Using a De Novo-Assembled Korean Genome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download.Cse.Ucsc.Edu/ Early Age of Onset (~2.5 Years) of This PRA Form in Goldenpath/Canfam2/Database/) Using Standard Settings
Kropatsch et al. Canine Genetics and Epidemiology (2016) 3:7 DOI 10.1186/s40575-016-0037-x RESEARCH Open Access A large deletion in RPGR causes XLPRA in Weimaraner dogs Regina Kropatsch1*, Denis A. Akkad1, Matthias Frank2, Carsten Rosenhagen3, Janine Altmüller4,5, Peter Nürnberg4,6,7, Jörg T. Epplen1,8 and Gabriele Dekomien1 Abstract Background: Progressive retinal atrophy (PRA) belongs to a group of inherited retinal disorders associated with gradual vision impairment due to degeneration of retinal photoreceptors in various dog breeds. PRA is highly heterogeneous, with autosomal dominant, recessive or X-linked modes of inheritance. In this study we used exome sequencing to investigate the molecular genetic basis of a new type of PRA, which occurred spontaneously in a litter of German short-hair Weimaraner dogs. Results: Whole exome sequencing in two PRA-affected Weimaraner dogs identified a large deletion comprising the first four exons of the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene known to be involved in human retinitis pigmentosa and canine PRA. Screening of 16 individuals in the corresponding pedigree of short-hair Weimaraners by qPCR, verified the deletion in hemizygous or heterozygous state in one male and six female dogs, respectively. The mutation was absent in 88 additional unrelated Weimaraners. The deletion was not detectable in the parents of one older female which transmitted the mutation to her offspring, indicating that the RPGR deletion represents a de novo mutation concerning only recent generations of the Weimaraner breed in Germany. Conclusion: Our results demonstrate the value of an existing DNA biobank combined with exome sequencing to identify the underlying genetic cause of a spontaneously occurring inherited disease. -
Mobile Genetic Elements in Streptococci
Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G. -
Analysis of Trans Esnps Infers Regulatory Network Architecture
Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation. -
Homologous Recombination Between a Defective Virus and a Chromosomal Sequence in Mammalian Cells (DNA Integation/Simian Virus 40) YOSEF SHAUL*, ORGAD Laubt, MICHAEL D
Proc. Nad. Acad. Sci. USA Vol. 82, pp. 3781-3784, June 1985 Genetics Homologous recombination between a defective virus and a chromosomal sequence in mammalian cells (DNA integation/simian virus 40) YOSEF SHAUL*, ORGAD LAUBt, MICHAEL D. WALKERt, AND WILLIAM J. RUTTER* Departments of *Virology and tGenetics, The Weizmann Institute of Science, Rehovot, Israel; and *Hormone Research Laboratory, University of California, San Francisco, CA 94143 Contributed by William J. Rutter, February 14, 1985 ABSTRACT Replacement of the early region of simian vi- M 2 3 4 5 6 7 8 9 10 11 12 M rus 40 results in virus that cannot replicate in a normal host, kb 231 - CV-1 cells, but can replicate in COS cells, a derivative of CV-1 9.4 - cells that constitutively express simian virus 40 tumor antigen 6.6 - (T antigen). However, passage of such an early replacement 44 --I _ simian virus 40 mutant in COS cells results in the emergence of _ _ virus that can propagate in CV-1 cells. Analysis of this virus 2.3- revealed that the mutant rescued the integrated T-antigen gene 2.0 - from the COS cell genome. Comparison of the sequence of the recovered virus with that of the viral DNA resident in COS 135- cells (strain 776) and the mutant used in our studies (derived 108 -- from strain 777) proves that the mutant virus acquired the T- .87- _ antigen gene from the COS cell chromosome via homologous ,_ . 1 recombination. Most probably this process was mediated by a .60- direct genetic exchange. -
Interfering with Retrotransposition by Two Types of CRISPR Effectors
Zhang et al. Cell Discovery (2020) 6:30 Cell Discovery https://doi.org/10.1038/s41421-020-0164-0 www.nature.com/celldisc ARTICLE Open Access Interfering with retrotransposition by two types of CRISPR effectors: Cas12a and Cas13a Niubing Zhang1,2, Xinyun Jing1, Yuanhua Liu3, Minjie Chen1,2, Xianfeng Zhu2, Jing Jiang2, Hongbing Wang4, Xuan Li1 and Pei Hao3 Abstract CRISPRs are a promising tool being explored in combating exogenous retroviral pathogens and in disabling endogenous retroviruses for organ transplantation. The Cas12a and Cas13a systems offer novel mechanisms of CRISPR actions that have not been evaluated for retrovirus interference. Particularly, a latest study revealed that the activated Cas13a provided bacterial hosts with a “passive protection” mechanism to defend against DNA phage infection by inducing cell growth arrest in infected cells, which is especially significant as it endows Cas13a, a RNA-targeting CRISPR effector, with mount defense against both RNA and DNA invaders. Here, by refitting long terminal repeat retrotransposon Tf1 as a model system, which shares common features with retrovirus regarding their replication mechanism and life cycle, we repurposed CRISPR-Cas12a and -Cas13a to interfere with Tf1 retrotransposition, and evaluated their different mechanisms of action. Cas12a exhibited strong inhibition on retrotransposition, allowing marginal Tf1 transposition that was likely the result of a lasting pool of Tf1 RNA/cDNA intermediates protected within virus-like particles. The residual activities, however, were completely eliminated with new constructs for persistent crRNA targeting. On the other hand, targeting Cas13a to Tf1 RNA intermediates significantly inhibited Tf1 retrotransposition. However, unlike in bacterial hosts, the sustained activation of Cas13a by Tf1 transcripts did not cause cell growth arrest in S. -
Helicase Mechanisms During Homologous Recombination in Saccharomyces Cerevisiae
BB48CH11_Greene ARjats.cls April 18, 2019 12:24 Annual Review of Biophysics Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae J. Brooks Crickard and Eric C. Greene Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; email: [email protected], [email protected] Annu. Rev. Biophys. 2019. 48:255–73 Keywords First published as a Review in Advance on homologous recombination, helicase, Srs2, Sgs1, Rad54 March 11, 2019 Access provided by 68.175.70.229 on 06/02/20. For personal use only. The Annual Review of Biophysics is online at Abstract Annu. Rev. Biophys. 2019.48:255-273. Downloaded from www.annualreviews.org biophys.annualreviews.org Helicases are enzymes that move, manage, and manipulate nucleic acids. https://doi.org/10.1146/annurev-biophys-052118- They can be subdivided into six super families and are required for all aspects 115418 of nucleic acid metabolism. In general, all helicases function by converting Copyright © 2019 by Annual Reviews. the chemical energy stored in the bond between the gamma and beta phos- All rights reserved phates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nu- cleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key heli- cases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fxing damaged chromosomes. -
Is BOK Required for Apoptosis Induced by Endoplasmic Reticulum Stress?
LETTER Is BOK required for apoptosis induced by endoplasmic reticulum stress? LETTER Yuniel Fernandez-Marreroa, Francine Keb,c, Nohemy Echeverrya,1, Philippe Bouilletb,c, Daniel Bachmanna, Andreas Strasserb,c, and Thomas Kaufmanna,2 The B-cell lymphoma 2 (BCL-2)-related ovarian killer comparable Chop levels). Given the critical role of BIM (BOK) shares sequence homology with the proapo- in ER stress-induced apoptosis, this reduction of Bim ptotic BCL-2 family members BAX and BAK. However, may fully account for the reported resistance to ER −/− Bok cells are not protected from classic apoptotic stress. It is unclear whether this reduction of Bim is par- triggers and evidence for a proapoptotic role of BOK ticular to these SV40 MEFs, which are prone to line-to- is derived mostly from overexpression studies (1). BOK line variations within the one genotype, or whether this localizes preferentially to the endoplasmic reticulum is also seen in primary cells (e.g., primary MEFs, which (ER) membrane, where it interacts with IP3-receptors were used for some experiments) from these mice. Im- −/− (2, 3). Using cells from their newly generated Bok portantly, we did not observe significant changes in Bim −/− mouse strain, Carpio et al. propose that BOK is a crit- levels in SV40 MEFs or tissues from our Bok mice (Fig. ical inducer of BAX/BAK-dependent apoptosis in re- 1A). Overall, our analysis of SV40 MEFs, primary MEFs, sponse to ER stress (4). This proposal is in contrast to myeloid progenitors, mast cells, and primary neutrophils our earlier report, in which we showed that loss of BOK did not support a proapoptotic role of BOK downstream did not confer resistance toward ER stress in several of ER stress (2) (Fig. -
BCL-2 Family Proteins: Changing Partners in the Dance Towards Death
Cell Death and Differentiation (2018) 25, 65–80 OPEN Official journal of the Cell Death Differentiation Association www.nature.com/cdd Review BCL-2 family proteins: changing partners in the dance towards death Justin Kale1, Elizabeth J Osterlund1,2 and David W Andrews*,1,2,3 The BCL-2 family of proteins controls cell death primarily by direct binding interactions that regulate mitochondrial outer membrane permeabilization (MOMP) leading to the irreversible release of intermembrane space proteins, subsequent caspase activation and apoptosis. The affinities and relative abundance of the BCL-2 family proteins dictate the predominate interactions between anti-apoptotic and pro-apoptotic BCL-2 family proteins that regulate MOMP. We highlight the core mechanisms of BCL-2 family regulation of MOMP with an emphasis on how the interactions between the BCL-2 family proteins govern cell fate. We address the critical importance of both the concentration and affinities of BCL-2 family proteins and show how differences in either can greatly change the outcome. Further, we explain the importance of using full-length BCL-2 family proteins (versus truncated versions or peptides) to parse out the core mechanisms of MOMP regulation by the BCL-2 family. Finally, we discuss how post- translational modifications and differing intracellular localizations alter the mechanisms of apoptosis regulation by BCL-2 family proteins. Successful therapeutic intervention of MOMP regulation in human disease requires an understanding of the factors that mediate the major binding interactions between BCL-2 family proteins in cells. Cell Death and Differentiation (2018) 25, 65–80; doi:10.1038/cdd.2017.186; published online 17 November 2017 The membrane plays an active role in most BCL-2 family interactions by changing the affinities and local relative abundance of these proteins. -
A Species-Specific Retrotransposon Drives a Conserved Cdk2ap1 Isoform Essential for Preimplantation Development
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436683; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: A species-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for preimplantation development Authors: Andrew Modzelewski1†, Wanqing Shao2†, Jingqi Chen1, Angus Lee1, Xin Qi1, Mackenzie Noon1, Kristy Tjokro1, Gabriele Sales3, Anne Biton4, Terence Speed5, Zhenyu Xuan6, Ting Wang2#, Davide Risso3# and Lin He1# Affiliations: 1 Division of Cellular and Developmental Biology, MCB department, University of California at Berkeley, Berkeley, CA, USA. 2 Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA 3 Department of Statistical Sciences, University of Padova, Italy. 4 Division of Biostatistics, University of California at Berkeley, Berkeley, CA 94720, USA. 5 Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia. 6 Department of Biological Sciences, The University of Texas at Dallas, Richardson Texas, USA # Correspondence to: [email protected], [email protected] and [email protected] †These authors contributed equally. Abstract: Retrotransposons mediate gene regulation in multiple developmental and pathological processes. Here, we characterized the transient retrotransposon induction in preimplantation development of eight mammalian species. While species-specific in sequences, induced retrotransposons exhibit a similar preimplantation profile, conferring gene regulatory activities particularly through LTR retrotransposon promoters. We investigated a mouse-specific MT2B2 retrotransposon promoter, which generates an N-terminally truncated, preimplantation-specific Cdk2ap1ΔN isoform to promote cell proliferation. Cdk2ap1ΔN functionally contrasts to the canonical Cdk2ap1, which represses cell proliferation and peaks in mid-gestation stage. -
Evolution with Recombination Affects the Stability of Mobile Genetic Element Insertions Within Gene Families of Salmonella
Molecular Microbiology (2018) 108(6), 697–710 doi:10.1111/mmi.13959 First published online 25 April 2018 Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella Gerrit Brandis ,† Sha Cao† and Introduction Diarmaid Hughes * Department of Medical Biochemistry and Gene families with multiple copies of the same gene Microbiology, Box 582 Biomedical Center, Uppsala separately located on the chromosome are a frequent University, Uppsala, Sweden. feature in prokaryotic and eukaryotic genomes. One common gene family in bacteria are the genes for trans- lation elongation factor EF-Tu, tufA and tufB. The dupli- cation of the tuf gene, that led to the creation of this gene family, most likely occurred early in the evolution Summary of the eubacterial taxon (Sela et al., 1989; Lathe and Bork, 2001). Despite the ancient origin of the duplica- Bacteria can have multiple copies of a gene at sepa- tion, the tuf genes of Salmonella enterica serovar Typhi- rate locations on the same chromosome. Some of murium strain LT2 differ at only 13 of 1185 nucleotides these gene families, including tuf (translation elonga- (Abdulkarim and Hughes, 1996). This high degree of tion factor EF-Tu) and rrl (ribosomal RNA), encode nucleotide identity indicates that the tuf genes evolve in functions critically important for bacterial fitness. concert. It has been shown that homologous recombina- Genes within these families are known to evolve in tion between the genes leads to the exchange of concert using homologous recombination to transfer genetic information, which facilitates this co-evolution genetic information from one gene to another. -
Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila Melanogastd
Copyright 0 1997 by the Genetics Society of America Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila melanogastd Tammy Dray and Gregory B. Gloor Department of Biochemistry, University of Western Ontario, London, Ontario, Canada Manuscript received January 23, 1997 Accepted for publication June 26, 1997 ABSTRACT The effect of homology on gene targeting was studied in the context of P-element-induced double- strand breaks at the white locus of Lkosophila melanogaster. Double-strand breaks were made by excision of F'-Whd, a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to thewhite locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reducedhomology, also were examined andcharacter- ized. OUBLE-STRAND breaks arise in the genome as or noncrossover event depends upon the resolution of D a direct result of ionizing radiation, transposon the Holidayjunctions on eitherside of the newly synthe- excision or site-specific nucleases, and indirectly sized DNA (SZOST~et al. -
LINE1 Inhibition (With Nucleoside Reverse Transcriptase Inhibitors)
Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. LINE1 inhibition (with nucleoside reverse transcriptase inhibitors) Evidence Summary L1 activation may be associated with age-related diseases, and nucleoside reverse transcriptase inhibitors (NRTIs) suppress L1 activation and may be beneficial in age-related diseases. Neuroprotective Benefit: Increased retrotransposition of transposable elements is implicated in neurodegenerative diseases, so NRTIs could theoretically reverse these actions, but only preclinical evidence exists to date. Aging and related health concerns: Preclinical studies suggest that NRTIs may be an effective anti-aging therapy, and clinical studies suggest they may be effective for cancer. Safety: NRTIs are associated with some mild side effects and rare severe, possibly life- threatening, side effects. 1 Availability: Available with Dose: Depends on the Molecular Formula: N/A prescription (as generics) NRTI Molecular weight: N/A Half-life: Depends on the BBB: Possibly penetrant NRTI in animal models Clinical trials: Many for HIV, Observational studies: one for ALS Many What is it? Retrotransposons are stretches of DNA that can replicate and reinsert into other parts of the genome. Their presence in the DNA comes from retroviral infection of germline cells throughout evolutionary history.