Structure and Function of the Polymerase Core of TRAMP, a RNA Surveillance Complex

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Function of the Polymerase Core of TRAMP, a RNA Surveillance Complex Structure and function of the polymerase core of TRAMP, a RNA surveillance complex Stephanie Hamilla, Sandra L. Wolina,b,1, and Karin M. Reinischa,1 aDepartments of Cell Biology, and bMolecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 Edited* by Stephen C. Harrison, Harvard Medical School, Boston, MA, and approved July 13, 2010 (received for review March 16, 2010) The Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex recog- truncated 5S rRNA and signal recognition particle RNAs, aber- nizes aberrant RNAs in Saccharomyces cerevisiae and targets them rant rRNA processing intermediates, and a large class of bidirec- for degradation. A TRAMP subcomplex consisting of a noncanoni- tional transcripts that initiate near RNA polymerase II promoters. cal poly(A) RNA polymerase in the Pol ß superfamily of nucleotidyl The exosome is conserved in higher eukaryotes, and higher transferases, Trf4p, and a zinc knuckle protein, Air2p, mediates eukaryotes have homologs for each component of TRAMP initial substrate recognition. Trf4p and related eukaryotic poly(A) (3, 4), suggesting that the TRAMP-exosome pathway may be and poly(U) polymerases differ from other characterized enzymes widely conserved. TRAMP consists of the poly(A) polymerase in the Pol ß superfamily both in sequence and in the lack of recog- Trf4p or its close homolog Trf5p (65% sequence identity), the zinc nizable nucleic acid binding motifs. Here we report, at 2.7-Å knuckle protein Air2p or its close homolog Air1p (45% sequence resolution, the structure of Trf4p in complex with a fragment of identity), and Mtr4p, a member of the DExH/D box RNA helicase Air2p comprising two zinc knuckle motifs. Trf4p consists of a superfamily 2. The Trf4p/Air2p subcomplex polyadenylates the 3' catalytic and central domain similar in fold to those of other non- ends of aberrant noncoding RNAs, providing a single-stranded canonical Pol β RNA polymerases, and the two zinc knuckle motifs “landing pad” that allows the exosome to initiate RNA decay of Air2p interact with the Trf4p central domain. The interaction (3, 4). surface on Trf4p is highly conserved across eukaryotes, providing A key question in noncoding RNA quality control is how evidence that the Trf4p/Air2p complex is conserved in higher RNAs are recognized as aberrant. In the TRAMP-exosome eukaryotes as well as in yeast and that the TRAMP complex pathway, substrate recognition is mediated by the Trf4p/Air2p may also function in RNA surveillance in higher eukaryotes. We subcomplex (5–8), and in vitro, this subcomplex preferentially show that Air2p, and in particular sequences encompassing a zinc Met polyadenylates an unmodified form of tRNA i over the fully knuckle motif near its N terminus, modulate Trf4p activity, and modified version (6, 9). An understanding of TRAMP substrate we present data supporting a role for this zinc knuckle in RNA recognition will derive from a better understanding of Trf4p/ binding. Finally, we show that the RNA 3′ end plays a role in Air2p and its interactions with RNAs. substrate recognition. Trf4p/5p belongs to a family of ribonucleotide transferases in the Pol ß superfamily of nucleotidyl transferases (10, 11). It con- protein-RNA interactions ∣ RNA quality control sists of N- and C-terminal sequences that have little predicted secondary structure, a catalytic domain similar in sequence to he vast majority of transcripts from eukaryotic genomes do several Pol ß members with known structures, and an adjacent Tnot encode proteins. These transcripts include precursors “central domain,” which shares a short nucleotide recognition to noncoding RNAs, such as transfer and ribosomal RNAs, small motif hx(I/L/V)(E/Q)(E/D/N)PhxxxxNxx (h, hydrophobic; x, nuclear and nucleolar RNAs, microRNAs, siRNAs, and piRNAs. any residue) with so-called noncanonical Pol β RNA polymerases. These noncoding RNAs often fold into intricate three-dimen- Trf4p/5p differs from many structurally characterized ribonucleo- sional structures that are critical for subsequent processing and tidyl transferases in lacking a recognizable RNA binding domain, for assembling with proteins to form ribonucleoprotein com- and it has been proposed that the Air proteins function in RNA plexes. In addition, genomic sequencing experiments in both binding (3, 4). In both Air1p and Air2p, five adjacent CCHC zinc yeast and mammals have revealed the existence of a large number of short-lived noncoding transcripts that initiate near RNA knuckles are inserted between N- and C-terminal sequences pre- polymerase II promoters. Finally, cells contain a variety of long dicted to lack secondary structure. Cx1-2Cx3-6Hx7-10C-type zinc noncoding RNAs, some of which function to regulate gene knuckles (C, cysteine; H, histidine; x, any amino acid) and their expression and chromatin structure (1, 2). interactions with RNAs have been studied in the context of the Because defective RNAs can arise by synthesis from mutant retroviral nucleocapsid proteins (12). In these proteins, residues genes, transcriptional errors, or aberrant processing events, and x1-2 and x8-10 are typically involved in interactions with single- because some products of pervasive genome transcription may stranded, looped regions of RNA, and linker regions between be harmful, cells have evolved surveillance mechanisms to recog- knuckles may bind RNA duplex regions. It has not been estab- nize aberrant and unneeded noncoding RNAs and target them lished, however, whether the Air proteins or their zinc knuckles for degradation by exoribonucleases. Because all exoribonu- are involved in RNA binding, or whether these interactions cleases require a single-stranded end to initiate decay, the initial resemble those of the nucleocapsid zinc knuckles. recognition of target RNAs is often carried out by polymerases that, by adding extra nucleotides to the 3' ends, recruit the decay Author contributions: S.H., S.L.W., and K.M.R. designed research; S.H. performed research; BIOCHEMISTRY machinery. Because many exonucleases are unable to degrade S.H., S.L.W., and K.M.R. analyzed data; and S.H., S.L.W., and K.M.R. wrote the paper. structured RNAs, this machinery frequently includes RNA The authors declare no conflict of interest. helicases (3). *This Direct Submission article had a prearranged editor. One of the best established noncoding RNA degradation path- Data deposition: The atomic coordinates and structure factors have been deposited in the ways in Saccharomyces cerevisiae involves the Trf4p/Air2p/Mtr4p Protein Data Bank, www.pdb.org (PDB ID code 3NYB). polyadenylation (TRAMP) complex and the nuclear exosome, a 1 0 0 To whom correspondence may be addressed. E-mail: [email protected] or Karin. major 3 → 5 exonuclease (3, 4). In vivo, TRAMP and the exo- [email protected]. some are involved in the degradation of a large variety of RNA This article contains supporting information online at www.pnas.org/lookup/suppl/ substrates, including hypomodified and unspliced pre-tRNAs, doi:10.1073/pnas.1003505107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1003505107 PNAS ∣ August 24, 2010 ∣ vol. 107 ∣ no. 34 ∣ 15045–15050 Downloaded by guest on September 30, 2021 Here we investigate the architecture and function of the Trf4p/ A ZK1-5 ZK4-5 Air2p heterodimer. We show that Air2p and its most N-terminal WT tRNA mutant tRNA WT tRNA mutant tRNA time (min) 0 1 2.5 5 10 20 0 1 2.5 5 10 20 0 1 2.5 5 10 20 0 1 2.5 5 10 20 zinc knuckle are important for the polyadenylation activity of 900, 1114 Trf4p, and show data suggesting that this zinc knuckle interacts 692 489,501 with tRNA substrates. We have also determined, at a resolution 320 of 2.7 Å, the structure of a Trf4p/Air2p subcomplex consisting of 242 the Trf4p catalytic and central domains and a segment of Air2p 190 that includes the fourth and fifth zinc knuckles. The fold of Trf4p is similar to that of other noncanonical Pol β family enzymes de- 147 spite insignificant sequence similarity in the central domain. The 124 structure shows that the fourth and fifth zinc knuckles of Air2p 110 interact with the central domain of Trf4p. The Trf4p surface that MW they bind is highly conserved in a wide range of eukaryotes, im- (bases) portant experimental data supporting conservation of the Trf4p/ Air2p complex in higher eukaryotes. lane 1 3 5 7 9 11 13 15 17 19 21 23 Results and Discussion B 1.0 Characterization of Trf4p/Air2p Core Complexes. Due to significant WT tRNA + ZK1-5 sample degradation during purification (Fig. S1), we were not able 0.8 to isolate a complex consisting of full-length forms of Trf4p and mutant tRNA + ZK1-5 Air2p. We therefore worked with Trf4p/Air2p subcomplexes, 0.6 WT tRNA + ZK4-5 where the proteolytically sensitive N and C termini of both mutant tRNA + ZK4-5 4 ∕ 2 0.4 proteins were removed. One subcomplex, Trf p Air pZK1-5, con- sisted of the catalytic and central domains of Trf4p (residues 161– 0.2 481) and the five zinc knuckles of Air2p (residues 58–198); a 4 ∕ 2 second version, Trf p Air pZK4-5, included only the fourth and polyadeylated fraction 0.0 fifth zinc knuckles of Air2p (residues 119–198). We coexpressed 0 5 10 15 20 Trf4p and Air2p constructs in Escherichia coli, and purified time (min) subcomplexes by affinity chromatography and gel filtration. D The truncated complexes were tested for their polyadenylation C activity and also for the ability to distinguish between aberrant and 0.8 correct forms of tRNAs. In these experiments, we used wild-type tRNAAla and a mutant that was identified as a preferred substrate 0.6 for the intact TRAMP complex purified from yeast (6). Both trun- 0.4 cated forms of Trf4p/Air2p are active in polyadenylation assays (Fig.
Recommended publications
  • Current Perspectives on the Role of TRAMP in Nuclear RNA Surveillance and Quality Control
    Research and Reports in Biochemistry Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Current perspectives on the role of TRAMP in nuclear RNA surveillance and quality control Kewu Pan Abstract: The TRAMP complex assists the nuclear exosome to degrade a broad range of Zhe Huang ribonucleic acid (RNA) substrates by increasing both exoribonucleolytic activity and substrate Jimmy Tsz Hang Lee specificity. However, how the interactions between the TRAMP subunits and the components Chi-Ming Wong of the nuclear exosome regulate their functions in RNA degradation and substrate specificity remain unclear. This review aims to provide a summary of the recent findings on the role of State Key Laboratory of Pharmaceutical Biotechnology, the TRAMP complex in nuclear RNA degradation. The new insights from recent structural Department of Medicine, Shenzhen biological studies are discussed. Institute of Research and Innovation, Keywords: TRAMP, nuclear exosome, NEXT, RNA surveillance the University of Hong Kong, Pokfulam, Hong Kong Introduction TRAMP complex is one of the most well-characterized nuclear exosome cofactors, which enhances the activity and substrate specificity of the exosome.1 In Saccharomyces cerevisiae, TRAMP complex is a heterotrimeric complex consisting of a poly(A) poly- merase (either Trf4p or Trf5p); a zinc-knuckle ribonucleic acid (RNA)-binding protein (either Air1p or Air2p); and an RNA helicase Mtr4p.2,3 The main function of TRAMP is to assist the nuclear exosome to degrade a large
    [Show full text]
  • Substrate Specificity of the TRAMP Nuclear Surveillance Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976274; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Substrate Specificity of the TRAMP Nuclear Surveillance Complexes Clémentine Delan-Forino1, Christos Spanos1, Juri Rappsilber1, David Tollervey1 1: Wellcome Center for Cell Biology, University of Edinburgh, UK. Running Title: Targeting RNAs for Nuclear Surveillance 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976274; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity was apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association showed co- enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression.
    [Show full text]
  • How Eukaryotes Degrade Their Ribosomes
    Review A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes Denis L.J. Lafontaine1,2 1 Fonds de la Recherche Scientifique (FRS-F.N.R.S.), Institut de Biologie et de Me´ decine Mole´ culaire (IBMM), Universite´ Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium 2 Center for Microscopy and Molecular Imaging (CMMI), Acade´ mie Wallonie – Bruxelles, Charleroi-Gosselies, Belgium Ribosome synthesis is a major metabolic activity that somes to productive synthesis pathways [5]. In other cases, involves hundreds of individual reactions, each of which trans-acting factors with partial homology to ribosomal is error-prone. Ribosomal insults occur in cis (alteration proteins or translation factors might bind pre-ribosomes in rRNA sequences) and in trans (failure to bind to, or to monitor and tether the structural integrity of ribosomal loss of, an assembly factor or ribosomal protein). In protein-binding sites [6,7]. In wild-type cells, ribosome addition, specific growth conditions, such as starvation, assembly defects can result from the delayed binding of require that excess ribosomes are turned over efficiently. a trans-acting factor. In these circumstances, and provid- Recent work indicates that cells evolved multiple strat- ing that the proper assembly reaction occurs within a egies to recognize specifically, and target for clearance, defined timeframe, faithful assembly presumably resumes; ribosomes that are structurally and/or functionally otherwise, pre-ribosomes are identified as defective and deficient, as well as in excess. This surveillance is active targeted for rapid degradation by active surveillance mech- at every step of the ribosome synthesis pathway and on anisms. In addition to alterations in trans, mutations can mature ribosomes, involves nearly entirely different occur in cis either during RNA synthesis or, more fre- mechanisms for the small and large subunits, and quently, as a consequence of exposure to genotoxic stress.
    [Show full text]
  • RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
    RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex Huijue Jiaa, Xuying Wangb, James T. Andersonb, and Eckhard Jankowskya,1 aCenter for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and bDepartment of Biological Sciences, Marquette University, Milwaukee, WI 53201 Edited by James E. Dahlberg, University of Wisconsin Medical School, Madison, WI, and approved March 28, 2012 (received for review January 20, 2012) Many RNA-processing events in the cell nucleus involve the Trf4/ functional interplay between helicase and polymerase during Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the polyadenylation. poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the Here we show that TRAMP possesses robust unwinding activity RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for that is also directed by complex functional interplay between Mtr4p processing by the nuclear exosome. In addition, TRAMP functions as and Trf4p/Air2p. Using recombinant S. cerevisiae TRAMP, we find an exosome cofactor during RNA degradation, and it has been that Trf4p/Air2p significantly stimulates the unwinding activity of speculated that this role involves disruption of RNA secondary Mtr4p. However, this stimulation does not depend on ongoing structure. However, it is unknown whether TRAMP displays RNA polyadenylation. Nonetheless, polyadenylation by Trf4p enables unwinding activity. It is also not clear how unwinding would be Mtr4p to unwind substrates that it otherwise cannot separate. coordinated with polyadenylation and the function of the RNA Our data show optimal unwinding activity of TRAMP on helicase Mtr4p in modulating poly(A) addition. Here, we show that substrates that contain just a minimal binding site for Mtr4p, TRAMP robustly unwinds RNA duplexes.
    [Show full text]
  • RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance
    non-coding RNA Review RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance Koichi Ogami 1,* ID , Yaqiong Chen 2 and James L. Manley 2 1 Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan 2 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] (Y.C.); [email protected] (J.L.M.) * Correspondence: [email protected]; Tel.: +81-52-836-3665 Received: 8 February 2018; Accepted: 8 March 2018; Published: 11 March 2018 Abstract: The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes, such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation, and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance. Keywords: exosome; RNA surveillance; RNA processing; RNA degradation 1. Introduction Regulation of RNA maturation and degradation is a crucial step in gene expression. The nuclear RNA exosome has a central role in monitoring nearly every type of transcript produced by RNA polymerase I, II, and III (Pol I, II, and III).
    [Show full text]
  • Transcription Termination by Nuclear RNA Polymerases
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Transcription termination by nuclear RNA polymerases Patricia Richard and James L. Manley1 Department of Biological Sciences, Columbia University, New York, New York 10027, USA Gene transcription in the cell nucleus is a complex and few base pairs to several kilobases downstream from the highly regulated process. Transcription in eukaryotes 39-end of the mature RNA (Proudfoot 1989). RNAPII requires three distinct RNA polymerases, each of which transcription termination is coupled to 39-end processing employs its own mechanisms for initiation, elongation, of the pre-mRNA (Birse et al. 1998; Hirose and Manley and termination. Termination mechanisms vary consid- 2000; Yonaha and Proudfoot 2000; Proudfoot 2004; erably, ranging from relatively simple to exceptionally Buratowski 2005), and an intact polyadenylation signal complex. In this review, we describe the present state of has long been known to be necessary for transcription knowledge on how each of the three RNA polymerases termination of protein-coding genes in human and yeast terminates and how mechanisms are conserved, or vary, cells (Whitelaw and Proudfoot 1986; Logan et al. 1987; from yeast to human. Connelly and Manley 1988). RNAPIII and RNAPI termination appear simpler than Transcription in eukaryotes is performed by three RNA RNAPII termination. RNAPIII terminates transcription polymerases, which are functionally and structurally at T-rich sequences located a short distance from the related (Cramer et al. 2008). RNA polymerase II (RNAPII) mature RNA 39-end and seems to involve at most a is responsible for transcription of protein-coding genes limited number of auxiliary factors (Cozzarelli et al.
    [Show full text]
  • A Conserved Antiviral Role for a Virus-Induced Cytoplasmic Exosome Complex
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex Jerome Michael Molleston University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Genetics Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Molleston, Jerome Michael, "A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex" (2016). Publicly Accessible Penn Dissertations. 2480. https://repository.upenn.edu/edissertations/2480 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2480 For more information, please contact [email protected]. A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex Abstract RNA degradation is a tightly regulated and highly conserved process which selectively targets aberrant RNAs using both 5’ and 3’ exonucleases. The RNAs degraded by this process include viral RNA, but the mechanisms by which viral RNA is identified and ecruitedr to the degradation machinery are incompletely understood. To identify new antiviral genes, we performed RNAi screening of genes with known roles in RNA metabolism in Drosophila cells. We identified the RNA exosome, which targets RNA for 3’ end decay, and two components of the exosome cofactor TRAMP complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. As these genes are highly conserved, I extended these studies to human cells and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, I found that infection by cytoplasmic RNA viruses induces their export to cytoplasmic granules, where they form a complex that specifically ecognizr es and induces degradation of viral mRNAs.
    [Show full text]
  • RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
    RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex Huijue Jiaa, Xuying Wangb, James T. Andersonb, and Eckhard Jankowskya,1 aCenter for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and bDepartment of Biological Sciences, Marquette University, Milwaukee, WI 53201 Edited by James E. Dahlberg, University of Wisconsin Medical School, Madison, WI, and approved March 28, 2012 (received for review January 20, 2012) Many RNA-processing events in the cell nucleus involve the Trf4/ functional interplay between helicase and polymerase during Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the polyadenylation. poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the Here we show that TRAMP possesses robust unwinding activity RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for that is also directed by complex functional interplay between Mtr4p processing by the nuclear exosome. In addition, TRAMP functions as and Trf4p/Air2p. Using recombinant S. cerevisiae TRAMP, we find an exosome cofactor during RNA degradation, and it has been that Trf4p/Air2p significantly stimulates the unwinding activity of speculated that this role involves disruption of RNA secondary Mtr4p. However, this stimulation does not depend on ongoing structure. However, it is unknown whether TRAMP displays RNA polyadenylation. Nonetheless, polyadenylation by Trf4p enables unwinding activity. It is also not clear how unwinding would be Mtr4p to unwind substrates that it otherwise cannot separate. coordinated with polyadenylation and the function of the RNA Our data show optimal unwinding activity of TRAMP on helicase Mtr4p in modulating poly(A) addition. Here, we show that substrates that contain just a minimal binding site for Mtr4p, TRAMP robustly unwinds RNA duplexes.
    [Show full text]
  • RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex
    Cell, Vol. 121, 713–724, June 3, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.cell.2005.04.029 RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex John LaCava,1 Jonathan Houseley,1 that their functions are substantially separable. The ab- Cosmin Saveanu,2 Elisabeth Petfalski,1 sence of Rrp6p is not lethal but does impair growth and Elizabeth Thompson,1 Alain Jacquier,2 leads to temperature sensitivity (Briggs et al., 1998). and David Tollervey1,* The accumulation of 3#-extended and polyade- 1Wellcome Trust Centre for Cell Biology nylated precursors to small nucleolar RNAs (snoRNAs) University of Edinburgh and small nuclear RNAs (snRNAs) was observed in Edinburgh EH9 3JR strains lacking Rrp6p (Allmang et al., 1999a; Mitchell et United Kingdom al., 2003; van Hoof et al., 2000), and the polyadenylation 2 Génétique des Interactions Macromoléculaires of pre-rRNA and rRNA (Kuai et al., 2004) and a modifi- URA2171-CNRS cation-defective tRNA (Kadaba et al., 2004) has been Institut Pasteur reported. Modification-defective tRNAMet was stabi- 25–28 rue du Docteur Roux lized by a mutation in the putative poly(A) polymerase 75015 Paris Trf4p and stabilization was also seen in strains mutant France for the exosome components Rrp6p and Rrp44p/Dis3p, suggesting that polyadenylation by Trf4p exposes the tRNA to degradation by the exosome (Kadaba et al., 2004). Summary The purified exosome functions as a 3#–5# exo- nuclease in vitro but showed only a slow distributive -The exosome complex of 3؅–5؅ exonucleases partici activity, leading to the accumulation of numerous deg- pates in RNA maturation and quality control and can radation intermediates (Mitchell et al., 1997).
    [Show full text]
  • Targeting RNA for Processing Or Destruction by the Eukaryotic RNA Exosome and Its Cofactors
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors John C. Zinder1,2 and Christopher D. Lima2,3 1Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; 2Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA; 3Howard Hughes Medical Institute, New York, New York, 10065 USA The eukaryotic RNA exosome is an essential and con- 3′-to-5′ exoribonuclease (exo) activities (Liu et al. 2006; served protein complex that can degrade or process RNA Dziembowski et al. 2007; Lebreton et al. 2008). Although substrates in the 3′-to-5′ direction. Since its discovery redundant with cytoplasmic 5′-to-3′ decay pathways (An- nearly two decades ago, studies have focused on determin- derson and Parker 1998), Exo10Dis3 contributes to transla- ing how the exosome, along with associated cofactors, tion-dependent mRNA surveillance pathways such as achieves the demanding task of targeting particular nonstop decay (NSD), nonsense-mediated decay (NMD), RNAs for degradation and/or processing in both the nucle- and no-go decay (NGD) (for review, see Łabno et al. us and cytoplasm. In this review, we highlight recent ad- 2016). All 10 genes encoding subunits of Exo10Dis3 are es- vances that have illuminated roles for the RNA exosome sential for viability in yeast (Mitchell et al. 1997; Brouwer and its cofactors in specific biological pathways, alongside et al. 2000). While dis3 alleles that disrupt its endo activ- studies that attempted to dissect these activities through ity bear few phenotypic defects, mutations that disrupt its structural and biochemical characterization of nuclear exo activity result in slow growth, and mutations that dis- and cytoplasmic RNA exosome complexes.
    [Show full text]
  • The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP Omplexc Huijue Jia Case Western Reserve University
    Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 6-1-2011 The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP omplexC Huijue Jia Case Western Reserve University Xuying Wang Marquette University Fei Liu Case Western Reserve University Ulf-Peter Guenther Case Western Reserve University Sukanya Srinivasan Case Western Reserve University See next page for additional authors NOTICE: this is the author’s version of a work that was accepted for publication in Cell. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cell, Vol. 145, No. 6 (June 2011): 890–901. DOI. © 2011 Elsevier (Cell Press). Used with permission. Authors Huijue Jia, Xuying Wang, Fei Liu, Ulf-Peter Guenther, Sukanya Srinivasan, James T. Anderson, and Eckhard Jankowsky This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bio_fac/383 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP Complex Huijue Jia Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western
    [Show full text]
  • DSIF and NELF Interact with Integrator to Specify the Correct Post-Transcriptional Fate of Snrna Genes
    ARTICLE Received 28 Mar 2014 | Accepted 1 Jun 2014 | Published 27 Jun 2014 DOI: 10.1038/ncomms5263 DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes Junichi Yamamoto1, Yuri Hagiwara1, Kunitoshi Chiba1, Tomoyasu Isobe1, Takashi Narita2, Hiroshi Handa3 & Yuki Yamaguchi1,4 The elongation factors DSIF and NELF are responsible for promoter-proximal RNA polymerase II (Pol II) pausing. NELF is also involved in 30 processing of replication-dependent histone genes, which produce non-polyadenylated mRNAs. Here we show that DSIF and NELF contribute to the synthesis of small nuclear RNAs (snRNAs) through their association with Integrator, the large multisubunit complex responsible for 30 processing of pre-snRNAs. In HeLa cells, Pol II, Integrator, DSIF and NELF accumulate at the 30 end of the U1 snRNA gene. Knockdown of NELF results in misprocessing of U1, U2, U4 and U5 snRNAs, while DSIF is required for proper transcription of these genes. Knocking down NELF also disrupts transcription termination and induces the production of polyadenylated U1 transcripts caused by an enhanced recruitment of cleavage stimulation factor. Our results indicate that NELF plays a key role in determining the post-transcriptional fate of Pol II-transcribed genes. 1 Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan. 2 Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan. 3 Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan. 4 PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan. Correspondence and requests for materials should be addressed to Y.Y.
    [Show full text]