ストリーム暗号の現状と課題 the State of Stream Ciphers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LNCS 9065, Pp
Combined Cache Timing Attacks and Template Attacks on Stream Cipher MUGI Shaoyu Du1,4, , Zhenqi Li1, Bin Zhang1,2, and Dongdai Lin3 1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 4 University of Chinese Academy of Sciences, Beijing, China du [email protected] Abstract. The stream cipher MUGI was proposed by Hitachi, Ltd. in 2002 and it was specified as ISO/IEC 18033-4 for keystream genera- tion. Assuming that noise-free cache timing measurements are possible, we give the cryptanalysis of MUGI under the cache attack model. Our simulation results show that we can reduce the computation complexity of recovering all the 1216-bits internal state of MUGI to about O(276) when it is implemented in processors with 64-byte cache line. The at- tack reveals some new inherent weaknesses of MUGI’s structure. The weaknesses can also be used to conduct a noiseless template attack of O(260.51 ) computation complexity to restore the state of MUGI. And then combining these two attacks we can conduct a key-recovery attack on MUGI with about O(230) computation complexity. To the best of our knowledge, it is the first time that the analysis of cache timing attacks and template attacks are applied to full version of MUGI and that these two classes of attacks are combined to attack some cipher. -
Detection and Exploitation of Small Correlations in Stream Ciphers
Detection and Exploitation of Small Correlations in Stream Ciphers Masterthesis conducted under the guidance of Prof. Dr. Joachim Rosenthal and Dr. Gérard Maze Institute of Mathematics, University of Zurich 2008 Urs Wagner Outline This thesis gives an overview of stream ciphers based on linear feedback shift registers (LFSR) and their vulnerability to correlation attacks. In the rst chapter, a short introduction to symmetric key ciphers is given. The main focus hereby is on LFSR based stream ciphers. Further, the principles of LFSR are presented. The chapter is then closed by a stream cipher example, the Gee Generator. The second chapter treats the general approach of correlation attacks. Moreover a correlation attack is mounted on the Gee Generator and the practical results are presented. Boolean functions play an important role in stream cipher designs. The Walsh transform, a tool to analyze the cryptographic properties of Boolean functions, is introduced in chapter 3. Additionally, the cryptographic properties themselves are discussed. In the fourth chapter, an improved kind of correlation attack -the fast correlation attack- is presented. It exploits the same weaknesses in the stream cipher designs as the correlation attack, the mode of operation is however dierent. In the last chapter, the insights gained in the previous chapters are used to suggest an attack on a stream cipher by Philips, named Hitag 2. 1 Acknowledgments This thesis was written in the course of my master's studies at the University of Zurich. I am grateful to Prof. Joachim Rosenthal who gave me the opportunity to write my master thesis in cryptography. Special thanks go to Dr. -
Analysis of Selected Block Cipher Modes for Authenticated Encryption
Analysis of Selected Block Cipher Modes for Authenticated Encryption by Hassan Musallam Ahmed Qahur Al Mahri Bachelor of Engineering (Computer Systems and Networks) (Sultan Qaboos University) – 2007 Thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy School of Electrical Engineering and Computer Science Science and Engineering Faculty Queensland University of Technology 2018 Keywords Authenticated encryption, AE, AEAD, ++AE, AEZ, block cipher, CAESAR, confidentiality, COPA, differential fault analysis, differential power analysis, ElmD, fault attack, forgery attack, integrity assurance, leakage resilience, modes of op- eration, OCB, OTR, SHELL, side channel attack, statistical fault analysis, sym- metric encryption, tweakable block cipher, XE, XEX. i ii Abstract Cryptography assures information security through different functionalities, es- pecially confidentiality and integrity assurance. According to Menezes et al. [1], confidentiality means the process of assuring that no one could interpret infor- mation, except authorised parties, while data integrity is an assurance that any unauthorised alterations to a message content will be detected. One possible ap- proach to ensure confidentiality and data integrity is to use two different schemes where one scheme provides confidentiality and the other provides integrity as- surance. A more compact approach is to use schemes, called Authenticated En- cryption (AE) schemes, that simultaneously provide confidentiality and integrity assurance for a message. AE can be constructed using different mechanisms, and the most common construction is to use block cipher modes, which is our focus in this thesis. AE schemes have been used in a wide range of applications, and defined by standardisation organizations. The National Institute of Standards and Technol- ogy (NIST) recommended two AE block cipher modes CCM [2] and GCM [3]. -
(SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION
InternationalINTERNATIONAL Journal of Electronics and JOURNAL Communication OF Engineering ELECTRONICS & Technology (IJECET),AND ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) IJECET ISSN 0976 – 6472(Online) Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME: http://www.iaeme.com/IJECET.asp © I A E M E Journal Impact Factor (2015): 7.9817 (Calculated by GISI) www.jifactor.com VHDL MODELING OF THE SRAM MODULE AND STATE MACHINE CONTROLLER (SMC) MODULE OF RC4 STREAM CIPHER ALGORITHM FOR Wi-Fi ENCRYPTION Dr.A.M. Bhavikatti 1 Mallikarjun.Mugali 2 1,2Dept of CSE, BKIT, Bhalki, Karnataka State, India ABSTRACT In this paper, VHDL modeling of the SRAM module and State Machine Controller (SMC) module of RC4 stream cipher algorithm for Wi-Fi encryption is proposed. Various individual modules of Wi-Fi security have been designed, verified functionally using VHDL-simulator. In cryptography RC4 is the most widely used software stream cipher and is used in popular protocols such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its use in new systems. It is especially vulnerable when the beginning of the output key stream is not discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to very insecure cryptosystems such as WEP . Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient in hardware, are less so in software. -
Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Henricksen, Matthew& Dawson, Edward (2006) Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond. Lecture Notes in Computer Science, 4058, Article number: AISP52-63. This file was downloaded from: https://eprints.qut.edu.au/24788/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1007/11780656_5 Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond Matt Henricksen and Ed Dawson Information Security Institute, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland, 4001, Australia. -
Comparing Some Pseudo-Random Number Generators and Cryptography Algorithms Using a General Evaluation Pattern
I.J. Information Technology and Computer Science, 2016, 9, 25-31 Published Online September 2016 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2016.09.04 Comparing Some Pseudo-Random Number Generators and Cryptography Algorithms Using a General Evaluation Pattern Ahmad Gaeini Imam Husein Comprehensive University, Iran E-mail: [email protected] Abdolrasoul Mirghadri1, Gholamreza Jandaghi2, Behbod Keshavarzi3 1Imam Husein Comprehensive University, Iran, E-mail: [email protected] 2Corresponding Author, University of Tehran, Farabi College, E-mail: [email protected] 3Shahed University, E-mail: [email protected] Abstract—Since various pseudo-random algorithms and generated by using chaotic systems and perturbation and sequences are used for cryptography of data or as initial by choosing least significant bits (LSB’s).In [4] and [5], values for starting a secure communication, how these chaotic maps have been used to design a cryptographic algorithms are analyzed and selected is very important. In algorithm; furthermore, output sequence has been fact, given the growingly extensive types of pseudo- statistically analyzed and method has also been evaluated random sequences and block and stream cipher in term of vulnerability to a variety of attacks, which has algorithms, selection of an appropriate algorithm needs proved the security of algorithm. In [6], a new an accurate and thorough investigation. Also, in order to pseudorandom number generator based on a complex generate a pseudo-random sequence and generalize it to a number chaotic equation has been introduced and cryptographer algorithm, a comprehensive and regular randomness of the produced sequence has been proven by framework is needed, so that we are enabled to evaluate NIST tests. -
RC4-2S: RC4 Stream Cipher with Two State Tables
RC4-2S: RC4 Stream Cipher with Two State Tables Maytham M. Hammood, Kenji Yoshigoe and Ali M. Sagheer Abstract One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipher which can be applied to many security applications in real time security. However, RC4 cipher shows some weaknesses including a correlation problem between the public known outputs of the internal state. We propose RC4 stream cipher with two state tables (RC4-2S) as an enhancement to RC4. RC4-2S stream cipher system solves the correlation problem between the public known outputs of the internal state using permutation between state 1 (S1) and state 2 (S2). Furthermore, key generation time of the RC4-2S is faster than that of the original RC4 due to less number of operations per a key generation required by the former. The experimental results confirm that the output streams generated by the RC4-2S are more random than that generated by RC4 while requiring less time than RC4. Moreover, RC4-2S’s high resistivity protects against many attacks vulnerable to RC4 and solves several weaknesses of RC4 such as distinguishing attack. Keywords Stream cipher Á RC4 Á Pseudo-random number generator This work is based in part, upon research supported by the National Science Foundation (under Grant Nos. CNS-0855248 and EPS-0918970). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the funding agencies or those of the employers. M. M. Hammood Applied Science, University of Arkansas at Little Rock, Little Rock, USA e-mail: [email protected] K. -
Stream Cipher Designs: a Review
SCIENCE CHINA Information Sciences March 2020, Vol. 63 131101:1–131101:25 . REVIEW . https://doi.org/10.1007/s11432-018-9929-x Stream cipher designs: a review Lin JIAO1*, Yonglin HAO1 & Dengguo FENG1,2* 1 State Key Laboratory of Cryptology, Beijing 100878, China; 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China Received 13 August 2018/Accepted 30 June 2019/Published online 10 February 2020 Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan- tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data transfer or resource constraints, and has always been a hot and central research topic in cryptography. With the rapid development of network and communication technology, cipher algorithms play more and more crucial role in information security. Simultaneously, the application environment of cipher algorithms is in- creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To accommodate new strict requirements and provide systematic scientific basis for future designs, this paper reviews the development history of stream ciphers, classifies and summarizes the design principles of typical stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers. Keywords stream cipher, survey, lightweight, authenticated encryption, homomorphic encryption Citation Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63(3): 131101, https://doi.org/10.1007/s11432-018-9929-x 1 Introduction The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data, have triggered high demands in both efficiency and security of information processing. -
On the Design and Analysis of Stream Ciphers Hell, Martin
On the Design and Analysis of Stream Ciphers Hell, Martin 2007 Link to publication Citation for published version (APA): Hell, M. (2007). On the Design and Analysis of Stream Ciphers. Department of Electrical and Information Technology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 On the Design and Analysis of Stream Ciphers Martin Hell Ph.D. Thesis September 13, 2007 Martin Hell Department of Electrical and Information Technology Lund University Box 118 S-221 00 Lund, Sweden e-mail: [email protected] http://www.eit.lth.se/ ISBN: 91-7167-043-2 ISRN: LUTEDX/TEIT-07/1039-SE c Martin Hell, 2007 Abstract his thesis presents new cryptanalysis results for several different stream Tcipher constructions. -
Adding MAC Functionality to Edon80
194 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 Adding MAC Functionality to Edon80 Danilo Gligoroski and Svein J. Knapskog “Centre for Quantifiable Quality of Service in Communication Systems”, Norwegian University of Science and Technology, Trondheim, Norway Summary VEST. At the time of writing, it seams that for NLS and In this paper we show how the synchronous stream cipher Phelix some weaknesses have been found [11,12]. Edon80 - proposed as a candidate stream cipher in Profile 2 of Although the eSTREAM project does not accept anymore the eSTREAM project, can be efficiently upgraded to a any tweaks or new submissions, we think that the design synchronous stream cipher with authentication. We are achieving of an efficient authentication techniques as a part of the that by simple addition of two-bit registers into the e- internal definition of the remaining unbroken stream transformers of Edon80 core, an additional 160-bit shift register and by putting additional communication logic between ciphers of Phase 2 of eSTREAM project still is an neighboring e-transformers of the Edon80 pipeline core. This important research challenge. upgrade does not change the produced keystream from Edon80 Edon80 is one of the stream ciphers that has been and we project that in total it will need not more then 1500 gates. proposed for hardware based implementations (PROFILE A previous version of the paper with the same title that has been 2) [13]. Its present design does not contain an presented at the Special Workshop “State of the Art of Stream authentication mechanism by its own. -
Some Words on Cryptanalysis of Stream Ciphers Maximov, Alexander
Some Words on Cryptanalysis of Stream Ciphers Maximov, Alexander 2006 Link to publication Citation for published version (APA): Maximov, A. (2006). Some Words on Cryptanalysis of Stream Ciphers. Department of Information Technology, Lund Univeristy. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Some Words on Cryptanalysis of Stream Ciphers Alexander Maximov Ph.D. Thesis, June 16, 2006 Alexander Maximov Department of Information Technology Lund University Box 118 S-221 00 Lund, Sweden e-mail: [email protected] http://www.it.lth.se/ ISBN: 91-7167-039-4 ISRN: LUTEDX/TEIT-06/1035-SE c Alexander Maximov, 2006 Abstract n the world of cryptography, stream ciphers are known as primitives used Ito ensure privacy over a communication channel. -
Analysis of Lightweight Stream Ciphers
ANALYSIS OF LIGHTWEIGHT STREAM CIPHERS THÈSE NO 4040 (2008) PRÉSENTÉE LE 18 AVRIL 2008 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Simon FISCHER M.Sc. in physics, Université de Berne de nationalité suisse et originaire de Olten (SO) acceptée sur proposition du jury: Prof. M. A. Shokrollahi, président du jury Prof. S. Vaudenay, Dr W. Meier, directeurs de thèse Prof. C. Carlet, rapporteur Prof. A. Lenstra, rapporteur Dr M. Robshaw, rapporteur Suisse 2008 F¨ur Philomena Abstract Stream ciphers are fast cryptographic primitives to provide confidentiality of electronically transmitted data. They can be very suitable in environments with restricted resources, such as mobile devices or embedded systems. Practical examples are cell phones, RFID transponders, smart cards or devices in sensor networks. Besides efficiency, security is the most important property of a stream cipher. In this thesis, we address cryptanalysis of modern lightweight stream ciphers. We derive and improve cryptanalytic methods for dif- ferent building blocks and present dedicated attacks on specific proposals, including some eSTREAM candidates. As a result, we elaborate on the design criteria for the develop- ment of secure and efficient stream ciphers. The best-known building block is the linear feedback shift register (LFSR), which can be combined with a nonlinear Boolean output function. A powerful type of attacks against LFSR-based stream ciphers are the recent algebraic attacks, these exploit the specific structure by deriving low degree equations for recovering the secret key.