Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry Momcilo Miljkovic Electrostatic and Stereoelectronic E ects in Carbohydrate Chemistry Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry Momcilo Miljkovic Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry Momcilo Miljkovic Pennsylvania State University Hershey, Pennsylvania, USA ISBN 978-1-4614-8267-3 ISBN 978-1-4614-8268-0 (eBook) DOI 10.1007/978-1-4614-8268-0 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013955044 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To the memory of my parents Prof. Dr. Adam Miljkovic´ and Dr. Dragoslava Miljkovic´ In Memoriam Dr. Momcilo Miljkovic was born on December 12, 1931, in Belgrade, Serbia. He was the son of physicians Dr. Adam Miljkovic and Dr. Dragoslava Miljkovic. At the age of 14, his father bought him a chemistry kit, and soon Momcilo was passionately conducting chemistry experiments at home in the family’s kitchen. He became completely fascinated with chemistry, reading college textbooks while still in high school, and developing a reputation as a young chemist, so much so that his chemistry teacher would look to him in class for his approval or disapproval regarding the correctness of her lectures. Dr. Momcilo Miljkovic went on to pursue a B.S. in chemistry at The University of Belgrade, Serbia, and later was awarded a Ph.D. in Chemistry in 1965 at the Eidgenossische Technische Hochschule (Swiss Federal Institute of Technology) in Zurich, Switzerland. He pursued post-doctoral studies under Dr. Vladimir Prelog (Nobel Laureate) at ETH, while his informal mentor was Dr. Leopold Ruzicka (Nobel Laureate). Another post-doctoral position brought him to the United States to the Depart- ment of Biochemistry at Duke University, and a year later he took a position as Assistant Professor in The Department of Biochemistry in the College of Medicine at The Pennsylvania State University. It is here that he spent over 40 years of his life, conducting research in carbohydrate chemistry as well as teaching graduate students and medical students. Towards the end of his life, he preoccupied himself with writing. He published his first book Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects in 2010. He was particularly excited about writing Electrostatic and Stereoelectronic Interactions in Carbohydrate Chemistry due to the novelty of the material. Further, writing helped him focus away from his own terminal illness, giving him a newfound purpose in the latter stages of his life. vii Acknowledgments Several details were left unfinished, and completed after the author’s death. Without the time, effort, and expertise of Dr. Stephen Benkovic, Department of Chemistry at The Pennsylvania State University, in editing portions of this book, it could not have been published. Nor would this book have seen the light of day without the cheerful persistence of Dr. Marko Miljkovic´, who nursed his father through his final illness, sorted through manuscripts left by his father, consulted with carbohydrate chemists when details in the manuscript were unclear, and meticulously edited portions of this book. ix Contents 1 Introduction ........................................... 1 1.1 Intramolecular Electrostatic Interactions ................... 1 References . 9 2 Anomeric Effect and Related Stereoelectronic Effects ........... 11 2.1 Exo-Anomeric Effect . .............................. 19 2.2 Generalized Anomeric Effect . 21 2.3 Reverse Anomeric Effect . ............................ 24 2.4 Anomeric Effect in Systems O–C–N . ................... 39 2.5 Gauche Effect . .................................... 43 References . 45 3 Oxocarbenium Ion ...................................... 51 3.1 Acid-Catalyzed Hydrolysis of Glycosides .................. 51 3.2 The Acid-Catalyzed Hydrolysis of Glycopyranosides . ......... 54 3.3 Acid-Catalyzed Hydrolysis of Glycofuranosides .............. 61 3.4 Some Recent Developments Regarding the Mechanism of Glycoside Hydrolysis . ............................ 65 3.5 Acetolysis of Glycosides ............................... 71 References . 82 4 Conformations and Chemistry of Oxocarbenium Ion ............ 87 References . 110 5 Armed-Disarmed Concept in the Synthesis of Glycosidic Bond ...................................... 117 5.1 Stereoelectronic Effects of Substituents: Polyhydroxylated Piperidines and Sugars . .................. 125 5.2 Glycosylation Reactions with Conformationally Armed Glycosyl Donors ............................... 131 xi xii Contents 5.3 Superarmed Glycosyl Donors in Glycosylation Reactions . 133 5.3.1 Regio- and Stereoselectivity in Glycosylation . 141 5.3.2 Proton-Catalyzed Addition of Alcohols to Glycals: Glycals as Glycosyl Donors . 154 References . 169 6 Stereoelectronic Effects in Nucleosides and Nucleotides .......... 181 References . 189 7 Free Radical Cyclizations ................................. 197 References . 218 8 Carbohydrate Sulfones ................................... 225 8.1 Michael Additions to Vinyl Sulfones ...................... 225 8.2 Glycosyl Sulfones . 235 8.3 Strecker Reaction . 240 8.4 Mercuration of Carbohydrate Olefins . .......... 244 8.5 1,3-Dipolar Cycloaddition of Chiral N-(Alkoxyalkyl) Nitrones ........................................... 247 8.5.1 Synthesis of Glycosides by Reduction of Sugar Orthoesters . ................................. 250 8.6 Reductive Cleavage of Glycosidic Bond . ................. 263 8.7 Carbohydrate Degradation by Oxygen ..................... 269 8.8 Norrish-Yang Photocyclization . 271 References . 277 Author Index ............................................. 285 Subject Index ............................................. 303 Chapter 1 Introduction Stereoelectronic interactions in a molecule are important because they determine the conformation of that molecule and thus its chemical reactivity and very often the stereochemistry of its chemical transformations. These interactions involve the orbital interactions between the nonbonding orbitals. The presence of charged or partially charged atoms (dipoles) in a molecule generates electrostatic interactions. These interactions can take place between two or more such molecules (intermolecular electrostatic interactions) or can be within a single molecule (intramolecular electrostatic interactions). The electrostatic inter- actions can be stabilizing or destabilizing in nature: When two opposing charges are facing each other or are next to each other, they are stabilizing, and when two identical charges are facing each other or are next to each other, they are destabilizing. The intermolecular electrostatic interactions are found in bimolecular reactions of a charged reactant approaching a molecule with strong dipolar bonds or even charges (e.g., in enzyme-catalyzed reactions, where they are used not only to properly position a substrate in the active site of an enzyme but also to lower the activation energy barrier for the subsequent chemical transformation of a substrate). The intramolecular electrostatic interactions play a very important role in the control of the conformation of a molecule and consequently control its chemical behavior. These interactions will be discussed first. 1.1 Intramolecular Electrostatic Interactions In 1953, Corey [1] studied the conformational equilibrium of α-halocyclohexanones (α-bromo- and α-chlorocyclohexanones) since the C¼O and the C–X (X ¼ halo- gen) bonds are both strongly polarized, mutually repulsive, and next to each other. The conformer having the halogen atom equatorially oriented should be destabilized due to dipolar interactions between the C–X and the C¼O dipoles which are almost coplanar and equatorially oriented, whereas the conformer
Recommended publications
  • Conformational Analysis of Molecular Chains Using Nano-Kinematics
    Conformational analysis of molecular chains using Nano-Kinematics y z Dinesh Mano cha Yunshan Zhu William Wright Computer Science Department UniversityofNorth Carolina Chap el Hill, NC 27599-317 5 fmano cha,zhu,[email protected] Fax: 919962-179 9 Abstract: We present algorithms for 3-D manipulation and conformational analysis of molecular chains, when b ond length, b ond angles and related dihedral angles remain xed. These algorithms are useful for lo cal deformations of linear molecules, exact ring closure in cyclic molecules and molecular emb edding for short chains. Other p ossible applications include structure prediction, protein folding, conformation energy analysis and 3D molecular matching and do cking. The algo- rithms are applicable to all serial molecular chains and make no asssumptions ab out their geometry. We make use of results on direct and inverse kinematics from rob otics and mechanics literature and show the corresp ondence b etween kinematics and conformational analysis of molecules. In particular, we p ose these problems algebraically and compute all the solutions making use of the structure of these equations and matrix computations. The algorithms have b een implemented and p erform well in practice. In particular, they take tens of milliseconds on currentworkstations for lo cal deformations and chain closures on molecular chains consisting of six or fewer rotatable dihedral angles. Categories: 3D Protein Mo deling, 3D Molecular Matching and Do cking, Multiple alignmentof genetic sequences Supp orted in part
    [Show full text]
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • Fine Tuning the Hydrophilic–Hydrophobic Balance in Inositols Through Annulation: an Analysis of the Hydrogen-Bonded Architectures of ‘Annulated Inositols’
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows PAPER www.rsc.org/crystengcomm | CrystEngComm Fine tuning the hydrophilic–hydrophobic balance in inositols through annulation: An analysis of the hydrogen-bonded architectures of ‘annulated inositols’ Goverdhan Mehta* and Saikat Sen Received 13th September 2005, Accepted 2nd November 2005 First published as an Advance Article on the web 15th November 2005 DOI: 10.1039/b512911g The crystal structures of conformationally locked, bicyclic cycloalkane-annulated variants of myo- and chiro-inositols have been analysed, in order to understand their mode of expression of the axial rich conformations and amphiphilicity in the solid state. Thus, while cyclohexa- annulated myo- and chiro-inositols exhibit a head-to-head bilayer molecular assembly, consisting of dimeric or octameric columnar architectures, cyclopenta-annulated chiro-inositol shows no such aggregation of the hydrophilic and hydrophobic faces, rather preferring to pack in a manner akin to a hydrophilic inositol. The differences in the two packing modes can be attributed to the size of the hydrocarbon ring, fine-tuning the hydrophilic–hydrophobic balance in the annulated inositols. An analysis of the non-polar molecular surface area (a measure of the intermolecular hydrophobic van der Waals interactions) for all the annulated inositols under study further vindicates the conclusion. Introduction alicyclic ring, could serve as a handle to fine tune the hydrophilic–hydrophobic balance in the otherwise polar Cyclohexane-1,2,3,4,5,6-hexol, in all its nine stereoisomeric inositols. This could in principle serve as a means of forms, constitutes a group of biologically important entities, modulating the cell membrane permeability and receptor 1 commonly known as inositols.
    [Show full text]
  • 23.5 Basicity and Acidity of Amines
    23_BRCLoudon_pgs5-0.qxd 12/8/08 1:22 PM Page 1122 1122 CHAPTER 23 • THE CHEMISTRY OF AMINES alkylamines, this resonance occurs at rather small chemical shift—typically around d 1. In aromatic amines, this resonance is at greater chemical shift, as in the second of the preceding examples. Like the OH protons of alcohols, phenols, and carboxylic acids, the NH protons of amines under most conditions undergo rapid exchange (Secs. 13.6 and 13.7D). For this reason, split- ting between the amine N H and adjacent C H groups is usually not observed. Thus, in the NMR spectrum of diethylamine,L the N H resonanceL is a singlet rather than the triplet ex- pected from splitting by the adjacent CHL2 protons. In some amine samples, the N H resonance is broadened and, like the OL H protonL of alcohols, it can be obliterated fromL the spectrum by exchange with D2O (the “DL2O shake,” p. 611). The characteristic 13C NMR absorptions of amines are those of the a-carbons—the carbons attached directly to the nitrogen. These absorptions occur in the d 30–50 chemical-shift range. As expected from the relative electronegativities of oxygen and nitrogen, these shifts are somewhat less than the a-carbon shifts of ethers. PROBLEMS 23.4 Identify the compound that has an M 1 ion at mÜz 136 in its CI mass spectrum, an IR 1 + = absorption at 3279 cm_ , and the following NMR spectrum: d 0.91 (1H, s), d 1.07 (3H, t, J 7Hz), d 2.60 (2H, q, J 7Hz), d 3.70 (2H, s), d 7.18 (5H, apparent s).
    [Show full text]
  • Reference Guide for Medicinal & Organic
    Reference Guide for Medicinal and Organic Chemistry Krisman - Questions and Answers REFERENCE GUIDE FOR MEDICINAL & ORGANIC CHEMISTRY QUESTIONS & ANSWERS 2009-2010 Manan H. Shroff www.pharmacyexam.com 1 Reference Guide for Medicinal and Organic Chemistry Krisman - Questions and Answers REFERENCE GUIDE FOR MEDICINAL & ORGANIC CHEMISTRY QUESTIONS & ANSWERS 2009-2010 www.pharmacyexam.com 2 Reference Guide for Medicinal and Organic Chemistry Krisman - Questions and Answers This reference guide is not intended as a substitute for the advice of a physician. Students or readers must consult their physician about any existing problem. Do not use any information in this reference guide for any kind of self-treatment. Do not administer any dose of mentioned drugs in this reference guide without consulting your physician. This is only a review guide for preparation for the Foreign Pharmacy Licensing board exam. The author of this reference guide is not responsible for any kind of misinterpreted, incorrect or misleading information or any typographical errors in this guide. Any doubtful or questionable answers should be checked in other available reference sources. All rights reserved. No part of this guide may be reproduced or transmitted in any form or by any means, electroni- cally photocopied, recorded or otherwise , without prior written permission of the publisher. RXEXAM is a registered trademark of Pharmacy Exam of Krishna Publication Inc. Any unauthorized use of this trademark will be considered a violation of law. NAPLEX and FPGEE are federally registered trademarks owned by the National Associa- tion of Boards of Pharmacy (NABP) and this reference guide is in no way authorized or spon- sored by NABP.
    [Show full text]
  • Comparative Strengths of Four Organic Bases in Benzene1 Marion Maclean Davis and Hannah B
    Journal of Research of the National Bureau of Standards Vol. 48, No. 5, May 1952 Research Paper 2326 Comparative Strengths of Four Organic Bases in Benzene1 Marion Maclean Davis and Hannah B. Hetzer Spectropho to metric studies have shown that the reaction of the base 1,3-di-o-tolylguani- dine with the acidic indicator dye bromophthalein magenta E (tetrabromophenolphthalein ethyl ester) in benzene at 25° C, like the reactions of 1,3-diphenylguanidine and 1,2,3-tri- phenylguanidine with the same indicator, can be represented by the following two equations: B + HA ^ BH+.A- (colorless base) (yellow acid) (magenta salt) BH+.A- + B^(BHB)+A- (blue salt) For ditolylguanidine, the equilibrium constants K\ and K2 for the first and second reactions, respectively, are estimated to be 1.1 X106 and 6.4. These values are compared with values for Ki and K2 previously found for di- and triphenylguanidine and the value of Ki found for triethylamine. The values for K\, which measure the relative tendencies of the bases to form salts with the indicator acid in benzene, would be expected to parallel the ionic dissociation constants of the bases in water. However, the parallelism is not good. Diphenylguanidine and ditolylguariidine, which are presumed to be weaker bases in water than triethylamine, are much more reactive in benzene. The results demonstrate how misleading the aqueous dissociation constants may be as a gage of the relative reactivities of bases in a nonaqueous solvent such as benzene. Steric and solvation effects are discussed. 1. Introduction i optical instruments then available, it was possible to make only roughly quantitative comparisons of Hantzsch and his coworkers were the first to J acidic strengths.
    [Show full text]
  • Chương Ii Dược Liệu Chứa Carbohydrat
    CHƯƠNG II DƯỢC LIỆU CHỨA CARBOHYDRAT Bộ môn Dược liệu ThS. Nguyễn Thị Ánh Nguyệt Email: [email protected] 1 Mục tiêu học tập Sau khi học chương “Dược liệu chứa carbohydrat” học viên phải biết được: 1. Phân loại các carbohydrat và cấu trúc hóa học của tinh bột, cellulose, gôm, chất nhầy, pectin và các ß-glucan, fructan. 2. Các phương pháp để nhận biết và đánh giá dược liệu chứa các thành phần nói trên. 3. Chú trọng một số dược liệu chứa carbohydrat: Cát căn, Sen, Ý dĩ, Bông, Gôm Arabic, Gôm adragant, Sâm bố chính, Thạch và Linh chi. 2 Đại cương về Carbohydrat 3 Carbohydrat – Glucid – Saccharid Đầu tiên, tên carbohydrat vì phần lớn đường có thể viết dưới dạng Cn(H2O)n Một số đường không thể viết dưới CT tổng quát trên Ví dụ: methylpentose CH3-(CHOH)4-CHO Vài chất không phải đường lại viết được dạng CTTQ . Ví dụ: acid lactic CH3-CHOH-COOH = C3(H2O)3 Đổi tên carbohydrat thành Glucid. 4 Carbohydrat – Glucid – Saccharid Khái niệm: carbohydrat hay glucid là những hợp chất hữu cơ gồm các monosaccarid, các dẫn chất, hoặc các sản phẩm ngưng tụ của chúng. CT tổng quát: (CH2O)n với n ≥ 3 Là sản phẩm chính của quá trình quang hợp (TV, tảo, VK) Ở ĐV, tồn tại dưới dạng đường huyết & glycogen (gan, cơ). Chiếm ưu thế so với các HC hữu cơ khác trong tự nhiên. Tính trên trọng lượng khô (DW): • Thực vật 80 – 90% • Động vật < 2% 5 Carbohydrat • Các nguyên tố cấu tạo nên carbohydrat: glucos e (CH2O)n n Glucose / sugar Simple carbohydrates (sugars) Sucrose Starch complex carbohydrate 6 Carbohydrat – Phân loại 1.
    [Show full text]
  • Chapter 16 the Chemistry of Benzene and Its Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 16 The Chemistry of Benzene and Its Derivatives Solutions to In-Text Problems 16.1 (b) o-Diethylbenzene or 1,2-diethylbenzene (d) 2,4-Dichlorophenol (f) Benzylbenzene or (phenylmethyl)benzene (also commonly called diphenylmethane) 16.2 (b) (d) (f) (h) 16.3 Add about 25 °C per carbon relative to toluene (110.6 C; see text p. 743): (b) propylbenzene: 161 °C (actual: 159 °C) 16.4 The aromatic compound has NMR absorptions with greater chemical shift in each case because of the ring current (Fig. 16.2, text p. 745). (b) The chemical shift of the benzene protons is at considerably greater chemical shift because benzene is aromatic and 1,4-cyclohexadiene is not. 16.6 (b) Among other features, the NMR spectrum of 1-bromo-4-ethylbenzene has a typical ethyl quartet and a typical para-substitution pattern for the ring protons, as shown in Fig. 16.3, text p. 747, whereas the spectrum of (2- bromoethyl)benzene should show a pair of triplets for the methylene protons and a complex pattern for the ring protons. If this isn’t enough to distinguish the two compounds, the integral of the ring protons relative to the integral of the remaining protons is different in the two compounds. 16.7 (b) The IR spectrum indicates the presence of an OH group, and the chemical shift of the broad NMR resonance (d 6.0) suggests that this could be a phenol. The splitting patterns of the d 1.17 and d 2.58 resonances show that the compound also contains an ethyl group, and the splitting pattern of the ring protons shows that the compound is a para-disubstituted benzene derivative.
    [Show full text]
  • California State Polytechnic University, Pomona 1 Quarter: Fall, 2020 Phil Beauchamp, Professor Chemistry 2010, Elements of Orga
    California State Polytechnic University, Pomona 1 Quarter: Fall, 2020 Phil Beauchamp, Professor Chemistry 2010, Elements of Organic Chemistry Office: Bldg. 8, Room 338 (not used) Lecture: Section 2010-01, Tu,Th 8:30-9:45 am Phone: 909-869-3659 (not used) Room: Synchronous Zoom Lectures (CRN 73717) Email: [email protected] Classes begin: Thursday, August 20 Office Hours: Zoom times, Tu, W 10-11 am, F 4-5 pm Classes end: Friday, December 11 Tentative times, sometimes I help at my wife’s Final Week: Monday, Dec. 14 – Friday, Dec. 18 dental office in COVID times (unpredictable) Last day to withdraw without a W: Wednesday, Sep. 2 You can also email me questions, attach a If you withdraw between Sep 3-17 you will get a W scan of your work. To withdraw on Sep 18 or after you need to petition with a serious or compelling reason. Check your Cal Poly email for messages sent about Chemistry 2010 (Fall, 2020). I also use Blackboard. I. Catalog Description - Fundamental concepts of organic chemistry will be covered. Lecture-discussion. Prerequisite: Chem 123/123L (quarters) or 1220/1220L (semesters). Chem 2010L is a co-requisite. The lab is not required for the lecture, but the lecture is required for the lab. Not sure how labs will run in COVID times. II. Text and References – We will use a book I wrote, which is available at Amazon.com for $25 + tax? (I notice that Amazon currently lists it as $16.25.) (Essential Logic of Organic Chemistry, Phil Beauchamp). A solutions manual is also available at Amazon.com for $12 + tax.
    [Show full text]
  • British Chemical Abstracts
    BRITISH CHEMICAL ABSTRACTS A.-PURE CHEMISTRY JANUARY, 1935. General, Physical, and Inorganic Chemistry. Isotope effeet in the Lyman series of hydrogen. column current for a W cathode. For an oxido S. S. B a l l a r d and H. E. W h i t e (Physical Rev., cathode the p.d. depends on the no. of striations, but 1933, [ii], 43, 941).—Using H20 containing a high the results are not reproducible. M. S. B. [H2], six members of the Lyman series of H have Transition probabilities in the sharp and been observed as close doublets. In agrecment with. diffuse series of the alkalis. L. S. O r n s t e in and the theory of broadening of lines due to the Doppler J. K e y (Physiea, 1934,1, 945—952).—The transition effeet, the H1 component is broader than the H2. probability for p —d and s—p lines in Na and K L. S. T. has been determined using the a.c. arc. It has also Spin of hydrogen isotope. G. N. L e w is and been cale. for Rb and Cs from previous data. M. F. A s h l e y (Physical Rey., 1933, [ii], 43, 837).— M. S. B. The emission spectrum of mol. H , containing approx. Starting potential of the glow discharge in 25% HJ, 50% H XH2, and 25% Hi shows th at the neon-argon mixtures between large parallel spin of H2 is neither 0, 1/2, nor 3/2; it is, in all plates. I. Results.
    [Show full text]
  • Organic Chemistry I for Dummies
    Science/Chemistry/Organic Easier!™ Making Everything 2nd ition Ed 2nd Edition The fun and easy way Organic Chemistry I to take the confusion Open the book and find: out of organic chemistry • Tips on deciphering “organic speak” If you’re feeling challenged by organic chemistry, fear not! • How to determine the Organic This easy-to-understand guide explains the basic principles structure of a molecule in simple terms, providing insight into the language of • A complete overview of organic chemists, the major classes of compounds, and more. chemical reactions Complete with new explanations and example equations, this • Strategies for solving organic book will help you ace your organic chemistry class! Chemistry I chemistry problems • Go organic — get an introduction to organic chemistry, • Tricks to prepare for organic from dissecting atoms and the basics of bases and acids, chemistry exams to stereochemistry and drawing structures • Renewed example equations • Hydrocarbons — dive into hydrocarbons, including a full in this new edition explanation of alkanes, alkenes, and alkynes • New explanations and • Functional groups — understand substitution and elimination practical examples reactions, the alcohols, conjugated alkenes, aromatic compounds, and much more • A smashing time — find out about mass spectrometry, IR spectroscopy, NMR spectroscopy, solving problems Cover Image: ©cb34inc/iStockphoto.com in NMR, and more Learn to: • Survive organic chem — get tips on surviving your organic chemistry class, along with information on cool organic • Grasp the principles of organic discoveries, and ten of the greatest organic chemists chemistry at your own pace ® • Score your highest in your Arthur Winter is a graduate of Frostburg State University, where he Go to Dummies.com Organic Chemistry I course for videos, step-by-step examples, received his BS in chemistry.
    [Show full text]
  • John William Baker and the Origin of the Baker-Nathan Effect
    82 Bull. Hist. Chem., VOLUME 37, Number 2 (2012) JOHN WILLIAM BAKER AND THE ORIGIN OF THE BAKER-NATHAN EFFECT Martin D. Saltzman, Providence College, [email protected] The Baker-Nathan effect was a theory proposed by independent school in west London from 1909-1916. He John William Baker (1898-1967) and Wilfred Samuel was awarded a Royal Scholarship in Chemistry which Nathan (1910-1961) of Leeds University in 1935 to allowed him to enroll at the Imperial College of Science explain certain anomalous results obtained in SN2 reac- and Technology in London. His exceptional aptitude for tions carried out in solution. The explanation produced chemistry was shown by his passing the intermediate by them was expanded to a general type of no-bond exams for the B.Sc. Degree by the end of 1916. In April resonance known as hyperconjugation by Mulliken in 1917 he was conscripted and assigned to the Royal En- papers published in 1939 and 1941 (1). Hyperconjuga- gineers where he was commissioned a Lieutenant. His tion is today defined as the conjugation of polarized major responsibilities were in the area of water purifica- sigma bonds and adjacent pi orbitals. This theory has tion. In May 1918 he was sent to Mesopotamia (now Iraq) been applied to a host of anomalous physical measure- where he was assigned the same duties. He was finally ments such as bond lengths and dipole moments. The demobilized in 1920 and returned to Imperial where he Baker-Nathan effect as it was originally framed is no was awarded his B.Sc.
    [Show full text]