Stichwortverzeichnis

Total Page:16

File Type:pdf, Size:1020Kb

Stichwortverzeichnis Stichwortverzeichnis A Bestimmtheitsmaß Deployment 327 186–188 Evaluation 327 Abduktive Methode 55 Big-Data 356 Modeling 327 Adaptive Regler 49 Binärcode 91 Data-Mining-Prozess 326 Aika 363 Blackbox-Methode 156 Data Preparation 327 Aktivierungsfunktion 221 Boole, George 38 Data Understanding 327 Algorithmus 279 Boolesche Algebra 97 Daten Allquantor 130 Bot 68 Definition 74 AlphaGo 295, 298 BrainScaleS 421 Daten-Anreicherung 269 AlphaZero 299 Brainstorming 60 da Vinci, Leonardo 37 Angoss 363 Brain-to-Computer- Deduktionstheorem 124, 133 Antivalenz 117 Forschung 381 Deduktive KI 416 Apache Software Foun- Bristlecone 422 Deduktive Methode dation 363 Business Understanding 52, 108, 156 Aphelion 363 327 Deep Blue 290 Äquivalenz 117 DeepL 417 Aristoteles 115 C Deep Learning 32, 418 Artificial General Intelligence Caffe 363 Deep Thinking 32, 108 (AGI) 413 CART 363 Delta-Lernregel 233, 236 Artificial Narrow Intelligence Chatbot 67–68 Dendrit 396 (ANI) 413 Chatbot Tay 69 Deployment 327 Artificial Super Intelligence Chatbot Zo 70 Disjunktion 117 (ASI) 413 Chinesisches Zimmer 71 Diskretisieren 203 ASCII-Code 92 Church, Alonzo 136 DL4J 364 Assoziationsregel 205, 208 Cleverbot 70 DSSTNE 363 Attraktoren 400 Cluster 191–192 Dualcode 90 Aussagenlogik 116 Codierte Intelligenz 33 Dualismus 383 Entscheid- Cognitive Computing 109 interaktionistischer 383 barkeitsproblem 128 Competitive Networks DuckDuckGo.com 361 Erfüllbarkeitsproblem 125 241, 243–244 Autonomes Fahren Controller 99 E 62, 316, 317 Convolutional Neuronal Net- Edmond de Belamy 315 Autonomiestufe 316 works 268–269 EEG 379, 397 Axiom 59 Cortex ELKI 364 Axon 396–397 Visueller 407 e-Log-Modell 184 Cybenko-Theorem 261 Emergenztheorie 385 B Cyber-Physikalischen Encog 364 Backpropagation-Le- Systeme 309 Enigma (Maschine) 38 rnregel 235 Entropie 197 Backpropagation-Lernver- D Entropieminderung 197 fahren 240 DADiSP 363 Ents- Backpropagation-Netz 238 Data Augmentation 271 cheidbarkeitsproblem 136 Bedeutungslehre 81 Data Mining 172, 325, 327 Entscheidungsbaumalgo- Benutzerschnittstelle 96 Definition 326 rithmus 199 Bestärkende Lernverfahren 230 Data-Mining Entscheidungsbäume 196 otte714940_bindex.indd 453 3/29/2019 11:12:44 AM 454 Stichwortverzeichnis ENTWEDER-ODER/XOR 117 Hexadezimalsystem 92 Kettenregel Epiphänomenalismus 384 Hex-Code 90 logische 114 Erklärungskomponente 96, 98 Hidden-Schicht 262 KI Evaluation 327 Hilbert, David 38 Bekleidungs-und Nah- Existenzquantor 130 Hornklauseln 137 rungsmittelindustrie 332 Expertensystem 95 Chemie- und Pharmain- Basiskomponenten 95 I dustrie 332 Exponentialmodell 184 Identitätstheorie 384 Elektroindustrie 330 Ilastik 364 Energiewirtschaft 331 F Implikation 117–119 Fertigungsindustrie 330 Facebook 357 Individualvariable 129 Prozessindustrie 330 Fake News 425 Induktion Recyclingindustrie 332 Fake Science 426 vollständige 139 KNIME 364, 369–370 Faltung 264 Induktive KI 417 Kommunikationsschema 86 Faltungskern 263 Induktive Künstliche Intel- Konfidenz 202 Feed-Forward-Netze 213 ligenz 149 Konjunktion 117 Feed-Forward-Netzwerk 233 Induktive Methode Konklusion 114 Fertigungssteuerung 56, 108, 156 Konstruktionssystematik 60 neuronale 340 Inferenzkomponente 95–96 Korrelationsanalyse 175, 178 Fluentd 364 Information gain 197 Korrelationskoeffi- fMRT 380 Informationsgehalt zient 176, 178 Forschungsunion 308 mittlerer 78–79 Korrelationsverfahren 163 Funktionalismus 385 Informationsgehalt einer Kreuzvalidierung 258 Fuzzy-Clusterver- Zeichenkette 78 Zehnfach 258 fahren 191–192 Informationsgewinn 197 Kunst 315 Fuzzy-Logik 116 Informationsmenge 82 Künstliche Intelligenz Ethik semantische 83, 86 Netzwerk 430 G syntaktische 82 Künstliche Neuronale Galton, Francis 181 Intelligenz Netze 106 Gaußfunktionen 221 emotionale 30 Geist-Körper-Problem 378 Intelligenzstufe I1 45 L Generalisierungsfehler 253 Intelligenzstufe I2 49 LanguageWare 364 General Problem Solvers 150 Intelligenzstufe I3 60 Leonardischer Eid 429 Gesamtstreuung 187 Intelligenzstufe I4 65 LIBLINEAR 364 Gesichtserkennung 313 Intelligenzstufe I5 67 LIBSVM 364 Gewinnerneuron 242 Interessantheit 212 Lineare Rampen- Gödel, Kurt 38, 136, 140 Internet of Things 309 Funktion 219 Google 359–360, 423 Intervallskala 164 Lineares Modell 184 GoogleCruncher 430 Intervallskalen 164 Linguamatik 364 GraphLab 364 Inverses Modell 184 Loebnerpreis 70 Gütemaß 212, 255 IQ 30, 375, 377 Logik Konfidenz 209 J Aussagen 116 Lift 210 Formalisieren 114 Support 209 Jubatus 364 Fuzzy 116 Julia 364 Kalkül 126 H Junktor 117 Konklusion 114 H2O 364 Modus ponens 124, 133 HAL9000 441 K Prädikaten 129 Hebb, Donald 232 Kalkül 126 sprachliche 115 Hebb’sche Lernregel 232 Kempelen, Wolfgang von 37 Syllogismus 114 Heuristik 107, 292 Kernel-Funktionen 268 Tautologie 122 otte714940_bindex.indd 454 3/29/2019 11:12:44 AM Stichwortverzeichnis 455 Logistisches Modell 184 Neuronale Aktiv- Prewitt-Operator 266 LSTM-Netze 241 itätszustände 379 Problem des Generalisie- Neuronale Netze 151 rens 255–256 M Neuronaler Designer 365 Produktmarketing 328 MALLET 364 Neuronales Korrelat 66 Prozessdiagnose 328 Maschinelles Be- Neuronen Prozessoptimierung 328 wusstsein 422 drei (und vier) binären 225 Prozessplanung 328 Maschinencode 95 zwei binäre 224 Prozessprognose 328 Mathematischen Neuronenaktivität 215 Prozessüberwachung 329 Theorie der Neuronenausgang 219 Pruning 257 Kommunikation 77 Neuronenmodell 214 Python 369 MATLAB 364, 367 Neuronenverbände Pytorch 365 McCarthy, John 39 Synchronizitäten 401 Medizin 314 Neurotransmitter 395 Q Merkmalskarte 244 Nominaldaten 164 Qualia 66, 403 MerlinOne 356 Nominalskala 163 Qualitätssicherung 329 Methode NOR 127 Quantencomputer 422 abduktive 55 NOR-Gatter 127 Quantenphysik 406 deduktive 52, 108, 156 Numerischer Schätzer 254 R induktive 56, 108, 156 O Microsoft Cognitive R 365, 368 Toolkit 364 Objektsprache 142 Rapid Miner 365 Mikrofunktionalismus 386 ODER/OR 117 Reduzierung von Freiheits- Missing values 196 Online-Steuerung des graden 257 ML.NET 364 Prozesses 339 Reglerentwurf 49 MLPACK 364 OpenNN 365 Reglerprogramm 48 MLPY 364 Oracle Data Mining 365 Regressionsanalyse 178, 181 MOA 364 Orange 365 Regressionsbäume 205 Modeling 327 Ordinaldaten 164 Regressionsfunktion 186 Modellbildung Ordinalskala 163 Regressionsschätzung 188 mit neuronalen Netzen 335 Overfitting 212, 255, 257 nichtlineare 188 Statistische 335 Reinforcement learning 230 Modellierungsmethode P Reiz-Reaktion-Verhalten 46 empirische 157 Parker, Sean 358 Relais 89 Modellierungsverfahren 155 Pawlow’sches Ex- Resolutionskalkül 133 Modus ponens 124, 133 periment 232 Schlussfolgern mit 133 Monismus 384 Peano-Arithmetik 139, 287 Rezeptor 395 Multi-Agenten-Sys- Penrose, Roger 281 RFID 309–310 teme 99, 101 Perceptron 216, 219 RNN 365 Multi-Layer-Perceptrons 223 Perceptron-Netzwerk 223 S N Physikalische Symbol System Hypothese 278 SAS 365 Nachricht PipelinePilot 365 Satzsemantik 81 quantitative Bedeutung 85 Piranha 365 Satz von Rice 66 NASA 423 Polynomlinie 188 Scharniermodell NetOwl 364 Popper, Karl 57 neuronales 336 Netzwerkarchitektur neuro- Potenzmodell 184 Schwache KI 34, 416 naler Netze 223 Prädikatenlogik 129, 132 Scikit 365 Neuromorphe KI 419, 421 PL1 130 Selbstorganisierenden Merk- Neuron PL2 137 malskarte 243–244 binäres 216 Pragmatik 86 Anwendungsphase 245 otte714940_bindex.indd 455 3/29/2019 11:12:44 AM 456 Stichwortverzeichnis Clusteranalyse 250 Synapse 394–395 Vowpal 366 Ergebnisdarstellung 245 Syntaktische Menge 77 Lernverfahren 245 W Self-Organizing- Maps 243 T Wahrheit Semantic Web 105 Tanagra 365 als Kongruenzbegriff 51 Semantik 81, 116 Tautologie 121 als Konsensbegriff 51 Semantische Netze 103 Technische Singularität 401 Wahrscheinlichkeit- Sensitivitätsanalyse 338 TensorFlow 365, 370 stheorie 159 Shannon, Claude 77, 80 Topografisches Produkt 254 Watson 305 Shogun 365 Torch 366 Weka 366, 368 Sigmoide Funktion 220–221 TRIZ 60 WEKA 368 Sobel-Operator 266 Turing, Alan 38, 136 Wellenfunktionen 389 SOM-Karte Turing-Test 68, 70 WENN-DANN 117–119 inverse Funktionen 252 What-if-Analyse 337 Spikerate 397 U Whitebox-Methode 156 Spiking Neural Networks Überanpassen 212 Wissensbasiertes Sys- (SNN) 420 Überanpassung 255, 257 tem (WBS) 99 SpiNNaker 420 Übertragungsfunktion Wissensbasis 95–96 Sprache eines Neurons 215 Wissenschaft 315 formale 115 Überwachte Lernver- Wissenserwerbskompo- Spracherkennung 313 fahren 230 nente 95, 97 Sprachsteuerung 313 UIMA 366 Wissensrepräsentation 98 Sprach-Übersetzung 314 UND 117, 118 Wolfram Mathematica 366 SPSS 365 UND/AND 117 World Wide Web 104 Starke KI 34, 422 Unsupervised learning 230 X Statistik 159 Unüberwachte Lernver- Deskriptive 159–160 fahren 230 x-y-Scatterplot 168 Explorative 160 User Interface 98 Schließende 160 Y Univariate 166 V Yooreeka 366 Statistische Modell- Vaucanson, Jacques de 37 bildung 335 Verbmobil 314 Z Steuerung 47 Verhältnisskala 164 Z1 (Computer) 88 Stratifikation 258 Verknotungsmaß 254 Z2 (Computer) 89 Streudiagramm 168 Versuchsplanung 334 Zehnfach-Kreuzvali- Streuung 187 Vertrauensgrenzen von Schät- dierung 258 Strukturanalyse 172 zungen 259 Zeichenkette 78 Substanzdualismus 383 VIGRA 366 Zentrale Produktions- Supervised learning 230 Viskosität 198, 201 planung 310 Support 202 Visuelle Neuromorphe Zeroth 366 Syllogismus 114 Computer 409 Zusammenhangsanalyse Symbolmanipulation 286 Visueller Cortex 407 172 mechanisierbare 283 Vollständigen Induktion 139 Zuse, Konrad 88 otte714940_bindex.indd 456 3/29/2019 11:12:44 AM.
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Abstractband
    Volume 23 · Supplement 1 · September 2013 Clinical Neuroradiology Official Journal of the German, Austrian, and Swiss Societies of Neuroradiology Abstracts zur 48. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie Gemeinsame Jahrestagung der DGNR und ÖGNR 10.–12. Oktober 2013, Gürzenich, Köln www.cnr.springer.de Clinical Neuroradiology Official Journal of the German, Austrian, and Swiss Societies of Neuroradiology Editors C. Ozdoba L. Solymosi Bern, Switzerland (Editor-in-Chief, responsible) ([email protected]) Department of Neuroradiology H. Urbach University Würzburg Freiburg, Germany Josef-Schneider-Straße 11 ([email protected]) 97080 Würzburg Germany ([email protected]) Published on behalf of the German Society of Neuroradiology, M. Bendszus president: O. Jansen, Heidelberg, Germany the Austrian Society of Neuroradiology, ([email protected]) president: J. Trenkler, and the Swiss Society of Neuroradiology, T. Krings president: L. Remonda. Toronto, ON, Canada ([email protected]) Clin Neuroradiol 2013 · No. 1 © Springer-Verlag ABC jobcenter-medizin.de Clin Neuroradiol DOI 10.1007/s00062-013-0248-4 ABSTRACTS 48. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie Gemeinsame Jahrestagung der DGNR und ÖGNR 10.–12. Oktober 2013 Gürzenich, Köln Kongresspräsidenten Prof. Dr. Arnd Dörfler Prim. Dr. Johannes Trenkler Erlangen Wien Dieses Supplement wurde von der Deutschen Gesellschaft für Neuroradiologie finanziert. Inhaltsverzeichnis Grußwort ............................................................................................................................................................................
    [Show full text]
  • A Flexible Image Segmentation Pipeline for Heterogeneous
    A exible image segmentation pipeline for heterogeneous multiplexed tissue images based on pixel classication Vito Zanotelli & Bernd Bodenmiller January 14, 2019 Abstract Measuring objects and their intensities in images is basic step in many quantitative tissue image analysis workows. We present a exible and scalable image processing pipeline tai- lored to highly multiplexed images. This pipeline allows the single cell and image structure segmentation of hundreds of images. It is based on supervised pixel classication using Ilastik to the distill the segmentation relevant information from the multiplexed images in a semi- supervised, automated fashion, followed by standard image segmentation using CellProler. We provide a helper python package as well as customized CellProler modules that allow for a straight forward application of this workow. As the pipeline is entirely build on open source tool it can be easily adapted to more specic problems and forms a solid basis for quantitative multiplexed tissue image analysis. 1 Introduction Image segmentation, i.e. division of images into meaningful regions, is commonly used for quan- titative image analysis [2, 8]. Tissue level comparisons often involve segmentation of the images in macrostructures, such as tumor and stroma, and calculating intensity levels and distributions in such structures [8]. Cytometry type tissue analysis aim to segment the images into pixels be- longing to the same cell, with the goal to ultimately identify cellular phenotypes and celltypes [2]. Classically these approaches are mostly based on a single, hand selected nuclear marker that is thresholded to identify cell centers. If available a single membrane marker is used to expand the cell centers to full cells masks, often using watershed type algorithms.
    [Show full text]
  • Protocol of Image Analysis
    Protocol of Image Analysis - Step-by-step instructional guide using the software Fiji, Ilastik and Drishti by Stella Gribbe 1. Installation The open-source software Fiji, Ilastik and Drishti are needed in order to perform image analysis as described in this protocol. Install the software for each program on your system, using the html- addresses below. In your web browser, open the Fiji homepage for downloads: https://fiji.sc/#download. Select the software option suited for your operating system and download it. In your web browser, open the Ilastik homepage for 'Download': https://www.ilastik.org/download.html. For this work, Ilastik version 1.3.2 was installed, as it was the most recent version. Select the Download option suited for your operating system and follow the download instructions on the webpage. In your web browser, open the Drishti page on Github: https://github.com/nci/drishti/releases. Select the versions for your operating system and download 'Drishti version 2.6.3', 'Drishti version 2.6.4' and 'Drishti version 2.6.5'. 1 2. Pre-processing Firstly, reduce the size of the CR.2-files from your camera, if the image files are exceedingly large. There is a trade-off between image resolution and both computation time and feasibility. Identify your necessary minimum image resolution and compress your image files to the largest extent possible, for instance by converting them to JPG-files. Large image data may cause the software to crash, if your internal memory capacity is too small. Secondly, convert your image files to inverted 8-bit grayscale JPG-files and adjust the parameter brightness and contrast to enhance the distinguishability of structures.
    [Show full text]
  • Automated Segmentation and Single Cell Analysis for Bacterial Cells
    Automated Segmentation and Single Cell Analysis for Bacterial Cells -Description of the workflow and a step-by-step protocol- Authors: Michael Weigert and Rolf Kümmerli 1 General Information This document presents a new workflow for automated segmentation of bacterial cells, andthe subsequent analysis of single-cell features (e.g. cell size, relative fluorescence values). The described methods require the use of three freely available open source software packages. These are: 1. ilastik: http://ilastik.org/ [1] 2. Fiji: https://fiji.sc/ [2] 3. R: https://www.r-project.org/ [4] Ilastik is an interactive, machine learning based, supervised object classification and segmentation toolkit, which we use to automatically segment bacterial cells from microscopy images. Segmenta- tion is the process of dividing an image into objects and background, a bottleneck in many of the current approaches for single cell image analysis. The advantage of ilastik is that the segmentation process does not require priors (e.g. information oncell shape), and can thus be used to analyze any type of objects. Furthermore, ilastik also works for low-resolution images. Ilastik involves a user supervised training process, during which the software is trained to reliably recognize the objects of interest. This process creates a ”Object Prediction Map” that is used to identify objects inimages that are not part of the training process. The training process is computationally intensive. We thus recommend to use of a computer with a multi-core CPU (ilastik supports hyper threading) and at least 16GB of RAM-memory. Alternatively, a computing center or cloud computing service could be used to speed up the training process.
    [Show full text]
  • Machine Learning on Real and Artificial SEM Images
    A Workflow for Characterizing Nanoparticle Monolayers for Biosensors: Machine Learning on Real and Artificial SEM Images Adam Hughes1, Zhaowen Liu2, Mayam Raftari3, and M. E. Reeves4 1-4The George Washington University, USA ABSTRACT A persistent challenge in materials science is the characterization of a large ensemble of heterogeneous nanostructures in a set of images. This often leads to practices such as manual particle counting, and s sampling bias of a favorable region of the “best” image. Herein, we present the open-source software, t imaging criteria and workflow necessary to fully characterize an ensemble of SEM nanoparticle images. n i Such characterization is critical to nanoparticle biosensors, whose performance and characteristics r are determined by the distribution of the underlying nanoparticle film. We utilize novel artificial SEM P images to objectively compare commonly-found image processing methods through each stage of the workflow: acquistion, preprocessing, segmentation, labeling and object classification. Using the semi- e r supervised machine learning application, Ilastik, we demonstrate the decomposition of a nanoparticle image into particle subtypes relevant to our application: singles, dimers, flat aggregates and piles. We P outline a workflow for characterizing and classifying nanoscale features on low-magnification images with thousands of nanoparticles. This work is accompanied by a repository of supplementary materials, including videos, a bank of real and artificial SEM images, and ten IPython Notebook tutorials to reproduce and extend the presented results. Keywords: Image Processing, Gold Nanoparticles, Biosensor, Plasmonics, Electron Microscopy, Microsopy, Ilastik, Segmentation, Bioengineering, Reproducible Research, IPython Notebook 1 INTRODUCTION Metallic colloids, especially gold nanoparticles (AuNPs) continue to be of high interdisciplinary in- terest, ranging in application from biosensing(Sai et al., 2009)(Nath and Chilkoti, 2002) to photo- voltaics(Shahin et al., 2012), even to heating water(McKenna, 2012).
    [Show full text]
  • Ilastik: Interactive Machine Learning for (Bio)Image Analysis
    ilastik: interactive machine learning for (bio)image analysis Stuart Berg1, Dominik Kutra2,3, Thorben Kroeger2, Christoph N. Straehle2, Bernhard X. Kausler2, Carsten Haubold2, Martin Schiegg2, Janez Ales2, Thorsten Beier2, Markus Rudy2, Kemal Eren2, Jaime I Cervantes2, Buote Xu2, Fynn Beuttenmueller2,3, Adrian Wolny2, Chong Zhang2, Ullrich Koethe2, Fred A. Hamprecht2, , and Anna Kreshuk2,3, 1HHMI Janelia Research Campus, Ashburn, Virginia, USA 2HCI/IWR, Heidelberg University, Heidelberg, Germany 3European Molecular Biology Laboratory, Heidelberg, Germany We present ilastik, an easy-to-use interactive tool that brings are computed and passed on to a powerful nonlinear algo- machine-learning-based (bio)image analysis to end users with- rithm (‘the classifier’), which operates in the feature space. out substantial computational expertise. It contains pre-defined Based on examples of correct class assignment provided by workflows for image segmentation, object classification, count- the user, it builds a decision surface in feature space and ing and tracking. Users adapt the workflows to the problem at projects the class assignment back to pixels and objects. In hand by interactively providing sparse training annotations for other words, users can parametrize such workflows just by a nonlinear classifier. ilastik can process data in up to five di- providing the training data for algorithm supervision. Freed mensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allow- from the necessity to understand intricate algorithm details, ing for interactive prediction on data larger than RAM. Once users can thus steer the analysis by their domain expertise. the classifiers are trained, ilastik workflows can be applied to Algorithm parametrization through user supervision (‘learn- new data from the command line without further user interac- ing from training data’) is the defining feature of supervised tion.
    [Show full text]
  • Image Search Engine Resource Guide
    Image Search Engine: Resource Guide! www.PyImageSearch.com Image Search Engine Resource Guide Adrian Rosebrock 1 Image Search Engine: Resource Guide! www.PyImageSearch.com Image Search Engine: Resource Guide Share this Guide Do you know someone who is interested in building image search engines? Please, feel free to share this guide with them. Just send them this link: http://www.pyimagesearch.com/resources/ Copyright © 2014 Adrian Rosebrock, All Rights Reserved Version 1.2, July 2014 2 Image Search Engine: Resource Guide! www.PyImageSearch.com Table of Contents Introduction! 4 Books! 5 My Books! 5 Beginner Books! 5 Textbooks! 6 Conferences! 7 Python Libraries! 8 NumPy! 8 SciPy! 8 matplotlib! 8 PIL and Pillow! 8 OpenCV! 9 SimpleCV! 9 mahotas! 9 scikit-learn! 9 scikit-image! 9 ilastik! 10 pprocess! 10 h5py! 10 Connect! 11 3 Image Search Engine: Resource Guide! www.PyImageSearch.com Introduction Hello! My name is Adrian Rosebrock from PyImageSearch.com. Thanks for downloading this Image Search Engine Resource Guide. A little bit about myself: I’m an entrepreneur who has launched two successful image search engines: ID My Pill, an iPhone app and API that identifies your prescription pills in the snap of a smartphone’s camera, and Chic Engine, a fashion search engine for the iPhone. Previously, my company ShiftyBits, LLC. has consulted with the National Cancer Institute to develop image processing and machine learning algorithms to automatically analyze breast histology images for cancer risk factors. I have a Ph.D in computer science, with a focus in computer vision and machine learning, from the University of Maryland, Baltimore County where I spent three and a half years studying.
    [Show full text]
  • Automated Tissue Image Analysis Using Pattern Recognition
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1175 Automated Tissue Image Analysis Using Pattern Recognition JIMMY AZAR ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9028-7 UPPSALA urn:nbn:se:uu:diva-231039 2014 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Monday, 20 October 2014 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Marco Loog (Delft University of Technology, Pattern Recognition & Bioinformatics Group). Abstract Azar, J. 2014. Automated Tissue Image Analysis Using Pattern Recognition. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1175. 106 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9028-7. Automated tissue image analysis aims to develop algorithms for a variety of histological applications. This has important implications in the diagnostic grading of cancer such as in breast and prostate tissue, as well as in the quantification of prognostic and predictive biomarkers that may help assess the risk of recurrence and the responsiveness of tumors to endocrine therapy. In this thesis, we use pattern recognition and image analysis techniques to solve several problems relating to histopathology and immunohistochemistry applications. In particular, we present a new method for the detection and localization of tissue microarray cores in an automated manner and compare it against conventional approaches. We also present an unsupervised method for color decomposition based on modeling the image formation process while taking into account acquisition noise. The method is unsupervised and is able to overcome the limitation of specifying absorption spectra for the stains that require separation.
    [Show full text]
  • Integrating Information from Diverse Microscope Images: Learning and Using Generative Models of Cell Organization Robert F
    March 9, 2018 Integrating Information from Diverse Microscope Images: Learning and Using Generative Models of Cell Organization Robert F. Murphy Ray & Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering and Machine Learning External Senior Fellow, Freiburg Institute for Advanced Studies Honorary Professor, Faculty of Biology, University of Freiburg, Germany An NIH Biomedical Technology Research Center Classic problem in cell and developmental systems biology • How do we learn and represent – sizes and shapes of different cell types – number, sizes, shapes, positions of organelles – the distribution of proteins across organelles – how organelles depend upon each other – how any of these vary • from cell to cell • from cell type to cell type • during development • in presence of perturbagens Subcellular Location Subcellular Location Subcellular Location Subcellular Location Classic approach • Do biochemical or imaging experiments, capture relationships in words – “secretory vesicles bind to microtubules” • Two problems – Difficult to establish these relationships from images – Does not adequately describe them • Can we do better via machine learning? Cellular Pattern Recognition • Describe cell patterns using numerical features • Do classification, etc. to assign terms • First described in Boland, Markey & Murphy (1998) and Boland & Murphy (200 • Later popularized in packages such as CellProfiler, WND-CHARM, Ilastik, CellCognition, etc. Drawback • Image features are typically not
    [Show full text]
  • Advanced Light Microscopy Core Facilities: Balancing Service, Science and Career
    MICROSCOPY RESEARCH AND TECHNIQUE 79:463–479 (2016) Advanced Light Microscopy Core Facilities: Balancing Service, Science and Career ELISA FERRANDO-MAY,1* HELLA HARTMANN,2 JURGEN€ REYMANN,3 NARIMAN ANSARI,4 NADINE UTZ,1 HANS-ULRICH FRIED,5 CHRISTIAN KUKAT,6 JAN PEYCHL,7 CHRISTIAN LIEBIG,8 STEFAN TERJUNG,9 VIBOR LAKETA,10 ANJE SPORBERT,11 STEFANIE WEIDTKAMP-PETERS,12 ASTRID SCHAUSS,13 14 15 WERNER ZUSCHRATTER, SERGIY AVILOV, AND THE GERMAN BIOIMAGING NETWORK 1Department of Biology, University of Konstanz, Bioimaging Center, Universitatsstrasse€ 10, Konstanz, 78464, Germany 2Technical University Dresden, Center for Regenerative Therapies, Light Microscopy Facility, Fetscherstraße 105, Dresden, 01307, Germany 3Heidelberg University, BioQuant, ViroQuant-CellNetworks RNAi Screening Facility, Im Neuenheimer Feld 267, & Heidelberg Center for Human Bioinformatics, IPMB, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany 4Goethe University Frankfurt am Main, Buchmann Institute for Molecular Life Sciences, Physical Biology Group, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany 5Deutsches Zentrum fur€ Neurodegenerative Erkrankungen, Core Facility and Services, Light Microscopy Facility, Ludwig-Erhard- Allee 2, Bonn, 53175, Germany 6Max Planck Institute for Biology of Ageing, FACS & Imaging Core Facility, Joseph-Stelzmann-Str. 9b, Koln,€ 50931, Koln,€ Germany 7Max Planck Institute for Molecular Cell Biology and Genetics, Light Microscopy Facility, Pfotenhauerstr. 108, Dresden, 01307, Germany 8Max Planck Institute for Developmental Biology,
    [Show full text]
  • Machine Learning for Blob Detection in High-Resolution 3D Microscopy Images
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Machine learning for blob detection in high-resolution 3D microscopy images MARTIN TER HAAK KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Machine learning for blob detection in high-resolution 3D microscopy images MARTIN TER HAAK EIT Digital Data Science Date: June 6, 2018 Supervisor: Vladimir Vlassov Examiner: Anne Håkansson Electrical Engineering and Computer Science (EECS) iii Abstract The aim of blob detection is to find regions in a digital image that dif- fer from their surroundings with respect to properties like intensity or shape. Bio-image analysis is a common application where blobs can denote regions of interest that have been stained with a fluorescent dye. In image-based in situ sequencing for ribonucleic acid (RNA) for exam- ple, the blobs are local intensity maxima (i.e. bright spots) correspond- ing to the locations of specific RNA nucleobases in cells. Traditional methods of blob detection rely on simple image processing steps that must be guided by the user. The problem is that the user must seek the optimal parameters for each step which are often specific to that image and cannot be generalised to other images. Moreover, some of the existing tools are not suitable for the scale of the microscopy images that are often in very high resolution and 3D. Machine learning (ML) is a collection of techniques that give computers the ability to ”learn” from data. To eliminate the dependence on user parameters, the idea is applying ML to learn the definition of a blob from labelled images.
    [Show full text]