Bericht Zur Wissenschaftsgeleiteten Bewertung Umfangreicher Forschungsinfrastruktur- Vorhaben Für Die Nationale Roadmap

Total Page:16

File Type:pdf, Size:1020Kb

Bericht Zur Wissenschaftsgeleiteten Bewertung Umfangreicher Forschungsinfrastruktur- Vorhaben Für Die Nationale Roadmap wissenschaftsrat wr 2017 Bericht zur wissenschaftsgeleiteten Bewertung umfangreicher Forschungsinfrastruktur- vorhaben für die Nationale Roadmap inhalt Vorbemerkung 5 A. Der Nationale Roadmap-Prozess für Forschungsinfrastrukturen 7 A.I Forschungsinfrastrukturen im Roadmap-Prozess 7 A.II Etablierung des Roadmap-Prozesses 9 A.III Eingang in das aktuelle Roadmap-Verfahren 11 A.IV Konzepte im Kontext ihrer Wissenschaftsgebiete 12 IV.1 Natur- und Technikwissenschaften 13 IV.2 Umwelt- und Erdsystemwissenschaften 13 IV.3 Biowissenschaften und Medizin 14 A.V Wissenschaftsgeleitete Bewertung durch den Wissenschaftsrat 15 B. Ergebnisse der vergleichenden wissenschaftsgeleiteten Bewertung 18 B.I Ergebnis der dimensionsbezogenen vergleichenden Bewertung 18 B.II Zusammenfassende Bewertungen in den Natur- und Technikwissenschaften 20 II.1 Ernst Ruska-Centrum 2.0 (ER-C 2.0) 20 II.2 European Solar Telescope (EST) 22 II.3 National Photonics Labs (NPL) 24 B.III Zusammenfassende Bewertungen in den Umwelt- und Erdsystemwissenschaften 27 III.1 Aerosole, Wolken und Spurengase Forschungsinfrastruktur – Deutscher Beitrag (ACTRIS-D) 27 III.2 AtmoSat 29 III.3 Deutsche Naturwissenschaftliche Sammlungen als integrierte Forschungsinfrastruktur (DCOLL) 31 III.4 Tandem-L (TDL) 34 B.IV Zusammenfassende Bewertungen in den Biowissenschaften und der Medizin 36 IV.1 German BioImaging Forschungsinfrastruktur (GerBI-FIS) 36 IV.2 Leibniz-Zentrum für Photonik in der Infektionsforschung (LPI) 38 IV.3 Nationale Biomedizinische Bildgebungseinrichtung (NIF) 40 IV.4 National Imaging Science Center (NISC) 42 C. Bilanz und Ausblick 45 C.I Wissenschaftspolitischer Kontext 46 I.1 Nationale Entwicklungen 46 4 I.2 Europäische Entwicklungen 48 C.II Verfahrensreflexion 51 II.1 Beteiligung am Roadmapverfahren 51 II.2 Herausforderungen für die Bewertung 53 C.III Fazit 56 Anhang 59 D. Ausführliche Konzeptbeschreibungen und-bewertungen 63 D.I Natur- und Technikwissenschaften 63 I.1 Wissenschaftsgebiet Natur- und Technikwissenschaften 63 I.2 Ernst Ruska-Centrum 2.0 (ER-C 2.0) – Die Nationale Forschungsinfrastruktur für höchstauflösende Elektronenmikroskopie 68 I.3 European Solar Telescope (EST) 90 I.4 National Photonics Labs (NPL) 106 D.II Umwelt- und Erdsystemwissenschaften 122 II.1 Wissenschaftsgebiet Umwelt- und Erdsystemwissenschaften 122 II.2 Aerosole, Wolken und Spurengase Forschungsinfrastruktur – Deutscher Beitrag (ACTRIS-D) 126 II.3 AtmoSat 139 II.4 Deutsches Zentrum für Biodiversitätsmonitoring (BioM-D) 157 II.5 Deutsche Naturwissenschaftliche Sammlungen als integrierte Forschungsinfrastruktur (DCOLL) 167 II.6 Tandem-L (TDL) 195 D.III Biowissenschaften und Medizin 211 III.1 Wissenschaftsgebiet Biowissenschaften und Medizin 211 III.2 German BioImaging Forschungsinfrastruktur (GerBI-FIS) 218 III.3 Leibniz-Zentrum für Photonik in der Infektionsforschung (LPI) 230 III.4 Nationale Biomedizinische Bildgebungseinrichtung (NIF) 246 III.5 National Imaging Science Center (NISC) 261 Abkürzungs- und Namensverzeichnis 279 5 Vorbemerkung Der Nationale Roadmap-Prozess ist in Deutschland als strategisches Instrument zur forschungspolitischen Priorisierung künftiger Investitionen des Bundes im Feld umfangreicher Forschungsinfrastrukturen (FIS) etabliert worden. Die weitreichende Bedeutung von Forschungsinfrastrukturen für das Wissen- schaftssystem, ihr wachsender Ressourcenbedarf und ihre steigende Komplexi- tät verlangen nach einer strategischen Investitionsplanung in diesem für For- schung, Lehre, Nachwuchsförderung und Transfer wichtigen Feld. Vor diesem Hintergrund und nach erfolgreicher Durchführung einer Pilotphase 2011– 2013 hat das Bundesministerium für Bildung und Forschung (BMBF) den Wis- senschaftsrat erneut gebeten, die wissenschaftsgeleitete Bewertung von dies- mal zwölf Forschungsinfrastrukturvorhaben vorzunehmen. Anfang 2015 hat der Wissenschaftsrat einen mandatierten Ausschuss „Bewer- tung umfangreicher Forschungsinfrastrukturvorhaben für eine Nationale Roadmap“ eingesetzt, der die wissenschaftsgeleitete Bewertung auf der Grund- lage des in der Pilotphase erprobten Verfahrens und der daraus gewonnenen Erfahrungen durchgeführt hat. Das BMBF verbindet mit der Aufnahme auf die Roadmap eine grundsätzliche Förderabsicht – im Unterschied zur Mehrzahl nationaler Roadmaps für Forschungsinfrastrukturen anderer europäischer Staaten. Daher spielt neben der wissenschaftlichen Qualität eine wirtschaftlich belastbare Planung eine wichtige Rolle, so dass alle Konzepte parallel zur wis- senschaftsgeleiteten Bewertung einer wirtschaftlichen Bewertung unterzogen werden. Auf der Grundlage der wissenschaftsgeleiteten und der wirtschaftli- chen Bewertung entscheidet das BMBF unter Berücksichtigung der gesell- schaftlichen Bedeutung der geplanten Forschungsinfrastrukturen über die Aufnahme eines Vorhabens auf die Roadmap. Im Ausschuss haben viele – auch internationale – Sachverständige mitgearbei- tet, die nicht Mitglieder des Wissenschaftsrates sind. Ihnen ist der Wissen- schaftsrat zu außerordentlichem Dank verpflichtet. Ein besonderer Dank gilt auch den zahlreichen Gutachterinnen und Gutachtern, die an den differenzier- ten Einzelbewertungen der Vorhaben mitgewirkt haben. Der vorliegende Bewertungsbericht richtet sich primär an das BMBF, mit kon- kreten Empfehlungen zur Weiterentwicklung der Konzepte auch an die Trä- gereinrichtungen der Forschungsinfrastrukturvorhaben, die mehrheitlich von 6 Bund und Ländern auf Basis des Artikels 91 b des Grundgesetzes gemeinsam finanziert werden. Darüber hinaus werden die wissenschaftlichen Gemein- schaften, die Wissenschaftsorganisationen sowie politische Akteure im natio- nalen, europäischen und internationalen Rahmen adressiert. Der Ausschuss hat den Bewertungsbericht am 14.06.2017 verabschiedet und dem Wissenschaftsrat während seiner Sitzung vom 12.07.2017 bis 14.07.2017 vorgelegt. 7 A. Der Nationale Roadmap-Prozess für Forschungsinfrastrukturen Nach erfolgreicher Durchführung einer Pilotphase 2011–2013 hat das Bun- desministerium für Bildung und Forschung (BMBF) zu Beginn des Jahres 2015 einen weiteren Nationalen Roadmap-Prozess gestartet und den Wissenschafts- rat erneut gebeten, als maßgeblicher Akteur in eigener Verantwortung die wissenschaftsgeleitete Bewertung vorzunehmen. |1 Im Folgenden werden zu- nächst die Anforderungen an Forschungsinfrastrukturen im Roadmap-Prozess dargestellt, bevor in den Kapiteln A.II bis A.V der Roadmap-Prozess und das Verfahren der wissenschaftsgeleiteten Bewertung durch den Wissenschaftsrat erläutert werden. A.I FORSCHUNGSINFRASTRUKTUREN IM ROADMAP -PROZESS Forschungsinfrastrukturen sind mittlerweile in allen Disziplinen unverzicht- bar geworden. Erst mit dieser Entwicklung hat sich in den letzten 15–20 Jah- ren der übergeordnete Begriff der Forschungsinfrastruktur herausgebildet und den des Großgerätes abgelöst. Diese Entwicklung ist vor allem auf europäischer Ebene durch das Strategieforum für Forschungsinfrastrukturen – European Strategy Forum on Research Infrastructures (ESFRI) – vorangetrieben worden. In der ersten ESFRI-Roadmap aus dem Jahr 2006 wurden Forschungsinfrastrukturen als einzigartige Instrumente, Ressourcen und Dienstleistungen beschrieben |2, | 1 Bundesministerium für Bildung und Forschung: Der Nationale Roadmap-Prozess für Forschungsinfra- strukturen. Investitionen in die Forschung von morgen. Januar 2016, S. 3. https://www.bmbf.de/ pub/Nationaler_Roadmap_Prozess_fuer_Forschungsinfrastrukturen.pdf, zuletzt abgerufen am 09.02.2017. | 2 ESFRI: European Roadmap for Research Infrastructures, Report 2006, Luxemburg 2006, S. 16. Ähnlich weit gefasste FIS-Definitionen werden bis heute in unterschiedlichen nationalen und europäischen Kontex- ten verwandt. Vgl. Wissenschaftsrat: Bericht zur wissenschaftsgeleiteten Bewertung umfangreicher For- schungsinfrastrukturvorhaben für die Nationale Roadmap (Pilotphase), Köln 2013, S. 11; vgl. auch Rat für Informationsinfrastrukturen: Leistung aus Vielfalt 2016, A-14; ESFRI: Public Roadmap 2018 Guide, S. 6. Ne- ben dem BMBF-Pilotprojekt für die Nationale Roadmap in Deutschland (BMBF (Hrsg.): Roadmap für For- schungsinfrastrukturen. Pilotprojekt des BMBF, Bonn 2013, S. 2) sind weitere Beispiele hierfür Frankreich 8 die die Forschung ganzer Wissenschaftsgemeinschaften in Europa ermöglichen und erleichtern. Dieser breiten ESFRI-Definition schloss sich der Wissen- schaftsrat zunächst mit Blick auf die naturwissenschaftliche Forschung an |3 und entwickelte anschließend den Begriff deutlich weiter. Forschungsinfra- strukturen stellen demnach Instrumente, Ressourcen und Dienstleistungen zur Verfügung, „die speziell für wissenschaftliche Zwecke errichtet, mittelfris- tig bis tendenziell permanent bereitgestellt werden und für deren sachgerechte Errichtung, Betrieb und Nutzung in der Regel spezifische fachwissenschaftli- che oder interdisziplinäre (Methoden-) Kompetenzen erforderlich sind. Ihre Funktion ist es, Forschung, Lehre und Nachwuchsförderung zu ermöglichen oder zu erleichtern. Sie sind örtlich fixiert, auf mehrere Standorte verteilt oder werden ohne definierte physische Anlaufstelle ausschließlich virtuell bereitge- stellt. Sie werden nicht ausschließlich von einzelnen Personen oder Gruppen genutzt, sondern stehen prinzipiell einer internationalen Fachgemeinschaft 4 oder mehreren Fachgemeinschaften offen.“ | Der Wissenschaftsrat hat auf dieser Grundlage vier Idealtypen von Forschungs- infrastrukturen unterschieden. Um insbesondere den Belangen der Geistes- und Kulturwissenschaften gerecht zu werden, hat er sowohl den Blick auf die Informationsinfrastrukturen erweitert
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Abstractband
    Volume 23 · Supplement 1 · September 2013 Clinical Neuroradiology Official Journal of the German, Austrian, and Swiss Societies of Neuroradiology Abstracts zur 48. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie Gemeinsame Jahrestagung der DGNR und ÖGNR 10.–12. Oktober 2013, Gürzenich, Köln www.cnr.springer.de Clinical Neuroradiology Official Journal of the German, Austrian, and Swiss Societies of Neuroradiology Editors C. Ozdoba L. Solymosi Bern, Switzerland (Editor-in-Chief, responsible) ([email protected]) Department of Neuroradiology H. Urbach University Würzburg Freiburg, Germany Josef-Schneider-Straße 11 ([email protected]) 97080 Würzburg Germany ([email protected]) Published on behalf of the German Society of Neuroradiology, M. Bendszus president: O. Jansen, Heidelberg, Germany the Austrian Society of Neuroradiology, ([email protected]) president: J. Trenkler, and the Swiss Society of Neuroradiology, T. Krings president: L. Remonda. Toronto, ON, Canada ([email protected]) Clin Neuroradiol 2013 · No. 1 © Springer-Verlag ABC jobcenter-medizin.de Clin Neuroradiol DOI 10.1007/s00062-013-0248-4 ABSTRACTS 48. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie Gemeinsame Jahrestagung der DGNR und ÖGNR 10.–12. Oktober 2013 Gürzenich, Köln Kongresspräsidenten Prof. Dr. Arnd Dörfler Prim. Dr. Johannes Trenkler Erlangen Wien Dieses Supplement wurde von der Deutschen Gesellschaft für Neuroradiologie finanziert. Inhaltsverzeichnis Grußwort ............................................................................................................................................................................
    [Show full text]
  • A Flexible Image Segmentation Pipeline for Heterogeneous
    A exible image segmentation pipeline for heterogeneous multiplexed tissue images based on pixel classication Vito Zanotelli & Bernd Bodenmiller January 14, 2019 Abstract Measuring objects and their intensities in images is basic step in many quantitative tissue image analysis workows. We present a exible and scalable image processing pipeline tai- lored to highly multiplexed images. This pipeline allows the single cell and image structure segmentation of hundreds of images. It is based on supervised pixel classication using Ilastik to the distill the segmentation relevant information from the multiplexed images in a semi- supervised, automated fashion, followed by standard image segmentation using CellProler. We provide a helper python package as well as customized CellProler modules that allow for a straight forward application of this workow. As the pipeline is entirely build on open source tool it can be easily adapted to more specic problems and forms a solid basis for quantitative multiplexed tissue image analysis. 1 Introduction Image segmentation, i.e. division of images into meaningful regions, is commonly used for quan- titative image analysis [2, 8]. Tissue level comparisons often involve segmentation of the images in macrostructures, such as tumor and stroma, and calculating intensity levels and distributions in such structures [8]. Cytometry type tissue analysis aim to segment the images into pixels be- longing to the same cell, with the goal to ultimately identify cellular phenotypes and celltypes [2]. Classically these approaches are mostly based on a single, hand selected nuclear marker that is thresholded to identify cell centers. If available a single membrane marker is used to expand the cell centers to full cells masks, often using watershed type algorithms.
    [Show full text]
  • Protocol of Image Analysis
    Protocol of Image Analysis - Step-by-step instructional guide using the software Fiji, Ilastik and Drishti by Stella Gribbe 1. Installation The open-source software Fiji, Ilastik and Drishti are needed in order to perform image analysis as described in this protocol. Install the software for each program on your system, using the html- addresses below. In your web browser, open the Fiji homepage for downloads: https://fiji.sc/#download. Select the software option suited for your operating system and download it. In your web browser, open the Ilastik homepage for 'Download': https://www.ilastik.org/download.html. For this work, Ilastik version 1.3.2 was installed, as it was the most recent version. Select the Download option suited for your operating system and follow the download instructions on the webpage. In your web browser, open the Drishti page on Github: https://github.com/nci/drishti/releases. Select the versions for your operating system and download 'Drishti version 2.6.3', 'Drishti version 2.6.4' and 'Drishti version 2.6.5'. 1 2. Pre-processing Firstly, reduce the size of the CR.2-files from your camera, if the image files are exceedingly large. There is a trade-off between image resolution and both computation time and feasibility. Identify your necessary minimum image resolution and compress your image files to the largest extent possible, for instance by converting them to JPG-files. Large image data may cause the software to crash, if your internal memory capacity is too small. Secondly, convert your image files to inverted 8-bit grayscale JPG-files and adjust the parameter brightness and contrast to enhance the distinguishability of structures.
    [Show full text]
  • Automated Segmentation and Single Cell Analysis for Bacterial Cells
    Automated Segmentation and Single Cell Analysis for Bacterial Cells -Description of the workflow and a step-by-step protocol- Authors: Michael Weigert and Rolf Kümmerli 1 General Information This document presents a new workflow for automated segmentation of bacterial cells, andthe subsequent analysis of single-cell features (e.g. cell size, relative fluorescence values). The described methods require the use of three freely available open source software packages. These are: 1. ilastik: http://ilastik.org/ [1] 2. Fiji: https://fiji.sc/ [2] 3. R: https://www.r-project.org/ [4] Ilastik is an interactive, machine learning based, supervised object classification and segmentation toolkit, which we use to automatically segment bacterial cells from microscopy images. Segmenta- tion is the process of dividing an image into objects and background, a bottleneck in many of the current approaches for single cell image analysis. The advantage of ilastik is that the segmentation process does not require priors (e.g. information oncell shape), and can thus be used to analyze any type of objects. Furthermore, ilastik also works for low-resolution images. Ilastik involves a user supervised training process, during which the software is trained to reliably recognize the objects of interest. This process creates a ”Object Prediction Map” that is used to identify objects inimages that are not part of the training process. The training process is computationally intensive. We thus recommend to use of a computer with a multi-core CPU (ilastik supports hyper threading) and at least 16GB of RAM-memory. Alternatively, a computing center or cloud computing service could be used to speed up the training process.
    [Show full text]
  • Machine Learning on Real and Artificial SEM Images
    A Workflow for Characterizing Nanoparticle Monolayers for Biosensors: Machine Learning on Real and Artificial SEM Images Adam Hughes1, Zhaowen Liu2, Mayam Raftari3, and M. E. Reeves4 1-4The George Washington University, USA ABSTRACT A persistent challenge in materials science is the characterization of a large ensemble of heterogeneous nanostructures in a set of images. This often leads to practices such as manual particle counting, and s sampling bias of a favorable region of the “best” image. Herein, we present the open-source software, t imaging criteria and workflow necessary to fully characterize an ensemble of SEM nanoparticle images. n i Such characterization is critical to nanoparticle biosensors, whose performance and characteristics r are determined by the distribution of the underlying nanoparticle film. We utilize novel artificial SEM P images to objectively compare commonly-found image processing methods through each stage of the workflow: acquistion, preprocessing, segmentation, labeling and object classification. Using the semi- e r supervised machine learning application, Ilastik, we demonstrate the decomposition of a nanoparticle image into particle subtypes relevant to our application: singles, dimers, flat aggregates and piles. We P outline a workflow for characterizing and classifying nanoscale features on low-magnification images with thousands of nanoparticles. This work is accompanied by a repository of supplementary materials, including videos, a bank of real and artificial SEM images, and ten IPython Notebook tutorials to reproduce and extend the presented results. Keywords: Image Processing, Gold Nanoparticles, Biosensor, Plasmonics, Electron Microscopy, Microsopy, Ilastik, Segmentation, Bioengineering, Reproducible Research, IPython Notebook 1 INTRODUCTION Metallic colloids, especially gold nanoparticles (AuNPs) continue to be of high interdisciplinary in- terest, ranging in application from biosensing(Sai et al., 2009)(Nath and Chilkoti, 2002) to photo- voltaics(Shahin et al., 2012), even to heating water(McKenna, 2012).
    [Show full text]
  • Ilastik: Interactive Machine Learning for (Bio)Image Analysis
    ilastik: interactive machine learning for (bio)image analysis Stuart Berg1, Dominik Kutra2,3, Thorben Kroeger2, Christoph N. Straehle2, Bernhard X. Kausler2, Carsten Haubold2, Martin Schiegg2, Janez Ales2, Thorsten Beier2, Markus Rudy2, Kemal Eren2, Jaime I Cervantes2, Buote Xu2, Fynn Beuttenmueller2,3, Adrian Wolny2, Chong Zhang2, Ullrich Koethe2, Fred A. Hamprecht2, , and Anna Kreshuk2,3, 1HHMI Janelia Research Campus, Ashburn, Virginia, USA 2HCI/IWR, Heidelberg University, Heidelberg, Germany 3European Molecular Biology Laboratory, Heidelberg, Germany We present ilastik, an easy-to-use interactive tool that brings are computed and passed on to a powerful nonlinear algo- machine-learning-based (bio)image analysis to end users with- rithm (‘the classifier’), which operates in the feature space. out substantial computational expertise. It contains pre-defined Based on examples of correct class assignment provided by workflows for image segmentation, object classification, count- the user, it builds a decision surface in feature space and ing and tracking. Users adapt the workflows to the problem at projects the class assignment back to pixels and objects. In hand by interactively providing sparse training annotations for other words, users can parametrize such workflows just by a nonlinear classifier. ilastik can process data in up to five di- providing the training data for algorithm supervision. Freed mensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allow- from the necessity to understand intricate algorithm details, ing for interactive prediction on data larger than RAM. Once users can thus steer the analysis by their domain expertise. the classifiers are trained, ilastik workflows can be applied to Algorithm parametrization through user supervision (‘learn- new data from the command line without further user interac- ing from training data’) is the defining feature of supervised tion.
    [Show full text]
  • Image Search Engine Resource Guide
    Image Search Engine: Resource Guide! www.PyImageSearch.com Image Search Engine Resource Guide Adrian Rosebrock 1 Image Search Engine: Resource Guide! www.PyImageSearch.com Image Search Engine: Resource Guide Share this Guide Do you know someone who is interested in building image search engines? Please, feel free to share this guide with them. Just send them this link: http://www.pyimagesearch.com/resources/ Copyright © 2014 Adrian Rosebrock, All Rights Reserved Version 1.2, July 2014 2 Image Search Engine: Resource Guide! www.PyImageSearch.com Table of Contents Introduction! 4 Books! 5 My Books! 5 Beginner Books! 5 Textbooks! 6 Conferences! 7 Python Libraries! 8 NumPy! 8 SciPy! 8 matplotlib! 8 PIL and Pillow! 8 OpenCV! 9 SimpleCV! 9 mahotas! 9 scikit-learn! 9 scikit-image! 9 ilastik! 10 pprocess! 10 h5py! 10 Connect! 11 3 Image Search Engine: Resource Guide! www.PyImageSearch.com Introduction Hello! My name is Adrian Rosebrock from PyImageSearch.com. Thanks for downloading this Image Search Engine Resource Guide. A little bit about myself: I’m an entrepreneur who has launched two successful image search engines: ID My Pill, an iPhone app and API that identifies your prescription pills in the snap of a smartphone’s camera, and Chic Engine, a fashion search engine for the iPhone. Previously, my company ShiftyBits, LLC. has consulted with the National Cancer Institute to develop image processing and machine learning algorithms to automatically analyze breast histology images for cancer risk factors. I have a Ph.D in computer science, with a focus in computer vision and machine learning, from the University of Maryland, Baltimore County where I spent three and a half years studying.
    [Show full text]
  • Automated Tissue Image Analysis Using Pattern Recognition
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1175 Automated Tissue Image Analysis Using Pattern Recognition JIMMY AZAR ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9028-7 UPPSALA urn:nbn:se:uu:diva-231039 2014 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Monday, 20 October 2014 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Marco Loog (Delft University of Technology, Pattern Recognition & Bioinformatics Group). Abstract Azar, J. 2014. Automated Tissue Image Analysis Using Pattern Recognition. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1175. 106 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9028-7. Automated tissue image analysis aims to develop algorithms for a variety of histological applications. This has important implications in the diagnostic grading of cancer such as in breast and prostate tissue, as well as in the quantification of prognostic and predictive biomarkers that may help assess the risk of recurrence and the responsiveness of tumors to endocrine therapy. In this thesis, we use pattern recognition and image analysis techniques to solve several problems relating to histopathology and immunohistochemistry applications. In particular, we present a new method for the detection and localization of tissue microarray cores in an automated manner and compare it against conventional approaches. We also present an unsupervised method for color decomposition based on modeling the image formation process while taking into account acquisition noise. The method is unsupervised and is able to overcome the limitation of specifying absorption spectra for the stains that require separation.
    [Show full text]
  • Integrating Information from Diverse Microscope Images: Learning and Using Generative Models of Cell Organization Robert F
    March 9, 2018 Integrating Information from Diverse Microscope Images: Learning and Using Generative Models of Cell Organization Robert F. Murphy Ray & Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering and Machine Learning External Senior Fellow, Freiburg Institute for Advanced Studies Honorary Professor, Faculty of Biology, University of Freiburg, Germany An NIH Biomedical Technology Research Center Classic problem in cell and developmental systems biology • How do we learn and represent – sizes and shapes of different cell types – number, sizes, shapes, positions of organelles – the distribution of proteins across organelles – how organelles depend upon each other – how any of these vary • from cell to cell • from cell type to cell type • during development • in presence of perturbagens Subcellular Location Subcellular Location Subcellular Location Subcellular Location Classic approach • Do biochemical or imaging experiments, capture relationships in words – “secretory vesicles bind to microtubules” • Two problems – Difficult to establish these relationships from images – Does not adequately describe them • Can we do better via machine learning? Cellular Pattern Recognition • Describe cell patterns using numerical features • Do classification, etc. to assign terms • First described in Boland, Markey & Murphy (1998) and Boland & Murphy (200 • Later popularized in packages such as CellProfiler, WND-CHARM, Ilastik, CellCognition, etc. Drawback • Image features are typically not
    [Show full text]
  • Advanced Light Microscopy Core Facilities: Balancing Service, Science and Career
    MICROSCOPY RESEARCH AND TECHNIQUE 79:463–479 (2016) Advanced Light Microscopy Core Facilities: Balancing Service, Science and Career ELISA FERRANDO-MAY,1* HELLA HARTMANN,2 JURGEN€ REYMANN,3 NARIMAN ANSARI,4 NADINE UTZ,1 HANS-ULRICH FRIED,5 CHRISTIAN KUKAT,6 JAN PEYCHL,7 CHRISTIAN LIEBIG,8 STEFAN TERJUNG,9 VIBOR LAKETA,10 ANJE SPORBERT,11 STEFANIE WEIDTKAMP-PETERS,12 ASTRID SCHAUSS,13 14 15 WERNER ZUSCHRATTER, SERGIY AVILOV, AND THE GERMAN BIOIMAGING NETWORK 1Department of Biology, University of Konstanz, Bioimaging Center, Universitatsstrasse€ 10, Konstanz, 78464, Germany 2Technical University Dresden, Center for Regenerative Therapies, Light Microscopy Facility, Fetscherstraße 105, Dresden, 01307, Germany 3Heidelberg University, BioQuant, ViroQuant-CellNetworks RNAi Screening Facility, Im Neuenheimer Feld 267, & Heidelberg Center for Human Bioinformatics, IPMB, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany 4Goethe University Frankfurt am Main, Buchmann Institute for Molecular Life Sciences, Physical Biology Group, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany 5Deutsches Zentrum fur€ Neurodegenerative Erkrankungen, Core Facility and Services, Light Microscopy Facility, Ludwig-Erhard- Allee 2, Bonn, 53175, Germany 6Max Planck Institute for Biology of Ageing, FACS & Imaging Core Facility, Joseph-Stelzmann-Str. 9b, Koln,€ 50931, Koln,€ Germany 7Max Planck Institute for Molecular Cell Biology and Genetics, Light Microscopy Facility, Pfotenhauerstr. 108, Dresden, 01307, Germany 8Max Planck Institute for Developmental Biology,
    [Show full text]
  • Machine Learning for Blob Detection in High-Resolution 3D Microscopy Images
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Machine learning for blob detection in high-resolution 3D microscopy images MARTIN TER HAAK KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Machine learning for blob detection in high-resolution 3D microscopy images MARTIN TER HAAK EIT Digital Data Science Date: June 6, 2018 Supervisor: Vladimir Vlassov Examiner: Anne Håkansson Electrical Engineering and Computer Science (EECS) iii Abstract The aim of blob detection is to find regions in a digital image that dif- fer from their surroundings with respect to properties like intensity or shape. Bio-image analysis is a common application where blobs can denote regions of interest that have been stained with a fluorescent dye. In image-based in situ sequencing for ribonucleic acid (RNA) for exam- ple, the blobs are local intensity maxima (i.e. bright spots) correspond- ing to the locations of specific RNA nucleobases in cells. Traditional methods of blob detection rely on simple image processing steps that must be guided by the user. The problem is that the user must seek the optimal parameters for each step which are often specific to that image and cannot be generalised to other images. Moreover, some of the existing tools are not suitable for the scale of the microscopy images that are often in very high resolution and 3D. Machine learning (ML) is a collection of techniques that give computers the ability to ”learn” from data. To eliminate the dependence on user parameters, the idea is applying ML to learn the definition of a blob from labelled images.
    [Show full text]