Chapter Outline: Phase Diagrams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermodynamics
TREATISE ON THERMODYNAMICS BY DR. MAX PLANCK PROFESSOR OF THEORETICAL PHYSICS IN THE UNIVERSITY OF BERLIN TRANSLATED WITH THE AUTHOR'S SANCTION BY ALEXANDER OGG, M.A., B.Sc., PH.D., F.INST.P. PROFESSOR OF PHYSICS, UNIVERSITY OF CAPETOWN, SOUTH AFRICA THIRD EDITION TRANSLATED FROM THE SEVENTH GERMAN EDITION DOVER PUBLICATIONS, INC. FROM THE PREFACE TO THE FIRST EDITION. THE oft-repeated requests either to publish my collected papers on Thermodynamics, or to work them up into a comprehensive treatise, first suggested the writing of this book. Although the first plan would have been the simpler, especially as I found no occasion to make any important changes in the line of thought of my original papers, yet I decided to rewrite the whole subject-matter, with the inten- tion of giving at greater length, and with more detail, certain general considerations and demonstrations too concisely expressed in these papers. My chief reason, however, was that an opportunity was thus offered of presenting the entire field of Thermodynamics from a uniform point of view. This, to be sure, deprives the work of the character of an original contribution to science, and stamps it rather as an introductory text-book on Thermodynamics for students who have taken elementary courses in Physics and Chemistry, and are familiar with the elements of the Differential and Integral Calculus. The numerical values in the examples, which have been worked as applications of the theory, have, almost all of them, been taken from the original papers; only a few, that have been determined by frequent measurement, have been " taken from the tables in Kohlrausch's Leitfaden der prak- tischen Physik." It should be emphasized, however, that the numbers used, notwithstanding the care taken, have not vii x PREFACE. -
Low Temperature Soldering Using Sn-Bi Alloys
LOW TEMPERATURE SOLDERING USING SN-BI ALLOYS Morgana Ribas, Ph.D., Anil Kumar, Divya Kosuri, Raghu R. Rangaraju, Pritha Choudhury, Ph.D., Suresh Telu, Ph.D., Siuli Sarkar, Ph.D. Alpha Assembly Solutions, Alpha Assembly Solutions India R&D Centre Bangalore, KA, India [email protected] ABSTRACT package substrate and PCB [2-4]. This represents a severe Low temperature solder alloys are preferred for the limitation on using the latest generation of ultra-thin assembly of temperature-sensitive components and microprocessors. Use of low temperature solders can substrates. The alloys in this category are required to reflow significantly reduce such warpage, but available Sn-Bi between 170 and 200oC soldering temperatures. Lower solders do not match Sn-Ag-Cu drop shock performance [5- soldering temperatures result in lower thermal stresses and 6]. Besides these pressing technical requirements, finding a defects, such as warping during assembly, and permit use of low temperature solder alloy that can replace alloys such as lower cost substrates. Sn-Bi alloys have lower melting Sn-3Ag-0.5Cu solder can result in considerable hard dollar temperatures, but some of its performance drawbacks can be savings from reduced energy cost and noteworthy reduction seen as deterrent for its use in electronics devices. Here we in carbon emissions [7]. show that non-eutectic Sn-Bi alloys can be used to improve these properties and further align them with the electronics In previous works [8-11] we have showed how the use of industry specific needs. The physical properties and drop micro-additives in eutectic Sn-Bi alloys results in significant shock performance of various alloys are evaluated, and their improvement of its thermo-mechanical properties. -
The Basics of Soldering
TECH SOLUTION: SOLDER The Basics of Soldering SUmmARY BY Chris Nash, INDIUM CORPORATION IN In this article, I will present a basic overview of soldering for those Soldering uses a filler metal and, in who are new to the world of most cases, an appropriate flux. The soldering and for those who could filler metals are typically alloys (al- though there are some pure metal sol- use a refresher. I will discuss the ders) that have liquidus temperatures below 350°C. Elemental metals com- definition of soldering, the basics monly alloyed in the filler metals or of metallurgy, how to choose the solders are tin, lead, antimony, bis- muth, indium, gold, silver, cadmium, proper alloy, the purpose of a zinc, and copper. By far, the most flux, soldering temperatures, and common solders are based on tin. Fluxes often contain rosin, acids (or- typical heating sources for soldering ganic or mineral), and/or halides, de- operations. pending on the desired flux strength. These ingredients reduce the oxides on the solder and mating pieces. hroughout history, as society has evolved, so has the need for bond- Basic Solder Metallurgy ing metals to metals. Whether the As heat is gradually applied to sol- need for bonding metals is mechani- der, the temperature rises until the Tcal, electrical, or thermal, it can be accom- alloy’s solidus point is reached. The plished by using solder. solidus point is the highest temper- ature at which an alloy is completely Metallurgical Bonding Processes solid. At temperatures just above Attachment of one metal to another can solidus, the solder is a mixture of be accomplished in three ways: welding, liquid and solid phases (analogous brazing, and soldering. -
Niobium Doped BGO Glasses: Physical, Thermal and Optical Properties
IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 80-87 www.iosrjournals.org Niobium doped BGO glasses: Physical, Thermal and Optical Properties Khair-u-Nisa1, Ejaz Ahmed2, M. Ashraf Chaudhry3 1,2,3Department of Physics, Bahauddin Zakariya University, Multan (60800), Pakistan. Abstract: IR- transparent niobium substituted heavy metal oxide glass system in formula composition (100-x) BGO75- xNb2O5; 5 ≤ x ≤ 25 was fabricated by quenching and press molding technique. Glassy state was confirmed by XRD. Density ρexp varied 6.381 g/cc-7.028 g/cc ±0.06%. Modifying behavior of Nb2O5 was corroborated by rate of increase in theoretical volume Vth, measured volume Vexp and oxygen molar volume -2 5+ 4+ VMO . Nb had larger cation radius and greater polarizing strength as compared to Ge ions. It replaced 4+ o Ge sites introducing more NBOs in the network. Transformation temperatures Tg, Tx and Tp1 were 456 -469 C ±2 oC, 516 -537 oC ±2 oC and 589 -624 oC ±2 oC respectively. In the range from room temperature to 400 oC -6 -1 -6 -1 the coefficient of linear thermal expansion α was 5.431±0.001*10 K to 7.333±0.001*10 K . ΔT = Tx-Tg and ΔTP1 = TP1-Tg varied collinearly with increase in niobium concentration and revealed thermal stability against devitrification. The direct bandgap Eg values lay in 3.24 -2.63 eV ±0.01 eV range and decreased due to impurity states of Nb5+ within the forbidden band. Mobility edges obeyed Urbach law verifying amorphousness of the compositions. -
Robust High-Temperature Heat Exchangers (Topic 2A Gen 3 CSP Project; DE-EE0008369)
Robust High-Temperature Heat Exchangers (Topic 2A Gen 3 CSP Project; DE-EE0008369) Illustrations of: (left) porous WC preform plates, (middle) dense-wall ZrC/W plates with horizontal channels and vertical vias. (Right) Backscattered electron image of the dense microstructure of a ZrC/W cermet. Team: Ken H. Sandhage1 (PI), Kevin P. Trumble1 (Co-PI), Asegun Henry2 (Co-PI), Aaron Wildberger3 (Co-PI) 1School of Materials Engineering, Purdue University, W. Lafayette, IN 2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 3Vacuum Process Engineering, Inc., Sacramento, CA Concentrated Solar Power Tower “Concentrating Solar Power Gen3 Demonstration Roadmap,” M. Mehos, C. Turchi, J. Vidal, M. Wagner, Z. Ma, C. Ho, W. Kolb, C. Andraka, A. Kruizenga, Technical Report NREL/TP-5500-67464, National Renewable Energy Laboratory, 2017 Concentrated Solar Power Tower Heat Exchanger “Concentrating Solar Power Gen3 Demonstration Roadmap,” M. Mehos, C. Turchi, J. Vidal, M. Wagner, Z. Ma, C. Ho, W. Kolb, C. Andraka, A. Kruizenga, Technical Report NREL/TP-5500-67464, National Renewable Energy Laboratory, 2017 State of the Art: Metal Alloy Printed Circuit HEXs Current Technology: • Printed Circuit HEXs: patterned etching of metallic alloy plates, then diffusion bonding • Metal alloy mechanical properties degrade significantly above 600oC D. Southall, S.J. Dewson, Proc. ICAPP '10, San Diego, CA, 2010; R. Le Pierres, et al., Proc. SCO2 Power Cycle Symposium 2011, Boulder, CO, 2011; D. Southall, et al., Proc. ICAPP '08, Anaheim, -
Lecture 4 (Pdf)
GFD 2006 Lecture 4: Interfacial instability in two-component melts Grae Worster; notes by Shane Keating and Takahide Okabe March 15, 2007 So far, we have looked at some of the fundamentals associated with solidification of pure melts. When we try to solidify a solution of two or more components, salt and water, for example, the character of the solidification changes considerably. In particular, the presence of salt can depress the temperature at which ice and salt water can coexist in thermal equilibrium. This has an important consequence for the growth of sea ice: unless there is some other mechanism for the transport of the salt field, such as convection, the growth of the ice is limited by the rate at which excess salt can diffuse away from the interface. Finally, we will discuss the morphological instability in two-component melts. We shall see that the solute field is destabilizing and can give rise to morphological instability even when the liquid phase is not initially supercooled. 1 Two-component melts 1.1 A simple demonstration We shall begin with a simple demonstration. Crushed ice at 0◦C is placed in a cup with a thermometer. We add a handful of salt at room temperature and stir briskly. The ice begins to melt, but what happens to the temperature? We notice that there is some melt water in the cup, which helps bring the ice and salt into contact, and see a fairly rapid decrease in the temperature measured by the thermometer: after a few minutes, it reads almost 10 C. -
Homework 5 Solutions
SCI 1410: materials science & solid state chemistry HOMEWORK 5. solutions Textbook Problems: Imperfections in Solids 1. Askeland 4-67. Why is most “gold” or “silver” jewelry made out of gold or silver alloyed with copper, i.e, what advantages does copper offer? We have two major considerations in jewelry alloying: strength and cost. Copper additions obviously lower the cost of gold or silver (Note that 14K gold is actually only about 50% gold). Copper and other alloy additions also strengthen pure gold and pure silver. In both gold and silver, copper will strengthen the material by either solid solution strengthening (substitutional Cu atoms in the Au or Ag crystal), or by formation of second phase in the microstructure. 2. Solid state solubility. Of the elements in the chart below, name those that would form each of the following relationships with copper (non-metals only have atomic radii listed): a. Substitutional solid solution with complete solubility o Ni and possibly Ag, Pd, and Pt b. Substitutional solid solution of incomplete solubility o Ag, Pd, and Pt (if you didn’t include these in part (a); Al, Co, Cr, Fe, Zn c. An interstitial solid solution o C, H, O (small atomic radii) Element Atomic Radius (nm) Crystal Structure Electronegativity Valence Cu 0.1278 FCC 1.9 +2 C 0.071 H 0.046 O 0.060 Ag 0.1445 FCC 1.9 +1 Al 0.1431 FCC 1.5 +3 Co 0.1253 HCP 1.8 +2 Cr 0.1249 BCC 1.6 +3 Fe 0.1241 BCC 1.8 +2 Ni 0.1246 FCC 1.8 +2 Pd 0.1376 FCC 2.2 +2 Pt 0.1387 FCC 2.2 +2 Zn 0.1332 HCP 1.6 +2 3. -
Lecture 15: 11.02.05 Phase Changes and Phase Diagrams of Single- Component Materials
3.012 Fundamentals of Materials Science Fall 2005 Lecture 15: 11.02.05 Phase changes and phase diagrams of single- component materials Figure removed for copyright reasons. Source: Abstract of Wang, Xiaofei, Sandro Scandolo, and Roberto Car. "Carbon Phase Diagram from Ab Initio Molecular Dynamics." Physical Review Letters 95 (2005): 185701. Today: LAST TIME .........................................................................................................................................................................................2� BEHAVIOR OF THE CHEMICAL POTENTIAL/MOLAR FREE ENERGY IN SINGLE-COMPONENT MATERIALS........................................4� The free energy at phase transitions...........................................................................................................................................4� PHASES AND PHASE DIAGRAMS SINGLE-COMPONENT MATERIALS .................................................................................................6� Phases of single-component materials .......................................................................................................................................6� Phase diagrams of single-component materials ........................................................................................................................6� The Gibbs Phase Rule..................................................................................................................................................................7� Constraints on the shape of -
Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films
INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films a b c c Marie Y. Arrieta, Dennis D. Keiser Jr., Delia Perez-Nunez, * and Sean M. McDeavitt a Sandia National Laboratories, Albuquerque, New Mexico 87185 b Idaho National Laboratory, Idaho Falls, Idaho 83401 c Texas A&M University, Department of Nuclear Engineering, College Station, Texas 77840 Received November 11, 2016 Accepted for Publication May 23, 2017 Abstract — – A fluidized bed chemical vapor deposition (FB-CVD) process was designed and established in a two-part experiment to produce zirconium nitride barrier coatings on uranium-molybdenum particles for a reduced enrichment dispersion fuel concept. A hot-wall, inverted fluidized bed reaction vessel was developed for this process, and coatings were produced from thermal decomposition of the metallo-organic precursor tetrakis(dimethylamino)zirconium (TDMAZ) in high- purity argon gas. Experiments were executed at atmospheric pressure and low substrate temperatures (i.e., 500 to 550 K). Deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy, and wavelength dis-persive spectroscopy. -
Chapter 15: Solutions
452-487_Ch15-866418 5/10/06 10:51 AM Page 452 CHAPTER 15 Solutions Chemistry 6.b, 6.c, 6.d, 6.e, 7.b I&E 1.a, 1.b, 1.c, 1.d, 1.j, 1.m What You’ll Learn ▲ You will describe and cate- gorize solutions. ▲ You will calculate concen- trations of solutions. ▲ You will analyze the colliga- tive properties of solutions. ▲ You will compare and con- trast heterogeneous mixtures. Why It’s Important The air you breathe, the fluids in your body, and some of the foods you ingest are solu- tions. Because solutions are so common, learning about their behavior is fundamental to understanding chemistry. Visit the Chemistry Web site at chemistrymc.com to find links about solutions. Though it isn’t apparent, there are at least three different solu- tions in this photo; the air, the lake in the foreground, and the steel used in the construction of the buildings are all solutions. 452 Chapter 15 452-487_Ch15-866418 5/10/06 10:52 AM Page 453 DISCOVERY LAB Solution Formation Chemistry 6.b, 7.b I&E 1.d he intermolecular forces among dissolving particles and the Tattractive forces between solute and solvent particles result in an overall energy change. Can this change be observed? Safety Precautions Dispose of solutions by flushing them down a drain with excess water. Procedure 1. Measure 10 g of ammonium chloride (NH4Cl) and place it in a Materials 100-mL beaker. balance 2. Add 30 mL of water to the NH4Cl, stirring with your stirring rod. -
Self-Assembly of a Colloidal Interstitial Solid Solution with Tunable Sublattice Doping: Supplementary Information
Self-assembly of a colloidal interstitial solid solution with tunable sublattice doping: Supplementary information L. Filion,∗ M. Hermes, R. Ni, E. C. M. Vermolen,† A. Kuijk, C. G. Christova,‡ J. C. P. Stiefelhagen, T. Vissers, A. van Blaaderen, and M. Dijkstra Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, Princetonplein 1, NL-3584 CC Utrecht, the Netherlands I. CRYSTAL STRUCTURE LS6 In the main paper we use full free-energy calculations to determine the phase diagram for binary mixtures of hard spheres with size ratio σS/σL = 0.3 where σS(L) is the diameter of the small (large) particles. The phases we considered included a structure with LS6 stoichiometry for which we could not identify an atomic analogue. Snapshots of this structure from various perspectives are shown in Fig. S1. FIG. S1: Unit cell of the binary LS6 superlattice structure described in this paper. Note that both species exhibit long-range crystalline order. The unit cell is based on a body-centered-cubic cell of the large particles in contrast to the face-centered-cubic cell associated with the interstitial solid solution covering most of the phase diagram (Fig. 1). II. PHASE DIAGRAM AT CONSTANT VOLUME 3 In the main paper, we present the xS − p representation of the phase diagram where p = βPσL is the reduced pressure, xS = NS/(NS + NL), NS(L) is the number of small (large) hard spheres, β = 1/kBT , kB is the Boltzmann constant, and T is the absolute temperature. This is the natural representation arising from common tangent construc- tions at constant pressure and the representation required for further simulation studies such as nucleation studies. -
Phase Diagrams
Module-07 Phase Diagrams Contents 1) Equilibrium phase diagrams, Particle strengthening by precipitation and precipitation reactions 2) Kinetics of nucleation and growth 3) The iron-carbon system, phase transformations 4) Transformation rate effects and TTT diagrams, Microstructure and property changes in iron- carbon system Mixtures – Solutions – Phases Almost all materials have more than one phase in them. Thus engineering materials attain their special properties. Macroscopic basic unit of a material is called component. It refers to a independent chemical species. The components of a system may be elements, ions or compounds. A phase can be defined as a homogeneous portion of a system that has uniform physical and chemical characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and mechanically separable portion of a system. A component can exist in many phases. E.g.: Water exists as ice, liquid water, and water vapor. Carbon exists as graphite and diamond. Mixtures – Solutions – Phases (contd…) When two phases are present in a system, it is not necessary that there be a difference in both physical and chemical properties; a disparity in one or the other set of properties is sufficient. A solution (liquid or solid) is phase with more than one component; a mixture is a material with more than one phase. Solute (minor component of two in a solution) does not change the structural pattern of the solvent, and the composition of any solution can be varied. In mixtures, there are different phases, each with its own atomic arrangement. It is possible to have a mixture of two different solutions! Gibbs phase rule In a system under a set of conditions, number of phases (P) exist can be related to the number of components (C) and degrees of freedom (F) by Gibbs phase rule.