Diptera: Agromyzidae) Inferred from Sequence Data from Multiple Genes

Total Page:16

File Type:pdf, Size:1020Kb

Diptera: Agromyzidae) Inferred from Sequence Data from Multiple Genes Molecular Phylogenetics and Evolution 42 (2007) 756–775 www.elsevier.com/locate/ympev Phylogenetic relationships within the leaf-mining Xies (Diptera: Agromyzidae) inferred from sequence data from multiple genes Sonja J. ScheVer a,¤, Isaac S. Winkler b, Brian M. Wiegmann c a Systematic Entomology Laboratory, USDA, Agricultural Research Service, Beltsville, MD 20705, USA b Department of Entomology, University of Maryland, College Park, MD 20740, USA c Department of Entomology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA Received 9 January 2006; revised 29 November 2006; accepted 18 December 2006 Available online 31 December 2006 Abstract The leaf-mining Xies (Diptera: Agromyzidae) are a diverse group whose larvae feed internally in leaves, stems, Xowers, seeds, and roots of a wide variety of plant hosts. The systematics of agromyzids has remained poorly known due to their small size and morphological homogeneity. We investigated the phylogenetic relationships among genera within the Agromyzidae using parsimony and Bayesian anal- yses of 2965 bp of DNA sequence data from the mitochondrial COI gene, the nuclear ribosomal 28S gene, and the single copy nuclear CAD gene. We included 86 species in 21 genera, including all but a few small genera, and spanning the diversity within the family. The results from parsimony and Bayesian analyses were largely similar, with major groupings of genera in common. SpeciWcally, both analy- ses recovered a monophyletic Phytomyzinae and a monophyletic Agromyzinae. Within the subfamilies, genera found to be monophyletic given our sampling include Agromyza, Amauromyza, Calycomyza, Cerodontha, Liriomyza, Melanagromyza, Metopomyza, Nemorimyza, Phytobia, and Pseudonapomyza. Several genera were found to be polyphyletic or paraphyletic including Aulagromyza, Chromatomyia, Phytoliriomyza, Phytomyza, and Ophiomyia. We evaluate our Wndings and discuss host-use evolution in light of current agromyzid taxon- omy and two recent hypotheses of relationships based on morphological data. Published by Elsevier Inc. Keywords: Phytophagy; Acalypterate; Opomyzoidea; Host-use evolution; Endophagy 1. Introduction one or a few closely related plant species (Spencer, 1990; ScheVer and Wiegmann, 2000). Host-use evolution within The leaf-mining Xies (Diptera: Agromyzidae) are small the Agromyzidae is a subject of great interest because Xies having phytophagous larvae that feed within leaves, diversiWcation in this group appears to be largely associated stems, roots, Xowers, or seeds. Agromyzids attack a broad with host shifts and dietary specialization (Spencer, 1990; diversity of plant hosts, including more than 140 plant fam- Kulp, 1968; ScheVer and Wiegmann, 2000). However, mod- ilies representing all major terrestrial plant groups, with the ern phylogenetic analyses necessary for elaborating the his- exception of mosses and most gymnosperms (Spencer, tory of agromyzid/host associations have only recently 1990; Benavent-Corai et al., 2005). These Xies are distrib- been applied to studies of these Xies (ScheVer and Wieg- uted worldwide with their greatest diversity in northern mann, 2000; Dempewolf, 2001). temperate regions (Spencer, 1977). Despite the broad diet Despite their near ubiquity and interesting larval habits, breadth exhibited by agromyzids as a group, most agro- the systematics of agromyzids has remained rather poorly myzid species are remarkably specialized, feeding on only understood due to their small size and morphological homogeneity. Species identiWcation generally requires dis- section of the male genitalia, and it is diYcult to identify * Corresponding author. Fax: +1 301 504 6482. some female specimens even to genus using only morpho- E-mail address: [email protected] (S.J. ScheVer). logical characters. Currently, the Agromyzidae contains 1055-7903/$ - see front matter Published by Elsevier Inc. doi:10.1016/j.ympev.2006.12.018 S.J. ScheVer et al. / Molecular Phylogenetics and Evolution 42 (2007) 756–775 757 two subfamilies, the Agromyzinae and the Phytomyzinae, Here, we present the Wrst comprehensive molecular phy- based on one larval and one adult character (Spencer and logenetic analysis of the entire family Agromyzidae. A Steyskal, 1986) although these characters are not always major goal is to provide new evidence from nuclear and consistent (von Tschirnhaus, 1971). Twenty-eight genera mitochondrial genes on higher-level relationships within are recognized containing approximately 2860 described the family. With these new phylogenetic results, we investi- species (Table 1), although it is clear from the number of gate patterns of diversiWcation within leafminers, evaluate new species found during regional surveys and detailed relative support from genes and morphology for currently study of species groups (e.g., ScheVer and Wiegmann, 2000; recognised genera as well as for key areas of agromyzid Zlobin, 1994a, 2002) that this represents only a fraction of classiWcation, and establish an initial framework for future agromyzid diversity (see also Spencer, 1977; Spencer and investigations of agromyzid relationships and host-use evo- Steyskal, 1986). Nearly a third of the known genera have lution. fewer than 10 species (Table 1), while many of the other genera are large, containing many groups of morphologi- 2. Materials and methods cally similar species that often feed on closely related host plants (Spencer, 1990; also e.g., GriYths, 1974, 1976, 1977; Agromyzid specimens representing 86 species in 21 ScheVer and Wiegmann, 2000; Zlobin, 2000). genera were obtained from a variety of locations around Modern hypotheses of relationships among agromyzid the world (Appendix A). We attempted to include conge- genera come primarily from two sources: a verbal “phy- ners from diVerent subgenera or diVerent species groups letic lines” scheme by Spencer (1990) in his consummate whenever possible, particularly for the larger genera. treatise on agromyzids and their host plants (Table 2), For outgroups, we chose two Fergusonina species (Fer- and a quantitative morphological phylogeny based on 83 gusoninidae). Several authors have suggested that the larval and adult characters (Fig. 1) in a dissertation by Agromyzidae and the Fergusoninidae are closely related, Dempewolf (2001). Spencer envisioned four phyletic lines and at one time fergusoninids were even placed within the within the family with the “Penetagromyza group” corre- Agromyzidae (Tonnoir, 1937; Colless and McAlpine, sponding to the Agromyzinae, and the traditional Phy- 1970). Several morphological characters suggest that the tomyzinae broken into the “Phytobia group,” the Fergusoninidae may be the sister group to the Agromyzi- “Phytoliriomyza group,” and the “Napomyza group.” dae (McAlpine, 1989), although recent molecular work Relationships among the latter three groups are unspeci- does not corroborate this (Rung, Winkler, and ScheVer, Wed. Most important in Spencer’s scheme is the assertion, unpublished data). The Odiniidae has also been suggested Wrst suggested by Nowakowski (1962), that Phytobia, a to be the sister group to the Agromyzidae (Hennig, 1958 widespread genus of large, cambium-mining species, is of as reported by McAlpine, 1989; Spencer, 1969; Dempe- ancient origin and represents the “primitive” condition wolf, 2005). We included a species of Odinia as an addi- within the family. This continues a long-held belief among tional outgroup in our analyses. agromyzid workers that groups of small leaf-mining spe- Specimens were preserved for study in 95% ethanol and cies are derived from larger stem-feeding species (Nowa- stored at ¡80 °C prior to DNA extraction. For most spe- kowski, 1962; Spencer, 1990; von Tschirnhaus, 1991). In cies, a male specimen was chosen for DNA extraction fact, within each of Spencer’s four phyletic lines the gen- because of the importance of male genitalia for species era are arranged from a “primitive” stem-mining genus to identiWcation. Preliminary identiWcation of specimens “more advanced” leaf-mining groups. based on external morphology was performed by SJS and Dempewolf’s (2001, 2005) phylogenetic analysis of 83 ISW using keys by Spencer (1969, 1972, 1976, 1977), Spen- larval and adult characters resulted in 90 most parsimoni- cer and Stegmaier (1973), and Spencer and Steyskal ous trees obtained by successive weighting using the consis- (1986). Each male specimen was dissected by removing tency index. The strict consensus of these trees is shown in the posterior half of the abdomen and clearing it by sub- Fig. 1 (redrawn from Dempewolf, 2005). In this analysis, merging it in a hot 10% KOH solution for 5 min. Cleared the two subfamilies are found to be monophyletic, although genitalia were then used for Wnal identiWcations and support values for these and all other relationships are not retained as voucher specimens. These genitalia and, in available. Relationships diVer from those suggested by some cases, additional intact specimens have been depos- Spencer in several ways, most notably in Wnding ited as vouchers in the National Museum of Natural His- Aulagromyza and Gymnophytomyza to be associated with tory in Washington, DC. the Napomyza group of Spencer. Additionally, Ama- Total nucleic acids were extracted from single dis- uromyza is found to be sister to Cerodontha and well inside sected specimens by grinding the specimen in PBS solu- a clade also including Liriomyza, Galiomyza, Phy- tion and following the insect protocol B of the DNeasy
Recommended publications
  • Molecular Survey for the Invasive Leafminer Pest Liriomyza Huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza Langei
    Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei Scheffer, S. J., Lewis, M. L., Gaimari, S. D., & Reitz, S. R. (2014). Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei. Journal of Economic Entomology, 107(5), 1959-1964. doi:10.1603/EC13279 10.1603/EC13279 Entomological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse MOLECULAR ENTOMOLOGY Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei 1,2 1 3 4 SONJA J. SCHEFFER, MATTHEW L. LEWIS, STEPHEN D. GAIMARI, AND STUART R. REITZ J. Econ. Entomol. 107(5): 1959Ð1964 (2014); DOI: http://dx.doi.org/10.1603/EC13279 ABSTRACT Liriomyza huidobrensis (Blanchard) is a highly destructive invasive leafminer pest currently causing extensive damage to vegetable and horticultural crops around the world. Liriomyza langei Frick is a leafminer pest native to California that cannot currently be morphologically distin- guished from L. huidobrensis. We used a DNA-barcoding approach, a published PCR-RFLP method, and a new multiplex PCR method to analyze 664 ßies matching the morphological description of huidobrensisÐlangei. We found no evidence for the presence of L. huidobrensis in our extensive samples from California. In addition to the new molecular method, this work is important because it provides deÞnitive data that the California “pea leafminer” is currently, and has probably always been, L. langei. These data will also be important in the event that the highly invasive L.
    [Show full text]
  • California Pea Leafminer, Liriomyza Langei (Diptera: Agromyzidae)
    DACS-P-01666 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture California Pea Leafminer, Liriomyza langei (Diptera: Agromyzidae) Gary J. Steck, [email protected], Taxonomic Entomologist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry W. N. Dixon, [email protected], Bureau Chief, Entomology, Nematology and Plant Pathology, Florida Department of Agriculture and Consumer Services, Division of Plant Industry Liriomyza langei Frick is a dipteran (Agromyzidae) leaf miner (Fig. 1) that is considered a pest of economic importance in California. (http://www.doacs.state.fl.us/pi/enpp/ento/entcirc/ent378.pdf). Affected crops include field and glasshouse- grown vegetables and flowers. In Salinas Valley of Monterey Co., CA, “This insect has gone from a sporadic fall pest, relatively easily controlled, to a pest throughout most of the vegetable growing season that is essentially not able to be controlled in many crops. This is at least partly due to evolution of insecticide resistance; changes in tillage practices may also have contributed to the problem. Lettuce is the worst affected crop, but nearly all of the fresh vegetables grown in the area are hosts for this leafminer” (Chaney 1995). Other vegetable crops suffering severe economic loss include celery (Apium graveolens) and garden pea (Pisum sativum); floral crops include baby’s breath (Gypsophila paniculata), Chrsysanthemum, and Aster. BIOLOGY: Females puncture leaves to feed on plant sap and lay eggs within the leaf tissues. The eggs hatch after two to four days and larvae feed between the upper and lower surface of the leaves, making distinctive winding, whitish tunnels or mines that are often the first clue that leaf miners are present.
    [Show full text]
  • American Serpentine Leaf Miner CP
    Liriomyza trifolii Contingency Plan Prepared for Horticulture Innovation Australia, as part of Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer) Rohan Burgess 1, Dr. Peter Ridland 2, Dr. Elia Pirtle 3 1 Plant Health Australia 2 The University of Melbourne 3 Cesar Australia December 7, 2020 This resource has been funded by Horticulture Innovation, through the Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer), using multiple research and development levies and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture. AMERICAN SERPENTINE LEAFMINER CONTINGENCY PLAN CONTINGENCY PLAN AMERICAN SERPENTINE LEAFMINER (LIRIOMYZA TRIFOLII) Central Science Laboratory, Harpenden, British Crown, Central Science Laboratory, Harpenden, British Crown, Bugwood.org Bugwood.org December 2020 This resource has been funded by Horticulture Innovation, through the Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer), using multiple research and development levies and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture. AMERICAN SERPENTINE LEAFMINER CONTINGENCY PLAN This Contingency Plan has been authored by Rohan Burgess (Plant Health Australia), Dr. Peter Ridland (The University of Melbourne) and Dr. Elia Pirtle (Cesar Australia), with contributions from Dr. Sharyn Taylor (Plant Health Australia), Dr. James Maino (Cesar Australia), and Dr. Paul Umina (Cesar Australia). Disclaimer The scientific and technical content of this document is current to the date published and all efforts have been made to obtain relevant and published information on these pests.
    [Show full text]
  • Checklist of the Leaf-Mining Flies (Diptera, Agromyzidae) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 291–303Checklist (2014) of the leaf-mining flies( Diptera, Agromyzidae) of Finland 291 doi: 10.3897/zookeys.441.7586 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the leaf-mining flies (Diptera, Agromyzidae) of Finland Jere Kahanpää1 1 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI–00014 University of Helsinki, Finland Corresponding author: Jere Kahanpää ([email protected]) Academic editor: J. Salmela | Received 25 March 2014 | Accepted 28 April 2014 | Published 19 September 2014 http://zoobank.org/04E1C552-F83F-4611-8166-F6B1A4C98E0E Citation: Kahanpää J (2014) Checklist of the leaf-mining flies (Diptera, Agromyzidae) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 291–303. doi: 10.3897/zookeys.441.7586 Abstract A checklist of the Agromyzidae (Diptera) recorded from Finland is presented. 279 (or 280) species are currently known from the country. Phytomyza linguae Lundqvist, 1947 is recorded as new to Finland. Keywords Checklist, Finland, Diptera, biodiversity, faunistics Introduction The Agromyzidae are called the leaf-miner or leaf-mining flies and not without reason, although a substantial fraction of the species feed as larvae on other parts of living plants. While Agromyzidae is traditionally placed in the superfamily Opomyzoidea, its exact relationships with other acalyptrate Diptera are poorly understood (see for example Winkler et al. 2010). Two subfamilies are recognised within the leaf-mining flies: Agromyzinae and Phytomyzinae. Both are now recognised as natural groups (Dempewolf 2005, Scheffer et al. 2007). Unfortunately the genera are not as well defined: at least Ophiomyia, Phy- toliriomyza and Aulagromyza are paraphyletic in DNA sequence analyses (see Scheffer et al.
    [Show full text]
  • Biological Control of Liriomyza Leafminers: Progress and Perspective
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work.
    [Show full text]
  • Parasites of the Agromyzidae (Diptera)
    Beitr. Ent. • Bd. 18 • 1968- H. 1/2 * S. 5 -6 2 • Berlin University of Alberta Department of Entomology Edmonton, Alberta (Canada) G r a h a m C. D. G r i f f i t h s The Alysiinae (Hym. Braconidae) parasites of the Agromyzidae (Diptera) V. The parasites of Liriomyza Mik and certain small genera of Phytomyzinae1 With textfigures 171-185 Contents Introduction ........................................ 5 Previous Records............................................................................................................................ 6 Dapsilarthra F o r s t e r ................................................................................................................................... 6 Pseudopezomachus M a n t b r o ...........................................................................................................................10 D a c n u sin i.............................................................................................................................................. 11 Ooloneura F o r s t e r .....................................................................................................................................11 Dacnusa H a l i d a y .....................................................................................................................................17 Chorebus H a l i d a y .....................................................................................................................................28 Keys to the Dacnusini Parasites of particular Host-Groups
    [Show full text]
  • Leaf Miner Species CP
    Contingency Plan – Cereal Leafminers (Agromyza ambigua, A. megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Ch. nigra) Industry Biosecurity Plan for the Grains Industry Threat Specific Contingency Plan Cereal Leafminers Agromyza ambigua, Agromyza megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Chromatomyia nigra Prepared by Dr Peter Ridland and Plant Health Australia January 2009 Disclaimer: The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Page 1 of 40 Contingency Plan – Cereal Leafminers (Agromyza ambigua, A. megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Ch. nigra) 1 Purpose of this Contingency Plan.........................................................................................................
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Biological Control of Liriomyza Leafminers: Progress and Perspective
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work.
    [Show full text]
  • Diptera – Brachycera
    Biodiversity Data Journal 3: e4187 doi: 10.3897/BDJ.3.e4187 Data Paper Fauna Europaea: Diptera – Brachycera Thomas Pape‡§, Paul Beuk , Adrian Charles Pont|, Anatole I. Shatalkin¶, Andrey L. Ozerov¶, Andrzej J. Woźnica#, Bernhard Merz¤, Cezary Bystrowski«», Chris Raper , Christer Bergström˄, Christian Kehlmaier˅, David K. Clements¦, David Greathead†,ˀ, Elena Petrovna Kamenevaˁ, Emilia Nartshuk₵, Frederik T. Petersenℓ, Gisela Weber ₰, Gerhard Bächli₱, Fritz Geller-Grimm₳, Guy Van de Weyer₴, Hans-Peter Tschorsnig₣, Herman de Jong₮, Jan-Willem van Zuijlen₦, Jaromír Vaňhara₭, Jindřich Roháček₲, Joachim Ziegler‽, József Majer ₩, Karel Hůrka†,₸, Kevin Holston ‡‡, Knut Rognes§§, Lita Greve-Jensen||, Lorenzo Munari¶¶, Marc de Meyer##, Marc Pollet ¤¤, Martin C. D. Speight««, Martin John Ebejer»», Michel Martinez˄˄, Miguel Carles-Tolrá˅˅, Mihály Földvári¦¦, Milan Chvála ₸, Miroslav Bartákˀˀ, Neal L. Evenhuisˁˁ, Peter J. Chandler₵₵, Pierfilippo Cerrettiℓℓ, Rudolf Meier ₰₰, Rudolf Rozkosny₭, Sabine Prescher₰, Stephen D. Gaimari₱₱, Tadeusz Zatwarnicki₳₳, Theo Zeegers₴₴, Torsten Dikow₣₣, Valery A. Korneyevˁ, Vera Andreevna Richter†,₵, Verner Michelsen‡, Vitali N. Tanasijtshuk₵, Wayne N. Mathis₣₣, Zdravko Hubenov₮₮, Yde de Jong ₦₦,₭₭ ‡ Natural History Museum of Denmark, Copenhagen, Denmark § Natural History Museum Maastricht / Diptera.info, Maastricht, Netherlands | Oxford University Museum of Natural History, Oxford, United Kingdom ¶ Zoological Museum, Moscow State University, Moscow, Russia # Wrocław University of Environmental and Life Sciences, Wrocław,
    [Show full text]
  • Annotated List of Agromyzidae (Diptera) from Iran, with Four New Records
    J. Entomol. Res. Soc., 12(3): 1-6, 2010 ISBN:1302-0250 Annotated List of Agromyzidae (Diptera) from Iran, with Four New Records Abu Fazel DOUSTI Department of Entomology, Islamic Azad University, Jahrom Branch, Fars, IRAN e-mail: [email protected] ABSTRACT The Agromyzidae family includes the most important dipterous species miners of crops for agriculture. Knowledge of 2900 worldwide species are cited, of which about 7% are considered of agronomic interest. (Ortiza, 2009). All Agromyzidae species undermine the internal tissue of different organs of plants. Depending on their eating habits they can be classified as leaf miners (leafmining), stem miners (stem-mining and tunneling), cambium miners, and parasites of flower buds or fruits. Agromyzidae genus within the Palaearctic region consists of 24 genera constituting a total of 1165 species. The first annotated list of Iranian leafminers of the family Agromyzidae (Diptera), comprising 26 species, is presented. Two Genera and four species, are considered to be new records from Iran: Amauromyza carlinae (Herring, 1944), Amauromyza fraxini (Beiger, 1980), Calycomyza humeralis (von Roser, 1840), Pseudonapomyza atra (Meigen, 1830). Key words: Annotated list, Agromyzidae, leafminers, new record, Iran INTRODUCTION Agromyzidae (leafmining flies) is one of the largest fly families, with more than 2900 species belonging to 30 genera worldwide. From this family about 1165 species have been identified in the Palaearctic region (Civelek, 2003; Çikman & Sasakawa, 2008). Based mostly on various faunistical survey reports, a taxonomical checklist of 26 nominal species of the Iranian Agromyzidae belonging to two subfamilies, and 11 genera was provided. Therefore, I did not intend to confirm identifications by the previous workers except very obvious cases.
    [Show full text]
  • Environmental Assessment & Management Plan
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized E1050 v3 rev m Theun 2 Hydroelectric Project Na & Management Plan Environmental Assessment March 2005 annexes List of Annexes List of Annexes Annex A: References ........................................................................................A1-6 Annex B: Contributors to the EAMP ....................................................................B1-2 Annex C: Project Key Technical Data ..................................................................C1-4 Annex D: Technical Drawings of Project Infrastructure ......................................D1-18 Annex E: Hydrological Data ............................................................................. E1-10 Annex F: Simulated Dam Operations ................................................................ F1-10 Annex G: Water Quality Modelling Assumptions and Results ................................G1-4 Annex H: Forest & Vegetation Types ..................................................................H1-4 Annex I: Mammal & Bird Species of the NNT Area .............................................I1-20 Annex J: Fish Species & Migration ..................................................................... J1-8 Annex K: Head Construction Contractor’s Environmental Requirements .............. K1-18 Annex L: Pest Management Plan ..................................................................... L1-18 Annex M: Public Consultation and Disclosure Events .........................................
    [Show full text]