse, and Eldon Ball. In addition, Dr. Ball has contributed many research ideas to this study. Dr. Robert Kuehl suggested several of the statistical procedures followed in this study. Lastly, I would especially like to thank my husband, Mr. Jeffery Conn, for his aid in both research and writing phases of this study, and forbearance throughout this study. iii TABLE OF CONTENTS Page LIST OF TABLES vi LIST OF ILLUSTRATIONS viii ABSTRACT x 1. INTRODUCTION 1 Presentation of the Problem ..... 1 Theoretical Aspects of Spacing 2 Synopsis of the Research Approach 10 2. PATTERNS OF AGGREGATION AMONG MARINE CRUSTACEA 11 Introduction 11 Patches 11 Schools 13 Migratory Assemblages 15 Stratifications 22 Swarms and Clusters 24 Swarms 25 Clusters 33 Summary 58 3. SPACING IN HERMIT CRABS 61 Introduction 61 Clustering Species 61 Types of Clusters 69 Composition of Clusters 71 Size Composition 71 Species Composition 71 Environmental Variables 72 Depth 72 Substrate 72 Summary 73 iv V TABLE OF CONTENTS--Continued Page 4. AGGREGATION AND DISPERSION IN CLIBANARIUS DIGUETI: MECHANISMS 74 Introduction 74 Behavior in Nature 75 Sequential Diving Observations at Puerto Peflasco ... 75 Sequential Diving Observations at Bahfa San Carlos . 78 Transect Studies . • 79 Materials and Methods 79 Clustering Patterns within Transects 83 Clustering Patterns between Transects 84 Rhythmical Behavior under Constant Laboratory Conditions . 90 Activity Rhythms 90 Skototactic Rhythms 94 Phototactic Rhythm at Puerto Pefiasco 97 Rhythm of Gregariousness at Puerto Pefiasco 100 The Role of Rhythmical Behavior in Aggregation and Dispersal 101 Behavior in Response to the Environment 102 Components of the Rhythmically Changing Environment . 102 Components of the Static Physical Environment .... 126 Components of the Biotic Environment 129 Discussion and Conclusions 140 5. THE ADAPTIVE VALUE OF AGGREGATION IN CLIBANARIUS DIGUETI .... 146 Hypotheses 146 Shell Exchange 146 Mating 151 Shell Cleaning 152 Predator Avoidance 153 Resistance to Current 155 Resistance to Cold 155 Resistance to Desiccation 159 Discussion and Conclusions 164 APPENDIX: HERMIT CRAB VERSUS SHELL SIZE 169 REFERENCES 171 LIST OF TABLES Table Page 1. Types of Contagion Found in Marine Crustaceans 59 2. Spacing Patterns of Marine Hermit Crabs in Relation to Habitat Preference and Body Size 62 3. Measures of Aggregation 83 4. Basic Statistics and Indices of Clumping for Clibanarius digueti in Each Coquina Transect 85 5. Basic Statistics and Indices of Clumping for Clibanarius digueti in Each Boulder Transect 86 6. Temperatures during the Light Intensity Experiment 105 7. Response of Clibanarius digueti to Changes in Temperature . 106 8. Response of Clibanarius digueti to Changes of Current Direction 112 9. Basic Statistics and Indices of Clumping for All Hermit Crab Species Combined in Each Boulder Transect 132 10. Frequencies.of Shell Occupancy by Four Species of Hermit Crabs in Coquina and Boulder Transects 138 11. Results of One-Way Analyses of Variance in Size of Clibanarius digueti between and within Meters for Each Transect 148 12. Frequency of Shell Exchanges in Clustered versus Dispersed Clibanarius digueti 150 13. Taction and Mean Group Size of 16 Clibanarius digueti under Cold Conditions 156 14. Resistance to Cold by Clibanarius digueti in Large Clusters . 158 15. Resistance of Clibanarius digueti in Small Clusters to Desiccation 161 vi vii LIST OF TABLES--Continued Table Page 16. Resistance of Clibanarius digueti in Large Clusters to Desiccation 163 LIST OF ILLUSTRATIONS Figure Page 1. In Situ Pattern of Behavior of C_. digueti in the Puerto Peflasco Intertidal Zone 77 2. In Situ Pattern of Behavior of £. digueti in the Bahfa San Carlos Intertidal Zone 80 3. Clumping of Clibanarius digueti in Boulder and Coquina Transects by Month, as Indicated by the Variance to Mean Ratio 87 4. Clumping of Clibanarius digueti in Boulder and Coquina Transects by Month, as Indicated by Morisita's Index of Dispersion 89 5. Tidal Rhythm of Activity of Clibanarius digueti at Puerto Peflasco, Sonora, Mexico 92 6. Tidal Rhythm of Activity of Clibanarius digueti at Bahfa San Carlos, Sonora, Mexico 93 7. Tidal Rhythm of Skototaxis of CIibanarius digueti at Puerto Peflasco, Sonora, Mexico 96 8. Rhythm of Skototaxis of Clibanarius digueti at Bahfa San Carlos, Sonora, Mexico 98 9. Tidal Rhythm of Phototaxis of Clibanarius digueti at Puerto Peflasco, Sonora, Mexico 99 10. Locomotor Activity of Clibanarius digueti in Response to Different Light Intensities at Periods of High and Low Tide 104 11.
Recommended publications
  • Zootaxa,Crustacean Classification
    Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages.
    [Show full text]
  • On the Crabs of the Family Ocypodidae in the Collection of the Raffles Museum M. W. F. TWEEDIE
    Reprint from Bulletin of the Raffles Museum, Singapore, Straits Settlements, No. IS, August 1937 On the Crabs of the family Ocypodidae in the collection of the Raffles Museum hy M. W. F. TWEEDIE M. W. F. TWEEDIE On the Crabs of the Family Ocypodidae in the Collection of the Raffles Museum By M. W. F. TwEEDiE, M.A. The material described in this paper has been collected for the most part during the last four years, mainly in mangrove swamps around Singapore Island and at a few localities on the east and west coasts of the Malay Peninsula. The greater part of the paper and most of the figures were prepared at the British Museum (Natural History) during August and September, 1936, and my grateful acknowledgments are due to the Director for permission to work there and for facilities provided, and particularly to Dr. Isabella Gordon for her unfailing help and encouragement. I wish also to express my thanks to the Directorates of the Zoological Museums at Leiden and Amsterdam for permission to examine types, and for the helpfulness and courtesy with which I was received by the members of the staffs of these museums. Finally acknowledgments are due to Prof. Dr. H. Balss, Dr. B. N. Chopra and Dr. C. J. Shen for their kindness in comparing specimens with types and authentic specimens in their respective institutions. The mode adopted for collecting the material may be of interest to collectors of Crustacea, and possibly other invertebrate groups, in the tropics. It was found that if crabs, especially Grapsidse and Ocypodidse, are put straight into alcohol, they tend to die slowly and in their struggles to shed their limbs and damage each other, so that often less than 10% of the collection survive as perfect specimens.
    [Show full text]
  • Chapter Two Marine Organisms
    THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • The Development and Improvement of Instructions
    PHYLOGEOGRAPHIC PATTERNS OF TYLOS (ISOPODA: ONISCIDEA) IN THE PACIFIC REGION BETWEEN SOUTHERN CALIFORNIA AND CENTRAL MEXICO, AND MITOCHONDRIAL PHYLOGENY OF THE GENUS A Thesis by EUN JUNG LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Luis A. Hurtado Mariana Mateos Committee Member, James B. Woolley Head of Department, Michael P. Masser December 2012 Major Subject: Wildlife and Fisheries Science Copyright 2012 Eun Jung Lee ABSTRACT Isopods in the genus Tylos are distributed in tropical and subtropical sandy intertidal beaches throughout the world. These isopods have biological characteristics that are expected to severely restrict their long-distance dispersal potential: (1) they are direct developers (i.e., as all peracarids, they lack a planktonic stage); (2) they cannot survive in the sea for long periods of immersion (i.e., only a few hours); (3) they actively avoid entering the water; and (4) they are restricted to the sandy intertidal portion that is wet, but not covered by water. Because of these traits, high levels of genetic differentiation are anticipated among allopatric populations of Tylos. We studied the phylogeographic patterns of Tylos in the northern East Pacific region between southern California and central Mexico, including the Gulf of California. We discovered high levels of cryptic biodiversity for this isopod, consistent with expectations from its biology. We interpreted the phylogeographic patterns of Tylos in relation to past geological events in the region, and compared them with those of Ligia, a co-distributed non-vagile coastal isopod.
    [Show full text]
  • Ga7459. B) Polyonyx Pedalis, 1 Female 4.56×4.73 Mm, Mayotte, St
    23 Figure 11. A) Polyonyx biunguiculatus, 1 male 2.68×3.23 mm, Mayotte, St. 23, MNHN- Ga7459. B) Polyonyx pedalis, 1 female 4.56×4.73 mm, Mayotte, St. 19, MNHN-Ga7464 (coloration altered by preservative). C) Polyonyx triunguiculatus, 1 male 3.69×4.37, Mayotte, St. 23, MNHN-Ga7438. D) Polyonyx aff. boucheti, 1 ovigerous female 2.20×3.24 mm, Mayotte, St. 12, MNHN-Ga7465. Polyonyx triunguiculatus Zehntner, 1894 Polyonyx triunguiculatus (Figure 11 C) - Haig, 1966: 44 (Mayotte, lagoon, small blocks and coarse sands, coll. A. Crosnier, September 1959, 2 males 2.7 and 3.2 mm, 1 female 1.9 mm, 2 ovigerous females 3.1 and 3.2 mm; same, coarse sands, 50 m, 1 male 3.7 mm, 1 female 3.3 mm, MNHN). - BIOTAS collections, Glorioso, 3-7 May 2009, det. J. Poupin from photo, St. GLOR-2, reef platform and shallow canyons with dead Acropora digitifera head, 7-14 m, specimen MEPA 948; St. GLOR-5, reef slope East side, 17 m, specimen MEPA 1045. - Mayotte, KUW fieldwork November 2009, St. 14, La Prudente bank, 15-17 m, 2 males 3.38×4.13 and 3.31×3.79 mm, 1 ovigerous female 3.29×4.20, 1 juvenile broken, MNHN-Ga7436; St. 17, North reef, 22 m, 1 male 3.43×3.94, 1 ovigerous female 3.10×3.97 mm, MNHN-Ga7437; St. 23, Choizil pass ‘Patate à Teddy’, 15-30 m, 1 male 3.69×4.37, 1 female 2.72×3.12 mm, MNHN-Ga7438; St. 25, islet M'tzamboro, 15-20 m, 1 ovigerous female 3.46×4.45 mm, 1 female 2.74×3.06 mm, 2 ovigerous females 2.89×3.44 and 3.40×3.99 mm, 1 female not measured, MNHN-Ga7439; St.
    [Show full text]
  • Growth and Population Biology of the Sand-Bubbler Crab Scopimera
    Sharifian et al. The Journal of Basic and Applied Zoology (2021) 82:21 The Journal of Basic https://doi.org/10.1186/s41936-021-00218-x and Applied Zoology RESEARCH Open Access Growth and population biology of the sand-bubbler crab Scopimera crabricauda Alcock 1900 (Brachyura: Dotillidae) from the Persian Gulf, Iran Sana Sharifian1* , Vahid Malekzadeh2, Ehsan Kamrani2 and Mohsen Safaie2 Abstract Background: Dotillid crabs are introduced as one common dwellers of sandy shores. We studied the ecology and growth of the sand bubbler crab Scopimera crabricauda Alcock, 1900, in the Persian Gulf, Iran. Crabs were sampled monthly by excavating nine quadrats at three intertidal levels during spring low tides from January 2016 to January 2017. Results: Population data show unimodal size-frequency distributions in both sexes. The Von Bertalanffy function was calculated at CWt = 8.76 [1 − exp (− 0.56 (t + 0.39))], CWt = 7.90 [1 − exp (− 0.59 (t + 0.40))] and CWt = 9.35 [1 − exp (− 0.57 (t + 0.41))] for males, females, and both sexes, respectively. The life span appeared to be 5.35, 5.07, and 5.26 years for males, females, and both sexes, respectively. The cohorts were identified as two age continuous groups, with the mean model carapace width 5.39 and 7.11 mm for both sexes. The natural mortality (M) coefficients stood at 1.72 for males, 1.83 for females, and 1.76 years−1 for both sexes, respectively. The overall sex ratio (1:0.4) was significantly different from the expected 1:1 proportion with male-biased.
    [Show full text]
  • Air Perez PV Art2020.Pdf
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Air-exposure behavior: a restricted BRAZILIAN CRUSTACEAN SOCIETY or a common conduct among intertidal hermit crabs? e-ISSN 2358-2936 www.scielo.br/nau Marta Perez-Miguel1 orcid.org/0000-0002-6285-7515 www.crustacea.org.br Ingo S. Wehrtmann2, 3 orcid.org/0000-0002-6826-7938 Pilar Drake1 orcid.org/0000-0003-3221-1358 Jose A. Cuesta1 orcid.org/0000-0001-9482-2336 1 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC). Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. MP-M E-mail: [email protected] PD E-mail: [email protected] JAC E-mail: [email protected] 2 Unidad de Investigación Pesquera y Acuicultura (UNIP) of the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ISW E-mail: [email protected] 3 Museo de Zoología, Escuela de Biología, Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:C7D42A69-A8DF-4999- 90F1-C3A19CB0557D ABSTRACT A new behavior related to shell care was recently reported for the intertidal hermit crab Clibanarius erythropus (Latreille, 1818) in the Gulf of Cádiz (southwestern Europe). It also has been observed in other species of the diogenid genera Clibanarius Dana, 1952, and Calcinus Dana, 1951, however, it has not been described as an active behavior. In the present study, intertidal hermit crabs from different species and localities were sampled to assess if air-exposure is a shell cleaning behavior restricted to some species of intertidal hermit crabs or if it is a more generalized behavior among species inhabiting intertidal habitats.
    [Show full text]
  • Territorial Behavior in Dominican Land Crabs Gecarcinus Ruricola and Gecarcinus Lateralis • Angelica Biernat
    Territorial Behavior in Dominican Land Crabs Gecarcinus ruricola and Gecarcinus lateralis • Angelica Biernat Dominica Study Abroad 2000 Dr. Tom Lacher and Dr. Jim Woolley Texas A&M University • , • Abstract This project consisted of observations of Gecarcinus ruricola and Gecarcinus lateralis. It was determined that both species are highly territorial and appear to establish specific holes to which they repeatedly return. It is possible that a chemical marker is used to locate the precise hole. Introduction My study was conducted through observations of both Gecarcinus ruricola and Gecarcinus lateralis land crabs on the island of Dominica in the West Indies. G. ruricola is more commonly known as the Black Crab. It is darker in color and is the • larger of the two at 2.8 inches. It is also the most common crab to be used as food on Dominica. In contrast, G. lateralis, locally referred to as "Totoloo," is more reddish-brown in color and only grows to about 1.8 inches. Both crabs are relatively nocturnal and highly terrestrial. Unfortunately, neither species has been the subject of extensive research. Thus, there were many interesting options to pursue, but the purpose of my study became focused on observing the territorial behaviors of these land crabs. Materials * Thick rubber gloves • * Buckets of varying sizes and depths * Fingernail polishes * Tagging ribbon Methods It was discovered that the crabs were most active just after a rain and were easily captured along the Imperial Highway and along the pathway below the Stream House at Springfield. The crabs were simply collected by hand and were placed in separate buckets according to size.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS School of Ocean and Earth Science ECOLOGY OF THE INTERTIDAL CRAB DOTILLA INTERMEDIA FROM TSUNAMI-IMPACTED BEACHES IN THAILAND Christopher John Allen Thesis for the degree of Doctor of Philosophy April 2010 DECLARATION OF AUTHORSHIP I, Christopher John Allen , declare that the thesis entitled The Ecology of the intertidal crab Dotilla intermedia from tsunami-impacted beaches in Thailand and the work presented in the thesis are both my own, and have been generated by me as a result of my own original research. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University; • Where any part of this thesis has been previously submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated; • Where I have consulted the published work of others, this is always clearly attributed; • Where I have quoted from the work of others, the source is always given.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • The Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobitidae) from the Motus of Mo’Orea, French Polynesia
    ONE IS THE LONLIEST NUMBER: THE EFFECTS OF ISOLATION ON THE BEHAVIORAL INTERACTIONS OF JUVELNILLE LAND HERMIT CRABS (COENOBITIDAE) FROM THE MOTUS OF MO’OREA, FRENCH POLYNESIA *WITH AN APPENDIX SURVEYING THE HERMIT CRAB SPECIES PRESENT ON SELECT MO’OREAN MOTUS. VANESSA E. VAN ZERR Integrative Biology, University of California, Berkeley, California 94720 USA, [email protected] Abstract. Hermit crabs interact with each other in a variety of ways involving spatial use (aggregations, migrations), housing (shells), mating, recognition of conspecifics, and food. To test if isolation from conspecifics affects the behavioral interactions of hermit crabs, crabs of the species Coenobita rugosus (Milne‐Edwards 1837) of Mo’orea, French Polynesia were isolated from each other for two days, four days, six days, fifteen days, and twenty‐two days. They were kept in individual opaque containers with separate running seawater systems to prevent them from seeing or smelling each other. Afterwards, the hermit crabs were put into a tank two at a time and their behavior was recorded and compared to the behaviors of non‐isolated crabs. Behaviors looked at fell into two categories: 1) “social” interactions, meaning that the crabs reacted to each other’s presence, and 2) “nonsocial” interactions, meaning that the crabs either ignored each other’s presence or actively avoided behavioral interactions with other crabs. Results indicated that although “social” behavior showed a slight decreasing trend over time, it was not significant; however, the amount of “nonsocial” avoidance behavior seen increased significantly the longer crabs were isolated. Key words: hermit crab, Coenobita, Calcinus, Dardanus, isolation, behavior, motu. INTRODUCTION: sex ratios are uneven (Wada S.
    [Show full text]