Atom Interferometry in an Optical Cavity by Matthew Jaffe a Dissertation Submitted in Partial Satisfaction of the Requirements F

Total Page:16

File Type:pdf, Size:1020Kb

Atom Interferometry in an Optical Cavity by Matthew Jaffe a Dissertation Submitted in Partial Satisfaction of the Requirements F Atom interferometry in an optical cavity by Matthew Jaffe A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Associate Professor Holger Müller, Chair Associate Professor Norman Yao Professor Karl van Bibber Fall 2018 Atom interferometry in an optical cavity Copyright 2018 by Matthew Jaffe 1 Abstract Atom interferometry in an optical cavity by Matthew Jaffe Doctor of Philosophy in Physics University of California, Berkeley Associate Professor Holger Müller, Chair Matter wave interferometry with laser pulses has become a powerful tool for precision measurement. Optical resonators, meanwhile, are an indispensable tool for control of laser beams. We have combined these two components, and built the first atom interferometer inside of an optical cavity. This apparatus was then used to examine interactions between atoms and a small, in-vacuum source mass. We measured the gravitational attraction to the source mass, making it the smallest source body ever probed gravitationally with an atom interferometer. Searching for additional forces due to screened fields, we tightened constraints on certain dark energy models by several orders of magnitude. Finally, we measured a novel force mediated by blackbody radiation for the first time. Utilizing technical benefits of the cavity, we performed interferometry with adiabatic passage. This enabled new interferometer geometries, large momentum transfer, and in- terferometers with up to one hundred pulses. Performing a trapped interferometer to take advantage of the clean wavefronts within the optical cavity, we performed the longest du- ration spatially-separated atom interferometer to date: over ten seconds, after which the atomic wavefunction was coherently recombined and read out as interference to measure gravity. This work demonstrates the feasibility and utility of bringing a cavity to atom interferometry. i Contents Contents i List of Figures iv List of Tables vii 1 Introduction 1 1.1 Interferometry and matter waves ........................ 1 1.2 Outline of thesis ................................. 3 2 Atom interferometry: background and theory 4 2.1 Overview of an atom interferometer ....................... 4 2.2 Free evolution and the path integral formulation ................ 5 2.3 Atom-laser interactions .............................. 11 2.3.1 Raman transitions: the system ..................... 11 2.3.2 Solving the equation ........................... 12 2.3.3 Laser phases in an interferometer .................... 19 2.3.4 Bragg diffraction ............................. 23 2.4 The canonical example: gravity ......................... 24 2.5 Adding a perturbation .............................. 26 2.5.1 Other phase shifts ............................ 27 2.6 Optical resonators ................................ 28 3 Experimental apparatus 35 3.1 Vacuum chamber ................................. 35 3.2 The science cavity ................................ 36 3.3 Laser system ................................... 40 3.3.1 Trap and cooling lasers .......................... 40 3.3.2 Interferometry lasers and lock schemes ................. 45 3.4 Atom source and preparation .......................... 46 3.5 Additional details ................................. 53 3.5.1 Experimental control ........................... 53 ii 3.5.2 Raman signal generation ......................... 53 3.5.3 Inertial stabilization ........................... 54 4 Interferometry in the cavity 73 4.1 Cavity challenges ................................. 73 4.2 Cavity benefits .................................. 75 4.3 Raman pulses in a cavity ............................. 76 4.3.1 Finite-sized cloud in a finite-sized beam ................ 76 4.3.2 Rabi frequency and ac Stark shift with multiple beams ........ 81 4.4 Interferometry and results ............................ 89 5 Gravity and dark energy with a source mass 94 5.1 What is dark energy, and how do we know it’s there? ............. 94 5.2 Quintessence: scalar fields as dark energy .................... 97 5.2.1 Motivation ................................ 97 5.2.2 A force arises (and is screened) ..................... 98 5.2.3 The chameleon mechanism ........................ 99 5.2.4 Chameleon hunting ............................ 100 5.3 Source mass and interferometer geometry .................... 103 5.4 Gravitational attraction measurement ...................... 106 5.5 Constraints on screened fields .......................... 109 5.5.1 Symmetrons ................................ 110 5.5.2 Exclusions ................................. 111 5.6 Systematic effects ................................. 113 6 Blackbody radiation: a new force mediator 120 6.1 A force due to blackbody radiation ....................... 120 6.1.1 Qualitatively ............................... 120 6.1.2 Quantitatively .............................. 122 6.2 Measuring the blackbody radiation force .................... 123 6.2.1 Modeling and predictions ........................ 123 6.2.2 Measurements ............................... 126 7 Spin-dependent kicks for adiabatic passage in atom interferometers 135 7.1 Adiabatic passage ................................. 135 7.1.1 The basics ................................. 135 7.1.2 Constructing a pulse ........................... 138 7.1.3 Applying the pulse to an atom ..................... 139 7.2 Splitting the beamsplitter ............................ 143 7.3 SDK interferometry ................................ 146 7.3.1 SDK advantages ............................. 147 7.3.2 The dynamic phase ............................ 150 iii 7.3.3 Large momentum transfer ........................ 151 7.3.4 Single source gradiometer ........................ 152 7.3.5 Looped interferometer for ac signals .................. 153 7.4 Real world issues ................................. 155 7.4.1 Doppler separation ............................ 155 7.4.2 More dynamic phase ........................... 155 7.4.3 Dynamic phase cancellation ....................... 160 7.5 Summary ..................................... 162 8 Lattice atom interferometry 163 8.1 Trapped atom interferometer in an optical lattice ............... 164 8.1.1 Phase calculation ............................. 165 8.2 Far-detuned laser system ............................. 168 8.2.1 Widely-tunable locking scheme ..................... 168 8.3 Immunity to vibrations .............................. 174 8.3.1 The framework .............................. 174 8.3.2 Comparison of lattice AI and Mach-Zehnder vibration sensitivities .. 180 8.4 Bloch oscillations ................................. 182 8.5 Experimental implementation and results .................... 186 8.5.1 Lifetime limitations for long holds .................... 186 8.5.2 Contrast oscillations ........................... 189 8.5.3 Preliminary results ............................ 191 8.6 Summary ..................................... 192 9 Future prospects 194 9.1 Short term ..................................... 194 9.2 Medium term ................................... 195 9.3 Longer term .................................... 196 9.3.1 New directions .............................. 196 Bibliography 201 iv List of Figures 2.1 Simple Interferometer ................................ 9 2.2 Three-level Raman system .............................. 11 2.3 Mach-Zehnder schematic ............................... 21 2.4 Bragg diffraction ................................... 23 2.5 Mach-Zehnder light pulse interferometer ...................... 24 2.6 Basic optical resonator ................................ 28 2.7 Optical gain in matched optical resonators ..................... 31 3.1 The vacuum chamber ................................. 36 3.2 Schematic of the science cavity ........................... 37 3.3 Free spectral range measurement .......................... 38 3.4 Optical components ................................. 41 3.5 Hyperfine structure of the D2 line in cesium .................... 42 3.6 Locking scheme .................................... 42 3.7 Generation and delivery of MOT light ....................... 44 3.8 Science cavity lock scheme .............................. 45 3.9 Raman sideband cooling ............................... 49 3.10 Microwave transfer to the magnetically insensitive state. ............. 50 3.11 Atom launch ..................................... 51 3.12 Launched atom clouds ................................ 52 3.13 Raman phase lock loop ................................ 54 3.14 Passive vibration isolation .............................. 55 3.15 Basic Control Loop .................................. 56 3.16 Simple Bode plots .................................. 57 3.17 Simple Nyquist plots ................................. 60 3.18 Vibration stabilization control loop ......................... 61 3.19 Mechanical response G(s) to vibrations ....................... 63 3.20 Op amp lag compensator ............................... 65 3.21 Controller transfer function H(s) .......................... 65 3.22 Controller circuit schematic ............................. 66 3.23 Open loop transfer function Nyquist and Bode plots ............... 66 3.24 Closed-loop transfer function Bode plots ...................... 67 v 3.25 Performance of the active vibration stabilization .................. 68 3.26 Interferometer vibration noise ............................ 69 3.27 Tilt stabilization loop ...............................
Recommended publications
  • Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)
    Atomic Interferometric Gravitational-wave Space Observatory (AIGSO) Dongfeng Gao1,2,,∗ Jin Wang1,2, and Mingsheng Zhan1,2,† 1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China 2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China (Dated: January 17, 2018) We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter- wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < 10−20/√Hz in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser inter- ferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan. Keywords: Gravitational waves, Atomic Sagnac interferometer, Space-borne detector arXiv:1711.03690v2 [physics.atom-ph] 16 Jan 2018 ∗ [email protected][email protected] 2 I. INTRODUCTION An important prediction of Einstein’s theory of general relativity is the existence of gravitational waves (GWs).
    [Show full text]
  • Atom Interferometry with Laser-Cooled Lithium by Kayleigh Cassella Doctor of Philosophy in Physics University of California, Berkeley Professor Holger M¨Uller,Chair
    Hot Beats and Tune Outs: Atom Interferometry with Laser-cooled Lithium by Kayleigh Cassella A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Holger M¨uller,Chair Professor Dan Stamper-Kurn Professor Jeffrey Bokor Spring 2018 Hot Beats and Tune Outs: Atom Interferometry with Laser-cooled Lithium Copyright 2018 by Kayleigh Cassella 1 Abstract Hot Beats and Tune Outs: Atom Interferometry with Laser-cooled Lithium by Kayleigh Cassella Doctor of Philosophy in Physics University of California, Berkeley Professor Holger M¨uller,Chair Ushered forth by advances in time and frequency metrology, atom interferometry remains an indispensable measurement tool in atomic physics due to its precision and versatility. A sequence of four π=2 beam splitter pulses can create either an interferometer sensitive to the atom's recoil frequency when the momentum imparted by the light reverses direction between pulse pairs or, when constructed from pulses without such reversal, sensitive to the perturbing potential from an external optical field. Here, we demonstrate the first atom interferometer with laser-cooled lithium, advantageous for its low mass and simple atomic structure. We study both a recoil-sensitive Ramsey-Bord´einterferometer and interferometry sensitive to the dynamic polarizability of the ground state of lithium. Recoil-sensitive Ramsey-Bord´einterferometry benefits from lithium's high recoil fre- quency, a consequence of its low mass. At an interrogation time of 10 ms, a Ramsey-Bord´e lithium interferometer could achieve sensitivities comparable to those realized at much longer times with heavier alkali atoms.
    [Show full text]
  • Cold Atom Interferometry Sensors: Physics and Technologies
    Cold atom interferometry sensors: physics and technologies A scientific background for EU policymaking Travagnin, M. 2020 EUR 30289 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Martino Travagnin Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC121223 EUR 30289 EN PDF ISBN 978-92-76-20405-3 ISSN 1831-9424 doi:10.2760/315209 Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders. All content © European Union, 2020 How to cite this report: M. Travagnin, Cold atom interferometry sensors: physics and technologies. A scientific background for EU policymaking, 2020, EUR 30289 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978- 92-76-20405-3, doi:10.2760/315209, JRC121223 Contents Acknowledgements ...............................................................................................
    [Show full text]
  • Atom Interferometry for Detection of Gravitational Waves
    Atom Interferometry for Detection of Gravitational Waves NIAC Phase 1 Final Report Babak n. saif • jason hogan • mark a kasevich july 09, 2013 Atom Interferometry for Detection of Gravitational Waves Table of Contents 1.Introduction . 1-1 1.1 NAIC Phase 1 Study Concept . 1-1 1.2 NAIC Phase 1 Project Summary . 1-2 2. System Architectures. .1-3 2.1 Three Satellite Rb . 1-3 2.2 Two Satellite Rb . 1-4 2.3 Two Satellite Sr . 1-4 3. Single Photon Gravitational Wave Detection . 1-5 3.1 Introduction . 1-5 3.2 A New Type of Atom Interferometer . 1-6 3.3 A Differential Measurement . 1-7 3.4 Backgrounds . 1-8 3.5 Atomic Implementation . 1-9 3.6 Discussion . 1-9 4. Point Source Interferometry . 1-10 5. Enhanced Atom Interferometer Readout through the Application of Phase Shear . 1-14 Appendix A . 1-20 Bibliography . 1-37 Atom Interferometry for Detection of Gravitational Waves 1. Introduction Gravitational wave (GW) detection promises to open an exciting new observational frontier in astronomy and cosmology. In contrast to light, gravitational waves are generated by moving masses – rather than electric charges – which means that they can tell us about objects that are difficult to observe optically. For example, binary black hole systems (which might not emit much light) can be an ample source of gravitational radiation. In addition to providing insights into astrophysics, observa- tions of such extreme systems test general relativity and might influence our understanding of gravity. Cosmologically, since GWs are poorly screened by concentrations of matter and charge, they can see places other telescopes cannot – even to the earliest times in the universe, beyond the surface of last scattering.
    [Show full text]
  • An Interferometer for Atoms by David William Keith B.Sc Physics
    1 An Interferometer for Atoms by David William Keith B.Sc Physics, University of Toronto (Nov, 1986) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May, 1991 © Massachusetts Institute of Technology, 1991 Signature of the Author ______________________________________________ Department of Physics May , 1991 Certified by ________________________________________________________ David E. Pritchard Professor of Physics Thesis Supervisor Accepted by _______________________________________________________ George F. Koster, Chairman, Department Committee on Graduate Studies 2 An Interferometer for Atoms by David William Keith Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We have demonstrated an interferometer for atoms. A three grating geometry is used, resulting in an interferometer of the "amplitude division " type. We used a highly collimated beam of sodium atoms with a de Broglie wavelength of 16 pm and high-quality 0.4 mm-period free-standing gratings. The interference signal is 70 Hz, which allows us to determine the phase to 0.1 rad in 1 min. This is the first atom interferometer in the sense that it simultaneously and distinctly separates the atoms in position and momentum. In order to make the gratings for our interferometer, we have developed a novel method for fabricating free-standing micro-structures. Using this method we have made high-quality 0.2 and 0.4-mm period gratings, as well as the first zone plate lenses to be used for atoms. We have previously reported the first observation of the diffraction of atoms from a fabricated periodic structure.
    [Show full text]
  • MATTER WAVE INTERFEROMETRY in the Light of Schridinger's Wave Mechanics
    INIS-mf—11327 ATOMINSTITUT WIEN INTERNATIONAL WORKSHOP ON "SchrBdingtr'i cat* M m qrmbol for the wftrt-putieU dualiim MATTER WAVE INTERFEROMETRY in the Light of Schridinger's Wave Mechanics 14.-16. September 1987, Technical University Vienna Atominstitut der Osterreichischen Universitaten Satellite Workshop to the SCHRODINGER SYMPOSIUM which will be held in Vienna 16.-18. September 1987 on the occasion of the 100th ANNIVERSARY OF E. SCHROWNGER'S BIRTH organized by ATOMINSTmjT DER OSTERREICHISCHEN UNIVERSITATEN iad EftWIN SCHRODINGER SOCIETY urr Tentative Program Abstract Booklet INTERNATIONAL WORKSHOP ON "SchrSdinger'j cat" as a symbol for the wave-particle dualism MATTER WAVE INTERFEROMETRY in the Light of SchrOdinger's Wave Mechanics 14.-16. September 1987, Technical University Vienna Atominstitut der Osterreichischen Universitaten Satellite Workshop to the SCHRODINGER SYMPOSIUM which will be held in Vienna 16.-18. September 1987 on the occasion of the 100th ANNIVERSARY OF E. SCHRODINGER'S BIRTH organized by ATOMINSTITUT DER OSTERREICHISCHEN UNIVERSITATEN and ERWIN SCHRODINGER SOCIETY International Advisory Committee: U.Bonse (Dortmund), I.M.Frank (Dubna), A.G.Klein (Melbourne), D.M.Greenberger (New York), H.Maier-Leibnitz (Munchen), G.MOllenstedt (Tubingen), M.Namiki (Tokyo), CCShull (Cambridge), A.Tonomura (Tokyo), J.-P.Vigier (Paris), S.A.Weraer (Columbia). Organizing Committee: G.Badurek, F.Paschke, H.Rauch (chairman), J.Summhammer, A.Zeilinger Topics: Electron Interferometry Quantum Devices Neutron Interferometry Interpretational
    [Show full text]
  • Arxiv:1806.09958V3 [Physics.Ed-Ph] 1 Aug 2018 1
    Understanding quantum physics through simple experiments: from wave-particle duality to Bell's theorem Ish Dhand,1 Adam D'Souza,2 Varun Narasimhachar,3 Neil Sinclair,4, 5 Stephen Wein,4 Parisa Zarkeshian,4 Alireza Poostindouz,4, 6 and Christoph Simon4, ∗ 1Institut f¨urTheoretische Physik and Center for Integrated Quantum Science and Technology (IQST), Albert-Einstein-Allee 11, Universit¨atUlm, 89069 Ulm, Germany 2Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary T2N4N1, Alberta, Canada 3School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link Singapore 637371 4Department of Physics and Astronomy and Institute for Quantum Science and Technology (IQST), University of Calgary, Calgary T2N1N4, Alberta, Canada 5Department of Physics, Mathematics, and Astronomy and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 East California Blvd., Pasadena, California 91125, USA 6Department of Computer Science, University of Calgary, Calgary T2N1N4, Alberta, Canada (Dated: August 3, 2018) Quantum physics, which describes the strange behavior of light and matter at the smallest scales, is one of the most successful descriptions of reality, yet it is notoriously inaccessible. Here we provide an approachable explanation of quantum physics using simple thought experiments. We derive all relevant quantum predictions using minimal mathematics, without introducing the advanced calculations that are typically used to describe quantum physics. We focus on the two key surprises of quantum physics, namely wave{particle duality, a term that was introduced to capture the fact that single quantum particles in some respects behave like waves and in other respects like particles, and entanglement, which applies to two or more quantum particles and brings out the inherent contradiction between quantum physics and seemingly obvious assumptions regarding the nature of reality.
    [Show full text]
  • Electron Interferometry: Interferences Between Two Electrons and a Precision Method of Measuring Decoherence
    Annales de la Fondation Louis de Broglie, Volume 29, Hors s´erie1, 2004 857 Electron interferometry: Interferences between two electrons and a precision method of measuring decoherence Franz Hasselbach, Harald Kiesel, and Peter Sonnentag Institut f¨urAngewandte Physik, Universit¨atT¨ubingen, Auf der Morgenstelle 10, D-72076 T¨ubingen,Germany ABSTRACT. Louis de Broglie’s discovery of the wave nature of matter 80 years ago and the subsequent development of quantum mechanics by Erwin Schr¨odinger, Werner Heisenberg and Paul Dirac solved many riddles of those days and determined physics of the whole 20th century. Yet, after this long time, matter wave interferometry is as up to date as it was in 1927 when Louis de Broglie’s hypothesis was verified, e.g., by Davisson and Germer. Atom interferometry, ion interferometry and Bose-Einstein condensates are today’s fascinating applications based on de Broglie’s discovery. The focus of the present contribution are Hanbury Brown-Twiss anti-correlations (i.e. interferences between two fermions (electrons)) and the quantitative observation of decoherence by electron biprism interferometry. P.A.C.S.: 03.75.-b; 05.30.Fk; 03.65.Yz 1 Observation of Hanbury Brown-Twiss anticorrelations in a beam of free electrons The astronomers R. Hanbury Brown and R.Q. Twiss (HBT) were the first to observe in 1956 that the fluctuations in the counting rate of photons originating from uncorrelated point sources become, within the coherently illuminated area, slightly enhanced compared to a random sequence of classical particles [1, 2, 3]. This at a first glance mysterious formation of correlations in the process of propagation turns out to be a consequence of quantum interference between two indistinguishable pho- tons and Bose-Einstein statistics.
    [Show full text]
  • The Double-Slit Experiment - Physicsworld.Com
    The double-slit experiment - physicsworld.com http://physicsworld.com/cws/article/print/9745 A website from the Institute of Physics Signed in as ianappelbaum My profile Sign out Contact us The double-slit experiment Share this Sep 1, 2002 E-mail to a friend This article is an extended version of the article “The Connotea double-slit experiment” that appeared in the September CiteUlike 2002 issue of Physics World (p15). It has been further Delicious extended to include three letters about the history of the Digg double-slit experiment with single electrons that were Facebook published in the May 2003 issue of the magazine. Twitter What is the most beautiful experiment in physics? This is the question that Robert Crease asked Physics World readers in May - and more than 200 replied with suggestions as diverse as Schrödinger's cat and the Trinity nuclear test in 1945. The top five Related stories included classic experiments by Galileo, Millikan, Newton and The most beautiful Thomas Young. But uniquely among the top 10, the most beautiful experiment (survey) experiment in physics - Young's double-slit experiment applied to the From the New York Times : interference of single electrons - does not have a name associated Science's 10 most beautiful with it. experiments (abstract only) Most discussions of double-slit experiments with particles refer to The most beautiful Feynman's quote in his lectures: "We choose to examine a experiment (results) phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum Related links mechanics.
    [Show full text]
  • Atom Interferometry for Tests of General Relativity, Phd Thesis, Leibniz Universität Hannover © 2020 Für Opa
    ATOMINTERFEROMETRYFOR TESTSOFGENERALRELATIVITY Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation von M.Sc. Sina Leon Loriani Fard geboren am 06.10.1993 in Hamburg 2020 referent Prof. Dr. Ernst Maria Rasel Institut für Quantenoptik Leibniz Universität Hannover korreferent Prof. Dr. Peter Wolf LNE-SYRTE, Observatoire de Paris Université PSL, CNRS korreferent Prof. Dr. Wolfgang Ertmer Institut für Quantenoptik Leibniz Universität Hannover vorsitzende der prüfungskommission Prof. Dr. Michèle Heurs Institut für Gravitationsphysik Leibniz Universität Hannover tag der promotion: 07.10.2020 Sina Loriani: Atom interferometry for tests of General Relativity, PhD Thesis, Leibniz Universität Hannover © 2020 Für Opa. .ÑÃPQK .PYK éK. ÑK Y®K ABSTRACT The search for a fundamental, self-consistent theoretical framework to cover phe- nomena over all energy scales is possibly the most challenging quest of contempo- rary physics. Approaches to reconcile quantum mechanics and general relativity entail the modification of their foundations such as the equivalence principle. This corner stone of general relativity is suspected to be violated in various scenarios and is therefore under close scrutiny. Experiments based on the manipulation of cold atoms are excellently suited to challenge its different facets. Freely falling atoms constitute ideal test masses for tests of the universality of free fall in interfer- ometric setups. Moreover, the superposition of internal energy eigenstates provides the notion of a clock, which allows to perform tests of the gravitational redshift. Furthermore, as atom interferometers constitute outstanding phasemeters, they hold the promise to detect gravitational waves, another integral aspect of general relativity.
    [Show full text]
  • Atom Interferometry for Fundamental Physics and Gravitational Wave Detection
    Atom interferometry for fundamental physics and gravitational wave detection CERN Jason Hogan Stanford University September 12, 2019 Science applications • Gravitational wave detection • Quantum mechanics at macroscopic scales • QED tests (alpha measurements) Compact binary inspiral • Quantum entanglement for enhanced readout • Equivalence principle tests, tests of GR • Short distance gravity • Search for dark matter • Atom charge neutrality Rb wavepackets separated by 54 cm Image: https://www2.physics.ox.ac.uk/research/dark-matter-dark-energy 2 Atom interference Light interferometer Light Light fringes Beamsplitter Atom Atom fringes interferometer Beamsplitter Atom Mirror http://scienceblogs.com/principles/2013/10/22/quantum-erasure/ 3 http://www.cobolt.se/interferometry.html Atom optics using light (1) Light absorption: ħk v = ħk/m (2) Stimulated emission: ħk 4 Atom optics using light (1) Light absorption: Rabi oscillations ħk v = ħk/m “Beamsplitter” “Mirror” (2) Stimulated emission: ħk Time 5 Light Pulse Atom Interferometry Beamsplitter p/2 pulse “beamsplitter” Position ћk Beamsplitter “mirror” Atom p pulse Mirror ћk Time “beamsplitter” p/2 pulse ћk |p› •Interior view |p+ћk› ћk 6 Light Pulse Atom Interferometry • Long duration • Large wavepacket separation 7 10 meter scale atomic fountain 8 Interference at long interrogation time Port 1 Port 2 Wavepacket separation at apex (this data 50 nK) 2T = 2.3 seconds 1.4 cm wavepacket separation Interference (3 nK cloud) Dickerson, et al., PRL 111, 083001 (2013). 9 Large space-time area atom
    [Show full text]
  • Taming the Quantum Noisehow Quantum Metrology Can Expand the Reach of Gravitational-Wave Observatories
    Taming the quantum noise How quantum metrology can expand the reach of gravitational-wave observatories Dissertation zur Erlangung des Doktorgrades an der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaen Fachbereich Physik der Universitat¨ Hamburg vorgelegt von Mikhail Korobko Hamburg 2020 Gutachter/innen der Dissertation: Prof. Dr. Ludwig Mathey Prof. Dr. Roman Schnabel Zusammensetzung der Prufungskommission:¨ Prof. Dr. Peter Schmelcher Prof. Dr. Ludwig Mathey Prof. Dr. Henning Moritz Prof. Dr. Oliver Gerberding Prof. Dr. Roman Schnabel Vorsitzende/r der Prufungskommission:¨ Prof. Dr. Peter Schmelcher Datum der Disputation: 12.06.2020 Vorsitzender Fach-Promotionsausschusses PHYSIK: Prof. Dr. Gunter¨ Hans Walter Sigl Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang Hansen Dekan der Fakultat¨ MIN: Prof. Dr. Heinrich Graener List of Figures 2.1 Effect of a gravitational wave on a ring of free-falling masses, posi- tioned orthogonally to the propagation direction of the GW. 16 2.2 Michelson interferometer as gravitational-wave detector. 17 2.3 The sensitivity of the detector as a function of the position of the source on the sky for circularly polarized GWs. 18 2.4 Noise contributions to the total design sensitivity of Advanced LIGO in terms of sensitivity to gravitational-wave strain ℎ C . 21 ( ) 2.5 Sensitivity of the GW detector enhanced with squeezed light. 28 3.1 Effect of squeezing on quantum noise in the electromagnetic field for coherent field, phase squeezed state and amplitude squeezed state. 46 3.2 Schematic of a homodyne detector. 52 3.3 Sensing the motion of a mirror with light. 55 3.4 Comparison of effects of variational readout and frequency-dependent squeezing on quantum noise in GW detectors.
    [Show full text]