The Prp19 Complex and the Usp4 Deubiquitinating Enzyme Control Reversible Ubiquitination at the Spliceosome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Binding of Sap102 and Usp4 to the A2a
Diplomarbeit BINDING OF SAP102 AND USP4 TO THE A2A ADENOSINE RECEPTOR CARBOXYTERMINUS Zur Erlangung des akademischen Grades Doktorin der Zahnheilkunde (Dr. med. dent.) an der Medizinischen Universität Wien ausgeführt am Institut für Pharmakologie unter der Anleitung von Prof. Dr. Christian Nanoff eingereicht von Ivana Ostrouska Matr.Nr.: n0347690 Gallmeyergasse 6/1/5, A-1190 Wien Wien, 31.März 2009 Diploma Thesis BINDING OF SAP102 AND USP4 TO THE A2A ADENOSINE RECEPTOR CARBOXYTERMINUS Obtainment of the academic degree Doctor of Dentistry (Dr. med. dent.) at the Medical University Vienna performed at the Institute of Pharmacology supervised by Prof. Dr. Christian Nanoff submitted by Ivana Ostrouska Matr.No.: n0347690 Gallmeyergasse 6/1/5, A-1190 Vienna Vienna, 31.March 2009 My very best thanks to Christian Nanoff, Oliver Kudlacek, Ingrid Gsandtner and to the Institute of Pharmacology. 3 Content 1 Summary ................................................................................................................ 11 2 Introduction ........................................................................................................... 12 2.1 The A2A adenosine receptor..................................................................................... 12 2.1.1 A2A receptor signaling.......................................................................................... 15 2.2 Synapse Associated Proteins and SAP102 .............................................................. 17 2.2.1 SAP Structure..................................................................................................... -
The Ribonucleotidyl Transferase USIP-1 Acts with SART3 to Promote U6 Snrna Recycling Stefan Ruegger¨ 1,2, Takashi S
3344–3357 Nucleic Acids Research, 2015, Vol. 43, No. 6 Published online 09 March 2015 doi: 10.1093/nar/gkv196 The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling Stefan Ruegger¨ 1,2, Takashi S. Miki1, Daniel Hess1 and Helge Großhans1,* 1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland and 2University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland Received October 13, 2014; Revised February 10, 2015; Accepted February 24, 2015 ABSTRACT rearrangements of U6 then lead to disruption of the U4– U6 snRNA base-pairing in favor of U6–U2 snRNA base- The spliceosome is a large molecular machine that pairing, resulting in release of U4 snRNA (3). Moreover, U6 serves to remove the intervening sequences that binding to the 5 splice site displaces the U1 snRNA leading are present in most eukaryotic pre-mRNAs. At its to its release from the spliceosome (3). core are five small nuclear ribonucleoprotein com- Following execution of the splicing step, U2, U5 and U6 plexes, the U1, U2, U4, U5 and U6 snRNPs, which snRNPs and the resected intron lariat are released and fur- undergo dynamic rearrangements during splicing. ther disassembled through mechanisms that are not well un- Their reutilization for subsequent rounds of splic- derstood (1). Reuse of the snRNPs for further rounds of ing requires reversion to their original configura- splicing thus requires regeneration of their distinct, initial tions, but little is known about this process. Here, we conformations and interactions. For the U6 snRNP,this ‘re- / show that ZK863.4/USIP-1 (U Six snRNA-Interacting cycling’ includes the reformation of a U4 U6 snRNP. -
Androgen Receptor Interacting Proteins and Coregulators Table
ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al. -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
A Study on the E3 Ligase TRIM21/Ro52 Alexander Espinosa from the Department of Medicine, Karolinska Institutet, Stockholm, Sweden
Thesis for doctoral degree (Ph.D.) 2008 Thesis for doctoral degree (Ph.D.) 2008 A STUDY ON THE E3 LIGASE TRIM21/RO52 A study on the E3 ligase TRIM21/Ro52 ligase E3 the on study A Alexander Espinosa Alexander Espinosa Fredrik Bredin From the Department of Medicine, Karolinska Institutet, Stockholm, Sweden A STUDY ON THE E3 LIGASE TRIM21/Ro52 Alexander Espinosa All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Box 20082, SE-161 02 Bromma, Sweden. © Alexander Espinosa, 2008 ISBN 978-91-7357-480-8 iii ABSTRACT Patients with the systemic autoimmune diseases Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE), often have antibodies against the intracellular protein TRIM21/Ro52. Although the presence of anti-TRIM21/Ro52 autoantibodies is used as a diagnostic tool, the biological function of TRIM21/Ro52 is still unknown. The aim of this thesis is to provide a better understanding of the function of TRIM21/Ro52, especially regarding its role in autoimmunity. To achieve this, TRIM21/Ro52 was studied at a molecular and cellular level in vitro and in vivo. By using circular dichroism, limited proteolysis, mass spectrometry, ultra-centrifugation, and two- hybrid experiments, it was shown that TRIM21/Ro52 is a Zn2+ binding protein that forms weak dimers. These results also confirmed the presence of the predicted secondary structure domains of TRIM21/Ro52. A RING domain in the N-terminus of TRIM21/Ro52 suggests that TRIM21/Ro52 is a RING dependent E3 ligase. Through ubiquitination assays, it was shown that TRIM/Ro52 is indeed an E3 ligase and that the E3 ligase activity of TRIM21/Ro52 was dependent on the E2 enzymes UbcH5a-c or UbcH6. -
Cell Proliferation Control: from Intrinsic Transcriptional Programs to Extrinsic Stromal Networks
Cell Proliferation Control: from Intrinsic Transcriptional Programs to Extrinsic Stromal Networks DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Huayang Liu Graduate Program in Molecular Genetics The Ohio State University 2015 Dissertation Committee: Professor Gustavo Leone, Advisor Professor Helen Chamberlin Professor Harold Fisk Professor Tsonwin Hai Copyright by Huayang Liu 2015 Abstract Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture and tissue homeostasis. Disruption of these mechanisms, either intracellular circuits or extracellular inputs for cell proliferation control, inevitably occur under oncogenic conditions, rendering cells with unlimited proliferative capacity and subsequent malignant transformation. Here, we investigated how two critical intracellular proliferative pathways, Myc and E2f, are integrated to control cell cycle transitions in normal and Rb deficient cells using a murine intestinal model. We show that in contrast to the current paradigm, Myc and E2f1-3 have little impact on normal G1- S transitions. Instead Myc and E2f1-3 synergistically control an S-G2 transcriptional program in intestinal crypts required for completing normal cell divisions and maintaining crypt-villi integrity. Surprisingly, Rb deficiency results in the Myc- dependent accumulation of E2f3a protein and the genome-wide repositioning of Myc and E2f3 on chromatin associated with ‘super activation’ of a G1-S transcriptional program, ectopic S phase entry and rampant cell proliferation. These findings reveal that Rb deficient cells hijack and redeploy Myc and E2f3 from an S-G2 program essential for normal cell cycles to a G1-S program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null ‘cancer-like cells’ on Myc. -
Identification of a Gene Coding for a Protein Possessing Shared Tumor Epitopes Capable of Inducing HLA-A24-Restricted Cytotoxic T Lymphocytes in Cancer Patients1
[CANCER RESEARCH 59, 4056–4063, August 15, 1999] Identification of a Gene Coding for a Protein Possessing Shared Tumor Epitopes Capable of Inducing HLA-A24-restricted Cytotoxic T Lymphocytes in Cancer Patients1 Damu Yang, Masanobu Nakao, Shigeki Shichijo, Teruo Sasatomi, Hideo Takasu, Hajime Matsumoto, Kazunori Mori, Akihiro Hayashi, Hideaki Yamana, Kazuo Shirouzu, and Kyogo Itoh2 Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy [D. Y., M. N., K. I.], and Departments of Surgery [A. H., H. Y., K. S.], Immunology [S. S., T. S., H. T., H. M., K. I.], and Otolaryngology [K. M.], Kurume University School of Medicine, Kurume, 830-0011, Japan ABSTRACT we report a gene encoding epitopes that are capable of inducing CTLs in PBMCs of patients with SCCs and adenocarcinomas. Genes encoding tumor epitopes that are capable of inducing CTLs against adenocarcinomas and squamous cell carcinomas, two major hu- man cancers histologically observed in various organs, have rarely been MATERIALS AND METHODS identified. Here, we report a new gene from cDNA of esophageal cancer cells that encodes a shared tumor antigen recognized by HLA-A2402- Generation of HLA-A2402-restricted CTLs. HLA-A2402-restricted and restricted and tumor-specific CTLs. The sequence of this gene is almost tumor-specific CTLs were established from the PBMCs of an esophageal identical to that of the KIAA0156 gene, which has been registered in cancer patient (HLA-A2402/A2601) by the standard method of mixed lym- phocyte tumor cell culture, -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Regulation of Neuronal Survival and Morphology by the E3 Ubiquitin Ligase RNF157
Cell Death and Differentiation (2015) 22, 626–642 & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Regulation of neuronal survival and morphology by the E3 ubiquitin ligase RNF157 A Matz1,5, S-J Lee1,5, N Schwedhelm-Domeyer1,5, D Zanini2, A Holubowska1,3, M Kannan1, M Farnworth1, O Jahn3,4, MC Göpfert2 and J Stegmüller*,1,3 Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development. Cell Death and Differentiation (2015) 22, 626–642; doi:10.1038/cdd.2014.163; published online 24 October 2014 Neurodegeneration leads to loss of neurons and thus to In this study, we characterized the novel E3 ubiquitin ligase severe and irreparable damage of the brain. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Tip110 Interacts with YB-1 and Regulates Each Other's Function
Timani et al. BMC Molecular Biology 2013, 14:14 http://www.biomedcentral.com/1471-2199/14/14 RESEARCH ARTICLE Open Access Tip110 interacts with YB-1 and regulates each other’s function Khalid Amine Timani, Ying Liu and Johnny J He* Abstract Background: Tip110 plays important roles in tumor immunobiology, pre-mRNA splicing, expression regulation of viral and host genes, and possibly protein turnover. It is clear that our understanding of Tip110 biological function remains incomplete. Results: Herein, we employed an immunoaffinity-based enrichment approach combined with protein mass spectrometry and attempted to identify Tip110-interacting cellular proteins. A total of 13 major proteins were identified to be complexed with Tip110. Among them was Y-box binding protein 1 (YB-1). The interaction of Tip110 with YB-1 was further dissected and confirmed to be specific and involve the N-terminal of both Tip110 and YB-1 proteins. A HIV-1 LTR promoter-driven reporter gene assay and a CD44 minigene in vivo splicing assay were chosen to evaluate the functional relevance of the Tip110/YB-1 interaction. We showed that YB-1 potentiates the Tip110/ Tat-mediated transactivation of the HIV-1 LTR promoter while Tip110 promotes the inclusion of the exon 5 in CD44 minigene alternative splicing. Conclusions: Tip110 and YB-1 interact to form a complex and mutually regulate each other’s biological functions. Keywords: HIV-1 Tat, Tip110, YB-1, Alternative Splicing, CD44, Transcription Background NANOG, and SOX2 [14-17]. Lastly, Tip110 is shown to HIV-1 Tat-interacting protein of 110 kDa (Tip110), also interact with ubiquitin-specific peptidases (USP) such as known as squamous cell carcinoma antigen recognized by USP4 and regulate protein degradation [18]. -
Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis
Published OnlineFirst December 15, 2015; DOI: 10.1158/0008-5472.CAN-14-3595 Cancer Molecular and Cellular Pathobiology Research Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis Cheng Xing1, Xing-Xing Lu2, Peng-Da Guo2, Tong Shen2, Shen Zhang2, Xiao-Shun He2, Wen-Juan Gan2, Xiu-Ming Li2, Jing-Ru Wang2, Yuan-Yuan Zhao2, Hua Wu2, and Jian-Ming Li1,2 Abstract Ubiquitin specific protease 4 (USP4) is a deubiquitinating Mechanistically, we observed that USP4 interacted with and enzyme with key roles in the regulation of p53 and TGFb stabilized PRL-3 via deubiquitination. This resulted in activa- signaling, suggesting its importance in tumorigenesis. Howev- tion of Akt and reduction of E-cadherin, critical regulators of er, the mechanisms and regulatory roles of USP4 in cancer, cancer cell growth and metastasis. Examination of clinical including colorectal cancer, remain largely elusive. Here, we samples confirmed that USP4 expression positively correlates present the first evidence that USP4 regulates the growth, with PRL-3 protein expression, but not mRNA transcript levels. invasion, and metastasis of colorectal cancer. USP4 expression Taken together, our results demonstrate that aberrant expres- was significantly elevated in colorectal cancer tissues and was sion of USP4 contributes to the development and progression significantly associated with tumor size, differentiation, distant of colorectal cancer and reveal a critical mechanism underlying metastasis, and poor survival. Knockdown of USP4 diminished USP4-mediated oncogenic activity. These observations suggest colorectal cancer cell growth, colony formation, migration, and that the potential of harnessing proteolytic degradation pro- invasion in vitro and metastasis in vivo.