Pollinator Initiatives in EU Member States: Success Factors and Gaps

Total Page:16

File Type:pdf, Size:1020Kb

Pollinator Initiatives in EU Member States: Success Factors and Gaps 14 December 2017 Pollinator Initiatives in EU Member States: Success Factors and Gaps By: Evelyn Underwood Gemma Darwin Erik Gerritsen Funded by Report under contract for provision of technical support related to Target 2 of the EU Biodiversity Strategy to 2020 – maintaining and restoring ecosystems and their services in collaboration with Disclaimer: It should be noted that this report does not represent the views of the Commission or of the interviewed stakeholders, and the key successes and gaps were identified by the authors unless attributed. The authors acknowledge that the work was funded by the European Commission. The report should be cited as follows: Underwood, E., Darwin, G. and Gerritsen, E. (2017) Pollinator initiatives in EU Member States: Success factors and gaps. Report for European Commission under contract for provision of technical support related to Target 2 of the EU Biodiversity Strategy to 2020 – maintaining and restoring ecosystems and their services ENV.B.2/SER/2016/0018. Institute for European Environmental Policy, Brussels. Corresponding author: Evelyn Underwood, IEEP [email protected] Acknowledgements: We thank the stakeholders in each Member State who responded to the requests for information. Institute for European Environmental Policy London Office 11 Belgrave Road IEEP Offices, Floor 3 London, SW1V 1RB Tel: +44 (0) 20 7799 2244 Fax: +44 (0) 20 7799 2600 Brussels Office Quai au Foin, 55 Hooikaai 55 B- 1000 Brussels Tel: +32 (0) 2738 7482 Fax: +32 (0) 2732 4004 The Institute for European Environmental Policy (IEEP) is an independent not-for-profit institute. IEEP undertakes work for external sponsors in a range of policy areas as well as engaging in our own research programmes. For further information about IEEP, see our website at www.ieep.eu or contact any staff member. Table Of Contents Table Of Contents ............................................................................................................. 3 1 Introduction .............................................................................................................. 1 2 Pollinator initiatives: successes and gaps ................................................................... 3 3 Austria .................................................................................................................... 12 4 Belgium .................................................................................................................. 17 5 Denmark ................................................................................................................. 21 6 France ..................................................................................................................... 24 7 Germany ................................................................................................................. 29 8 Ireland and UK Northern Ireland ............................................................................. 33 9 The Netherlands ..................................................................................................... 38 10 Slovenia .................................................................................................................. 43 11 Spain ...................................................................................................................... 45 12 UK .......................................................................................................................... 49 13 UK – England ........................................................................................................... 52 14 UK – Wales ............................................................................................................. 56 15 UK – Scotland .......................................................................................................... 59 References ..................................................................................................................... 62 Annex: Swedish wild bee species action plans ................................................................. 67 1 Introduction Pollinators, which are economically, ecologically and socially important, are increasingly under threat from human activities, including climate change and habitat loss, as concluded by the global assessment of the International Panel on Biodiversity and Ecosystem Services (IPBES) in 2016 (IPBES, 2016). The assessment highlights that a high diversity of wild pollinators (wild bees, hoverflies and other flies, butterflies and moths, and more) is critical to pollination even when managed bees are present in high numbers. The European Red List of Bees published in 2014 concluded that at the EU-27 level, 9.1% of bee species are threatened with extinction and a further 5.4% of bees are considered Near Threatened, whilst for 55.6% of species we do not know their EU status at all (Nieto et al, 2014). At the COP13 on Biological Diversity in December 2016, Decision XIII/151 was passed encouraging Parties, other organisations and stakeholders to use the IPBES recommendations to help guide their efforts to improve conservation and management of pollinators, address drivers of pollinator declines, and work towards sustainable food production systems and agriculture. At the CBD COP13, representatives of ten EU Member States and other countries signed the Declaration on the Coalition of the Willing on Pollinators2, committing to take national action to protect pollinators and their habitats, and to develop, facilitate and implement pollinator strategies, consistent with the IPBES Assessment. Rural Development Programmes under the Common Agricultural Policy provide some funding for farmers to carry out farming with reduced or no pesticide use or to preserve or create flower rich areas or habitats providing food resources for wild pollinators. Other initiatives at the EU level are already promoting joint action, knowledge sharing and awareness-raising on pollinators. However, the COP13 Decision and the European Parliament resolution on the Action Plan for Nature, People and Economy passed on 15 November 2017 (European Parliament, 2017) emphasise that stronger action is needed. The Commission have now announced the development of an EU Pollinators Initiative3. The roadmap published on 1 December 2017 presents the problem, the aim of the initiative and possible options how to achieve the aim, with the objectives of improving knowledge on pollinators, tackling the causes of the decline of pollinators, and raising awareness and improving collaboration and knowledge sharing. Aim of the report Here we report on current national and regional initiatives in ten EU Member States as of October 2017, outlining strategies, successes and gaps. Our aim is to provide useful information for the development of an EU initiative on pollinators and to inform stakeholders about current initiatives and sources of further information. The report focuses 1 https://www.cbd.int/doc/decisions/cop-13/cop-13-dec-15-en.pdf 2 Austria, Belgium, Denmark, Finland, France, Germany, Luxembourg, Slovenia, Spain, the Netherlands, UK, see https://promotepollinators.org 3 See http://ec.europa.eu/environment/nature/conservation/species/pollinators/index_en.htm 1 on most of the Member States in the Coalition of the Willing (although no information was available from Finland and Luxembourg), plus Ireland who also have a pollinator strategy in place. It should be noted that this report does not represent the views of the Commission or of the interviewed stakeholders, and the key successes and gaps were identified by the authors unless attributed. 2 2 Pollinator initiatives: successes and gaps This section seeks to highlight commonalities among existing national and regional initiatives that are benefiting wild pollinators in order to point to what could be amplified or scaled up at the EU level, identify remaining gaps, and assess what added value EU level coordination could bring. A number of initiatives have already carried out similar and more wide ranging exercises and discussions, which we have drawn on, notably: overview of strategic responses to risks and opportunities associated with pollinators and pollination provided by the recent IPBES assessment, based on their evidence review (IPBES, 2016); policy workshop on 3 March 2015 by SUPER-B COST action project4; reports by the EU-funded STEP project (2010-2015)5; high priority knowledge needs with regard to wild pollinators identified by an EU expert group in the UK (Dicks et al, 2013); UK Insect Pollinators Initiative (Vanbergen et al, 2014; Vanbergen and Insect Pollinators Initiative, 2013). 2.1 Governance of initiatives and targeted funding There are at least six national or regional strategies or action plans addressing wild pollinator conservation in EU Member States and a number of others are preparing strategies or action plans, as listed in Table 2.1. Some, but not all, the strategies are associated with some dedicated government funding. The Dutch government is providing political leadership by convening the Coalition of the Willing on Pollinators, which is bringing together representatives of Member State governments which either already have or are in the process of developing national pollinator strategies. Table 2.1: current situation of pollinator initiatives in selected EU Member States Member State Pollinator initiative or strategy, launch year Significant funding or national resources / region and focus Austria No national or regional strategies
Recommended publications
  • Applications of Machine Learning in Common Agricultural Policy at the Rural Payments Agency
    Applications of Machine Learning in Common Agricultural Policy at the Rural Payments Agency Sanjay Rana Senior GIS Analyst GI Technical Team Reading 1 What are you gonna find out? • Knowing me and RPA (and knowing you - aha ?!) • How are we using Machine Learning at the RPA? – Current Activities – Random Forest for Making Crop Map of England – Work in Progress Activities – Deep Learning for Crop Map of England, Land Cover Segmentation, and locating Radio Frequency Interference • I will cover more on applications of Machine Learning for RPA operations, and less about technical solutions. 2 My resume so far… Geology GIS GeoComputation Academics Researcher & Radio DJ Consultant Civil Servant Lecturer Profession 3 Rural Payments Agency Rural Payments Agency (RPA) is the Defra agency responsible for the distribution of subsidies to farmers and landowners in England under all the EU's Common Agricultural Policy (CAP) schemes. 4 Area Based Payments/Subsidies Claim Claim Validation Visual Checks Machine Learning Control Helpline 5 A bit more info on Controls • To calculate correct CAP payments, the RPA Land Parcel Information System (LPIS) is constantly being updated with information from customers, OS MasterMap, Aerial Photographs and Satellite Images. • But, in addition as per EU regulations, claims from approximately 5% of customers must be controlled (i.e. checked) annually. Failure to make correct payments lead to large penalties for Member States. France had a disallowance of 1 billion euro for mismanaging CAP funds during 2009- 2013. • Controls/Checks are done either through regular Field Inspections (20%), or Remotely with Very High Resolution Satellite Images (80%) for specific areas* to ascertain farmer declaration of agricultural (e.g.
    [Show full text]
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Invaded: a Study of Wild Pollinator Responses to Introduced Flower Species
    Invaded: A Study of Wild Pollinator Responses to Introduced Flower Species UNDERC West 2019 By Eileen C Reeves Advisor: Katherine Barrett 1 Abstract Pollinators are threatened primarily by habitat loss and fragmentation. Agriculture and ranching form large monocultures and areas of primarily wind pollinated grasses. In places where flowers are found, including state parks and national wildlife refuges, invasive species thrive and, in some areas, dominate. This study aims to determine whether native pollinators show feeding preferences between invasive and native flowers. If pollinators show little to no preference, then areas with any flowers, even invasive ones, should support healthy pollinator communities. I anticipate that Lepidoptera (butterflies and moths) and Anthophila (bees) will show greater preference for native species while Diptera (flies) will not show any preference My results show no significant preference for either native or introduced species on the whole. One genus showed significant preference for introduced flowers. Time of day was the most significant factor. Introduction Invasive species pose one of the greatest threats to biodiversity today. Invasive flowers outcompete native species for water, nutrients, and sun, which often leads to shifts in plant species composition and diversity, which can impact associated insect communities (Ridenour and Callaway, 2003; Callaway and Ridenour, 2004). Invasive plant/native plant interactions are well documented, but less so plant-insect interactions. This study set out to find whether invasive and introduced plant communities can host healthy pollinator assemblages. Plant-insect interactions date back to the origin of flowers. Flowering plant diversity drastically increased as insect diversity did. Flowers co-evolved with insects due to pollination.
    [Show full text]
  • The Chemical Ecology and Evolution of Bee–Flower Interactions: a Review and Perspectives1
    668 REVIEW / SYNTHE` SE The chemical ecology and evolution of bee–flower interactions: a review and perspectives1 S. Do¨ tterl and N.J. Vereecken Abstract: Bees and angiosperms have shared a long and intertwined evolutionary history and their interactions have re- sulted in remarkable adaptations. Yet, at a time when the ‘‘pollination crisis’’ is of major concern as natural populations of both wild and honey bees (Apis mellifera L., 1758) face alarming decline rates at a worldwide scale, there are important gaps in our understanding of the ecology and evolution of bee–flower interactions. In this review, we summarize and dis- cuss the current knowledge about the role of floral chemistry versus other communication channels in bee-pollinated flow- ering plants, both at the macro- and micro-evolutionary levels, and across the specialization–generalization gradient. The available data illustrate that floral scents and floral chemistry have been largely overlooked in bee–flower interactions, and that pollination studies integrating these components along with pollinator behaviour in a phylogenetic context will help gain considerable insights into the sensory ecology and the evolution of bees and their associated flowering plants. Re´sume´ : Les abeilles et les angiospermes partagent une grande partie de leur histoire e´volutive, et leurs interactions ont produit de remarquables exemples d’adaptations mutuelles. Cependant, a` une e´poque ou` la « crise de la pollinisation » de- vient une pre´occupation majeure et ou` les populations d’abeilles sauvages et mellife`res (Apis mellifera L., 1758) font face a` des de´clins massifs a` l’e´chelle mondiale, notre compre´hension de l’e´cologie et de l’e´volution des relations abeilles- plantes demeure fragmentaire.
    [Show full text]
  • Kristianstads Vattenrike Biosphere Reserve, Periodic Review 2005-2015
    This Periodic Review can also be downloaded at www.vattenriket.kristianstad.se/unesco/. Title: Kristianstads Vattenrike Biosphere Reserve. Periodic Review 2005-2015 Authors: This review is produced by the Biosphere Office, Kristianstads kommun: Carina Wettemark, Johanna Källén, Åsa Pearce, Karin Magntorn, Jonas Dahl, Hans Cronert; Karin Hernborg and Ebba Trolle. In addition a large number of people have contributed directly and indirectly. Cover photo: Patrik Olofsson/N Maps: Stadsbyggnadskontoret Kristianstads kommun PERIODIC REVIEW FOR BIOSPHERE RESERVE INTRODUCTION The UNESCO General Conference, at its 28th session, adopted Resolution 28 C/2.4 on the Statutory Framework of the World Network of Biosphere Reserves. This text defines in particular the criteria for an area to be qualified for designation as a biosphere reserve (Article 4). In addition, Article 9 foresees a periodic review every ten years The periodic review is based on a report prepared by the relevant authority, on the basis of the criteria of Article 4. The periodic review must be submitted by the national MAB Committee to the MAB Secretariat in Paris. The text of the Statutory Framework is presented in the third annex. The form which follows is provided to help States prepare their national reports in accordance with Article 9 and to update the Secretariat's information on the biosphere reserve concerned. This report should enable the International Coordinating Council (ICC) of the MAB Programme to review how each biosphere reserve is fulfilling the criteria of Article 4 of the Statutory Framework and, in particular, the three functions: conservation, development and support. It should be noted that it is requested, in the last part of the form (Criteria and Progress Made), that an indication be given of how the biosphere reserve fulfils each of these criteria.
    [Show full text]
  • This Document Was Withdrawn on 6 November 2017
    2017. November 6 on understanding withdrawn was water for wildlife document This Water resources and conservation: the eco-hydrological requirements of habitats and species Assessing We are the Environment Agency. It’s our job to look after your 2017. environment and make it a better place – for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are makingNovember your environment cleaner and healthier. 6 The Environment Agency. Out there, makingon your environment a better place. withdrawn was Published by: Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870document 8506506 Email: [email protected] www.environment-agency.gov.uk This© Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. April 2007 Contents Brief summary 1. Introduction 2017. 2. Species and habitats 2.2.1 Coastal and halophytic habitats 2.2.2 Freshwater habitats 2.2.3 Temperate heath, scrub and grasslands 2.2.4 Raised bogs, fens, mires, alluvial forests and bog woodland November 2.3.1 Invertebrates 6 2.3.2 Fish and amphibians 2.3.3 Mammals on 2.3.4 Plants 2.3.5 Birds 3. Hydro-ecological domains and hydrological regimes 4 Assessment methods withdrawn 5. Case studies was 6. References 7. Glossary of abbreviations document This Environment Agency in partnership with Natural England and Countryside Council for Wales Understanding water for wildlife Contents Brief summary The Restoring Sustainable Abstraction (RSA) Programme was set up by the Environment Agency in 1999 to identify and catalogue2017.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Lignocellulosic Feedstock in the UK
    Lignocellulosic feedstock in the UK November 2014 A report for the Lignocellulosic Biorefinery Network Authors: Davide Di Maio and David Turley Reviewer: Lucy Hopwood Disclaimer While NNFCC considers that the information and opinions given in this work are sound, all parties must rely on their own skill and judgement when making use of it NNFCC will not assume any liability to anyone for any loss or damage arising out of the provision of this report. NNFCC NNFCC is a leading international consultancy with expertise on the conversion of biomass to bioenergy, biofuels and bio-based products. NNFCC, Biocentre, Phone: +44 (0)1904 435182 York Science Park, Fax: +44 (0)1904 435345 Innovation Way, E: [email protected] Heslington, York, Web: www.nnfcc.co.uk YO10 5DG. 2 Executive Summary NNFCC was commissioned by the Lignocellulosic Biorefinery Network (LBNet) to survey the potential availability of existing domestic lignocellulosic non-food crop feedstock wastes and residues to support the development of UK biorefineries. The objective was to assess the current availability of domestic crop and forest residues; dedicated biomass crops; green waste and waste from the paper industry. Current competing uses for these materials were identified and the potential to expand the resource examined. Impacts of regional and temporal variability were considered and data on costs and composition were collated. The analysis highlighted that the UK has nearly 16 million tons of biomass waste arising from the feedstocks studied. The greatest contributions to this total are from green waste, agricultural straw and a significant amount of waste paper that is currently collected but not recycled in the UK.
    [Show full text]
  • Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-17-2019 Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time Joan M. Meiners University of Florida Terry L. Griswold Utah State University Olivia Messinger Carril Independent Researcher Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Life Sciences Commons Recommended Citation Meiners JM, Griswold TL, Carril OM (2019) Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS ONE 14(1): e0207566. https://doi.org/10.1371/journal. pone.0207566 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. RESEARCH ARTICLE Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time 1 2 3 Joan M. MeinersID *, Terry L. Griswold , Olivia Messinger Carril 1 School of Natural Resources and Environment, University of Florida, Gainesville, Florida, United States of a1111111111 America, 2 USDA-ARS Pollinating Insects Research Unit (PIRU), Utah State University, Logan, Utah, United States of America, 3 Independent Researcher, Santa Fe, New Mexico, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Thousands of species of bees are in global decline, yet research addressing the ecology OPEN ACCESS and status of these wild pollinators lags far behind work being done to address similar impacts on the managed honey bee.
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 14: 25–29
    Dieses PDF wird von der Arbeitsgemeinschaft bayerischer Entomologen e.V.für den privaten bzw. wissenschaftlichen Gebrauch zur Verfügung gestellt. Die kommerzielle Nutzung oder die Bereitstellung in einer öffentlichen Bibliothek oder auf einer website ist nicht gestattet. Beiträge zur bayerischen Entomofaunistik 14:25–29, Bamberg (2014), ISSN 1430-015X Die Braungelbe Leimkrauteule Conisania luteago ([DENIS & SCHIFFERMÜLLER], 1775) hat jetzt auch Bayern erreicht! (Lepidoptera: Noctuidae: Hadeninae) von Werner Wolf & Andreas Bischof Summary: First reliable records of Conisania luteago ([Denis & Schiffermüller], 1775) from Bavaria (Lower Franconia) are given. Possible origin and area expansion of this species within the last decades is shor tly discussed. Zusammenfassung: Es werden die ersten gesicherten Nachweise von Conisania luteago ([Denis & Schiffermüller], 1775) aus Bayern (Unterfranken) gemeldet. Die damit im Zusammenhang stehende Arealerweiterung dieser Art wird kurz dargestellt und diskutiert. Einleitung In den vergangenen zehn Jahren konnten in Bayern einige Schmetterlingsarten festgestellt werden, die vor- her nicht zum bayerischen Fauneninventar gehörten. Erwähnt seien hier nur Caradrina kadenii (Freyer, 1836) (Kratochwill, 2005; Sage, 2005), Menophra abruptaria (Thunberg, 1792) (Wolf, 2010) oder aktuell Pieris mannii (Mayer, 1851) (Kratochwill, 2011). Deren Zuwanderung erfolgte entlang schon früher bekannter und für einige der genannten Arten auch „erwarteter“ Einwanderungswege. Umso überra- schender waren die Funde von Conisania luteago ([Denis & Schiffermüller], 1775), über die hier be- richtet werden soll. Nachweis in Bayern Am 29.vi.2012 (1 ), 10.vii.2013 (2 ) und 16.vii.2013 (1 ) konnte der Zweitautor beim Lichtfang in seinem Garten in Bad Königshofen (Unterfranken) insgesamt vier Exemplare dieser Noctuide (Abb. 1) fan- gen. Auch nach dem äußeren Erscheinungsbild dürften die Tiere zur Nominatsubspecies und nicht zur mit- telrheinischen ssp.
    [Show full text]
  • A Trait-Based Approach Laura Roquer Beni Phd Thesis 2020
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Pollinator communities and pollination services in apple orchards: a trait-based approach Laura Roquer Beni PhD Thesis 2020 Pollinator communities and pollination services in apple orchards: a trait-based approach Tesi doctoral Laura Roquer Beni per optar al grau de doctora Directors: Dr. Jordi Bosch i Dr. Anselm Rodrigo Programa de Doctorat en Ecologia Terrestre Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Universitat de Autònoma de Barcelona Juliol 2020 Il·lustració de la portada: Gala Pont @gala_pont Al meu pare, a la meva mare, a la meva germana i al meu germà Acknowledgements Se’m fa impossible resumir tot el que han significat per mi aquests anys de doctorat. Les qui em coneixeu més sabeu que han sigut anys de transformació, de reptes, d’aprendre a prioritzar sense deixar de cuidar allò que és important. Han sigut anys d’equilibris no sempre fàcils però molt gratificants. Heu sigut moltes les persones que m’heu acompanyat, d’una manera o altra, en el transcurs d’aquest projecte de creixement vital i acadèmic, i totes i cadascuna de vosaltres, formeu part del resultat final.
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]