Principles and Applications of Climate Studies in Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

Principles and Applications of Climate Studies in Agriculture Harpal S. Mavi, PhD Graeme J. Tupper, MAgSc, DipEd Agrometeorology Principles and Applications of Climate Studies in Agriculture Pre-publication his book will be of great help to REVIEWS, “T students, scientists, and research COMMENTARIES, workers. It provides vast information EVALUATIONS . on the importance, availability, and general use of meteorological data/ser- avi and Tupper are to be con- vices in connection with the planning “Mgratulated for producing a very of agricultural investment and devel- wide-ranging book that delivers an opment projects. The authors have done information-rich overview of applica- a commendable job by collecting the tions and contemporary issues faced by latest information on existing meteoro- agrometeorology. They have focused logical scenarios for project implemen- on the explanation and application of tation as well as for future planning principles, often through the presenta- concerning additional investment in tion of real and practical examples, ren- dering the contents accessible to a broad development projects. Many books and audience. This book should prove a journals contain fragmented informa- useful reference, particularly for spe- tion on these topics but the authors of cialists from aligned disciplines and this book have presented all the infor- university students undertaking agri- mation under one umbrella.” culture-related courses.” G. S. Bains, PhD Stephen Lellyett Professor of Agrometeorology, Deputy Regional Director NSW, College of Agriculture, Commonwealth Bureau of Meteorology, Punjab Agricultural University, Darlinghurst, Australia India More pre-publication REVIEWS, COMMENTARIES, EVALUATIONS . he vagaries of the weather im- entific literature on subjects that in- “T pact greatly on mankind, affect- clude agrometeorology, the use of cli- ing our health, temperament, and living mate information in agriculture, solar standards. Mavi and Tupper have as- radiation and its role in plant growth, sembled a great deal of useful informa- environmental temperature and crop tion to help readers better understand production, and climatological meth- how weather and climate impact on ods for managing farm water re- farming systems and influence crop and sources. I recommend this book to edu- pasture yields and livestock produc- cators and those with an interest in tion. The book is replete with interest- applied climate science and agricul- ing examples and case studies to show ture.” how better knowledge of agrometeo- rology and better access to climate re- David George, BSc, GDipEd, MAppSc cords, short-term weather forecasts, and Scientist (climate applications seasonal outlooks can improve strate- and education), gic and tactical decision making on Queensland Department farms—thereby enabling managers to of Primary Industries increase the productivity, sustaina- bility, and financial viability of their ag- ricultural systems. Valuable insights are provided into how climate change is likely to impact on different regions throughout the world, and how the im- his comprehensive book meets pacts of such change may be reduced. “T an increasing need for those in- This publication will be valued by terested in climate and weather, such as farmers, students, scientists, policy- agricultural researchers, advisors, and makers, and rural and urban commu- policymakers. The authors use their in- nities in developed and developing ternational experience to apply the countries throughout the world.” principles of climate and plant science to practical management of agricul- David H. White, PhD tural systems—from the policy issue of Director, ASIT Consulting, drought assistance to managing pests Canberra, Australia in the field. The principles of agrome- teorology have never been more im- portant as we manage agriculture that is productive and sustainable in a vari- able and changing climate. This book is valuable not only as a university text his book is a welcome and neces- but also as a useful reference text for “T sary addition to keep those in- professionals involved in the interface volved in agriculture and other related between climate and agriculture.” industries up-to-date with climate sci- ence developments and their applica- Peter Hayman, PhD tions. The major strength of this book is Coordinator, Climate Applications, that it brings together principles that NSW Agriculture, Tamworth, are globally relevant with the latest sci- Australia More pre-publication REVIEWS, COMMENTARIES, EVALUATIONS . grometeorology is more in de- his book provides a wide variety “A mand than ever, and this book “Tof perspectives and extensive ex- will be an important resource for ques- amples of tools and procedures to man- tions on how climate and weather im- age and make the most of both short- pact on agricultural production. The term weather and longer-term climate authors have used their extensive expe- variability. This very readable book rience to harvest examples and extract should be useful to a broad range of principles across a diverse but repre- practitioners from farmers to research sentative range of agricultural produc- scientists.” tion systems. Through an interdisciplin- ary perspective, they have achieved a Mary Voice, MSc, GrCert Principal, Cumulus Consulting, very useful distillation of principles by Lecturer, La Trobe University reviewing applications in agricultural management. The eleven chapters in- clude thorough reviews on how cli- mate and weather determine effective rainfall, on drought, climate change, and on the incidence of many pests and parasites. The book’s focus is on analy- sis and applications, and it is a valuable resource for both students and manag- ers.” Barry J. White, PhD National Coordinator (Climate Variability R&D Program), Land & Water Australia Food Products Press® An Imprint of The Haworth Press, Inc. New York • London • Oxford NOTES FOR PROFESSIONAL LIBRARIANS AND LIBRARY USERS This is an original book title published by Food Products Press®, an imprint of The Haworth Press, Inc. Unless otherwise noted in specific chapters with attribution, materials in this book have not been previ- ously published elsewhere in any format or language. CONSERVATION AND PRESERVATION NOTES All books published by The Haworth Press, Inc. and its imprints are printed on certified pH neutral, acid free book grade paper. This paper meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Material, ANSI Z39.48-1984. Agrometeorology Principles and Applications of Climate Studies in Agriculture FOOD PRODUCTS PRESS® Crop Science Amarjit S. Basra, PhD Senior Editor Heterosis and Hybrid Seed Production in Agronomic Crops edited by Amarjit S. Basra Intensive Cropping: Efficient Use of Water, Nutrients, and Tillage by S. S. Prihar, P. R. Gajri, D. K. Benbi, and V. K. Arora Physiological Bases for Maize Improvement edited by María E. Otegui and Gustavo A. Slafer Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses edited by Amarjit S. Basra Crop Responses and Adaptations to Temperature Stress edited by Amarjit S. Basra Plant Viruses As Molecular Pathogens by Jawaid A. Khan and Jeanne Dijkstra In Vitro Plant Breeding by Acram Taji, Prakash P. Kumar, and Prakash Lakshmanan Crop Improvement: Challenges in the Twenty-First Century edited by Manjit S. Kang Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality edited by Gustavo A. Slafer, José Luis Molina-Cano, Roxana Savin, José Luis Araus, and Ignacio Romagosa Tillage for Sustainable Cropping by P. R. Gajri, V. K. Arora, and S. S. Prihar Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications by P. Vidhyasekaran Handbook of Formulas and Software for Plant Geneticists and Breeders edited by Manjit S. Kang Postharvest Oxidative Stress in Horticultural Crops edited by D. M. Hodges Encyclopedic Dictionary of Plant Breeding and Related Subjects by Rolf H. G. Schlegel Handbook of Processes and Modeling in the Soil-Plant System edited by D. K. Benbi and R. Nieder The Lowland Maya Area: Three Millennia at the Human-Wildland Interface edited by A. Gómez-Pompa, M. F. Allen, S. Fedick, and J. J. Jiménez-Osornio Biodiversity and Pest Management in Agroecosystems, Second Edition by Miguel A. Altieri and Clara I. Nicholls Plant-Derived Antimycotics: Current Trends and Future Prospects edited by Mahendra Rai and Donatella Mares Concise Encyclopedia of Temperate Tree Fruit edited by Tara Auxt Baugher and Suman Singha Landscape Agroecology by Paul A. Wojkowski Concise Encyclopedia of Plant Pathology by P. Vidhyasekaran Testing of Genetically Modified Organisms in Foods edited by Farid E. Ahmed Concise Encyclopedia of Bioresource Technology edited by Ashok Pandey Agrometeorology: Principles and Applications of Climate Studies in Agriculture by Harpal S. Mavi and Graeme J. Tupper Agrometeorology Principles and Applications of Climate Studies in Agriculture Harpal S. Mavi, PhD Graeme J. Tupper, MAgSc, DipEd Food Products Press® An Imprint of The Haworth Press, Inc. New York • London • Oxford Published by Food Products Press®, an imprint of The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580. © 2004 by The Haworth Press, Inc. All rights reserved. No part of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, microfilm, and recording, or by any information storage and retrieval system, without permission in writing
Recommended publications
  • Western Ringtail Possum (Pseudocheirus Occidentalis) Recovery Plan
    Western Ringtail Possum (Pseudocheirus occidentalis) Recovery Plan Wildlife Management Program No. 58 Western Australia Department of Parks and Wildlife October 2014 Wildlife Management Program No. 58 Western Ringtail Possum (Pseudocheirus occidentalis) Recovery Plan October 2014 Western Australia Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Foreword Recovery plans are developed within the framework laid down in Department of Parks and Wildlife Policy Statements Nos. 44 and 50 (CALM 1992, 1994), and the Australian Government Department of the Environment’s Recovery Planning Compliance Checklist for Legislative and Process Requirements (DEWHA 2008). Recovery plans outline the recovery actions that are needed to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. Recovery plans are a partnership between the Department of the Environment and the Department of Parks and Wildlife. The Department of Parks and Wildlife acknowledges the role of the Environment Protection and Biodiversity Conservation Act 1999 and the Department of the Environment in guiding the implementation of this recovery plan. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. This recovery plan was approved by the Department of Parks and Wildlife, Western Australia. Approved recovery plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community, and the completion of recovery actions. Information in this recovery plan was accurate as of October 2014.
    [Show full text]
  • Bibliometric Analysis of Rice and Climate Change Publications Based on Web of Science
    Bibliometric Analysis of Rice And Climate Change Publications Based On Web of Science Bao-Zhong Yuan ( [email protected] ) Huazhong Agriculture University https://orcid.org/0000-0003-2353-3873 Jie Sun Huazhong Agriculture University Research Article Keywords: Bibliometric analysis, Climate change, rice, VOSviewer, Web of Science Posted Date: August 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-683332/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract To clarify the current situation, hotspots, and development trends, in the eld of rice and climate change topic research, a massive literature dataset were analysed from the Web of Science database by bibliometric method. The research theme was chosen given the continuous increase of studies related to climatic changes and their consequences to rice. Based on the Web of Science core database, this study analyzed 3377 papers in the eld of rice and climate change topic research from 1990 to 2021, which include 67 highly cited papers. Papers were mainly written in English (3,366, 99.674 %), from 12,655 authors, 3,259 organizations and 113 countries/territories, published in 761 journals and seven book series. The top ve Journals are Science of the Total Environment (97, 2.872 %), Climatic Change (71, 2.102 %), Agricultural and Forest Meteorology (66, 1.954 %), Global Change Biology (65, 1.925 %) and Sustainability (64, 1.895 %), each published more than 64 papers. Top ve countries and regions were Peoples R China, USA, India, Australia and Japan. Top ve organizations of Chinese Acad Sci, Nanjing Agr Univ, Int Rice Res Inst (IRRI), Chinese Acad Agr Sci, and Univ Chinese Acad Sci were popular based on contribution of articles more than 116 papers each.
    [Show full text]
  • Report October 2017
    Defoliation of jarrah in the Leeuwin-Naturaliste region of Western Australia September-October 2017 Version: 1.1 Approved by: Last Updated: 6 October 2017 Custodian: Allan J. Wills Review date: October 2018 Version Date approved Approved by Brief Description number DD/MM/YYYY 1.1 Defoliation of jarrah in the Leeuwin- Naturaliste region of Western Australia September-October 2017 Allan J. Wills and Janet D. Farr Occasional report October 2017 Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498 www.dbca.wa.gov.au © Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2017 October 2017 This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions. This report was prepared by Allan J. Wills and Janet D. Farr Questions regarding the use of this material should be directed to: Allan J. Wills Senior Technical Officer Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: 0438996352 Email: [email protected] The recommended reference for this publication is: Wills AJ & Farr JD (2017). Defoliation of jarrah in the Leeuwin-Naturaliste region of Western Australia September-October 2017. Department of Biodiversity, Conservation and Attractions, Perth.
    [Show full text]
  • In Vitro Propagation of Eucalyptus Spec1es•
    McComb, J.A., Bennett, I.J. and Tonkin, C. (1996) In vitro propagation of Eucalyptus species. In: Taji, A. and Williams, R., (eds.) Tissue culture of Australian plants. University of New England, Armidale, NSW, Australia, pp. 112-156 Chapter 4 In vitro propagation of Eucalyptus spec1es• 2 1 J.A. McComb1, I.J. Bennett and C. Tonkin 1 School of Biological and Environmental Sciences, Murdoch University, Murdoch, WA 6150. 2 school of Applied Science, Edith Cowan University, Mount Lawley, WA 6050 Australia. Contents • Introduction • Two case studies of the application of tissue culture • Eucalypts important in plantations • Tissue culture of other species of eucalypts • Conclusion KEY WORDS: Eucalyptus, eucalypt, micropropagation, clonal field trials, Phytophthora cinnamomi, root architecture, in vitro rooting, salt tolerance, transformation, protoplasts. LIST OF ABBREVIATIONS: AFOCEL Association Foret Cellulose BAP Benzy!amino-purine BT Bacillus thuringensis CSIRO Commonwealth Scientific and Industrial Research Organisation GA3 Gibberellin A3 IAA Indole acetic acid IBA Indole butyric acid MS Murashige and Skoog (1962) medium NAA Naphthalene acetic acid RR Resistant jarrah seedlings from families on average, resistant to dieback RS Resistant jarrah seedlings from families on average, susceptible to dieback ss Susceptible jarrah seedlings from families on average, susceptible to die back LIST OF SPECIES (see end of chapter). 112 In vitro propagation of Eucalyptus species Introduction The importance of eucalypts and reasons for tissue culture Eucalypts are Australia's most distinctive plant group. They are contained within the genus Eucalyptus which consists of over 500 named species, with more as yet unnamed (Brooker & Kleinig 1983; 1990 Chippendale 1988). The natural distribution of the genus is almost completely confined to the Australian continent and Tasmania with only two species, E.
    [Show full text]
  • Applications of Geographical Information Systems and Remote Sensing in Agrometeorology G
    Agricultural and Forest Meteorology 103 (2000) 119–136 Applications of geographical information systems and remote sensing in agrometeorology G. Maracchi a,∗, V. Pérarnaud b,1, A.D. Kleschenko c,2 a Institute of Agrometeorology and Environmental Analysis for Agriculture, Research National Council, P.le delle Cascine 18, 50144 Firenze, Italy b METEO FRANCE, SCEM/CBD, Avenue G. Coriolis 42, F-31057 Toulouse Cedex, France c All-Russian Research Institute of Agricultural Meteorology, Lenin Street 82, 249020 Obninsk, Kaluga Region, Russia Abstract An eco-compatible and sustainable development requires integrated management of all available information and the extraction of analytical evaluation on the impact of human activities. Agrometeorology can be used to contribute to further understanding of the relative importance of each environmental component, organising the field activities and optimising the use of natural resources. This is especially true today, due to the availability of new tools, as geographic information systems (GIS), which allow the management of an incredible quantity of data, as traditional digital maps, database, models etc. The advantages are manifold and highly important, especially for the fast cross-sector interactions and the production of synthetic and lucid information for decision-makers. Remote sensing provides the most important informative contribution to GIS, which furnishes basic informative layers in optimal time and space resolutions. This paper describes various recent applications of GIS and remote sensing in Agrometeorology, both in developed and developing countries. It illustrates the possible evolution of these systems and the expected future developments, which can be decisive for a re-launch of the role of this science in the environmental and land resource management.
    [Show full text]
  • Satellite Remote Sensing and GIS Applications in Agricultural Meteorology
    Satellite Remote Sensing and GIS Applications in Agricultural Meteorology Proceedings of the Training Workshop 7-11 July, 2003, Dehra Dun, India Editors M.V.K. Sivakumar P.S. Roy K. Harmsen S.K. Saha Sponsors World Meteorological Organization (WMO) India Meteorological Department (IMD) Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP) Indian Institute of Remote Sensing (IIRS) National Remote Sensing Agency (NRSA) and Space Application Centre (SAC) AGM-8 WMO/TD No. 1182 World Meteorological Organisation 7bis, Avenue de la Paix 1211 Geneva 2 Switzerland 2004 Published by World Meteorological Organisation 7bis, Avenue de la Paix 1211 Geneva 2, Switzerland World Meteorological Organisation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of the copyright owner. Typesetting and Printing : M/s Bishen Singh Mahendra Pal Singh 23-A New Connaught Place, P.O. Box 137, Dehra Dun -248001 (Uttaranchal), INDIA Ph.: 91-135-2715748 Fax- 91-135-2715107 E.mail: [email protected] Website: http://www.bishensinghbooks.com FOREWORD CONTENTS Satellite Remote Sensing and GIS Applications in Agricultural .... 1 Meteorology and WMO Satellite Activities – M.V.K. Sivakumar and Donald E. Hinsman Principles of Remote Sensing ......... 23 Shefali Aggarwal Earth Resource Satellites ......... 39 – Shefali Aggarwal Meteorological Satellites ......... 67 – C.M. Kishtawal Digital Image Processing ......... 81 – Minakshi Kumar Fundamentals of Geographical Information System ......... 103 – P.L.N. Raju Fundamentals of GPS ......... 121 – P.L.N. Raju Spatial Data Analysis ........
    [Show full text]
  • Chapter 2 Agricultural Meteorological Variables and Their Observations
    Chapter 2 Agricultural Meteorological Variables and their Observations This Chapter was compiled by Vasiraju R.K. Murthy with James Milford, Kees Stigter, Simone Orlandini, Andrew Oliphant, Richard Grant and Jon Wieringa The set up was assisted by facilitators Amador Argete, Han Yadong, Valentin Kazandjiev, Branislava Lalic , Swami Nathan, Francesco Sabbatini and Tom Sauer The Chapter was externally reviewed by Tom Keane and Marianna Nardino, also this way improving the draft manuscript There was internal coordination by Vasiraju R.K. Murthy and external coordination by Kees Stigter 1 2.1 Basic aspects of agricultural meteorological observations Observations of the physical and biological variables in the environment are essential in agricultural meteorology. Meteorological considerations enter in assessing the performance of a plant or animal because their growth is a result of the combined effect of genetic characteristics (nature) and their response to environment (nurture). Without quantitative data, agrometeorological planning, forecasting, research and services by agrometeorologists cannot properly assist agricultural producers to survive and tomeet the ever-increasing demands for food and agricultural by-products. Suchdata are also needed to assess the impacts of agricultural activities and processes on the environment and climate. The following sections provide guidance on the types of observations required, their extent, organization and accuracy, as well as on the instruments needed to obtain the data, with emphasis on those for operational and long term stations. There are older books on measurements in the open but more recently the number with components useful in agricultural meteorology has reduced. Reference can here for example be made to books that have become more widely in use after the previous edition of this Guide was compiled such as Fritschen and Gay (1979), Greacen (1981), Meteorological Office (1981), Woodward and Sheehy (1983), Russell et al.
    [Show full text]
  • Interactions Among Leaf Miners, Host Plants and Parasitoids in Australian Subtropical Rainforest
    Food Webs along Elevational Gradients: Interactions among Leaf Miners, Host Plants and Parasitoids in Australian Subtropical Rainforest Author Maunsell, Sarah Published 2014 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/3017 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/368145 Griffith Research Online https://research-repository.griffith.edu.au Food webs along elevational gradients: interactions among leaf miners, host plants and parasitoids in Australian subtropical rainforest Sarah Maunsell BSc (Hons) Griffith School of Environment Science, Environment, Engineering and Technology Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Synopsis Gradients in elevation are used to understand how species respond to changes in local climatic conditions and are therefore a powerful tool for predicting how mountain ecosystems may respond to climate change. While many studies have shown elevational patterns in species richness and species turnover, little is known about how multi- species interactions respond to elevation. An understanding of how species interactions are affected by current clines in climate is imperative if we are to make predictions about how ecosystem function and stability will be affected by climate change. This challenge has been addressed here by focussing on a set of intimately interacting species: leaf-mining insects, their host plants and their parasitoid predators. Herbivorous insects, including leaf miners, and their host plants and parasitoids interact in diverse and complex ways, but relatively little is known about how the nature and strengths of these interactions change along climatic gradients.
    [Show full text]
  • Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A
    Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia FloraSearch 3a by Trevor J. Hobbs, Michael Bennell and John Bartle (eds) August 2009 RIRDC Publication No 09/043 RIRDC Project No UWA-98A © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 846 6 ISSN 1440-6845 Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia - FloraSearch 3a Publication No. 09/043 Project No. UWA-98A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Plant Responses to Insect Egg Deposition
    EN60CH26-Hilker ARI 26 November 2014 15:1 Plant Responses to Insect Egg Deposition Monika Hilker1,∗ and Nina E. Fatouros1,2 1Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universitat¨ Berlin, 12163 Berlin, Germany; email: [email protected] 2Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands; email: [email protected] Annu. Rev. Entomol. 2015. 60:493–515 Keywords First published online as a Review in Advance on oviposition, induced plant defense, parasitoids, plant volatiles, priming, October 20, 2014 bacterial symbiont The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Plants can respond to insect egg deposition and thus resist attack by herbiv- 10.1146/annurev-ento-010814-020620 orous insects from the beginning of the attack, egg deposition. We review Copyright c 2015 by Annual Reviews. Annu. Rev. Entomol. 2015.60:493-515. Downloaded from www.annualreviews.org ecological effects of plant responses to insect eggs and differentiate between All rights reserved egg-induced plant defenses that directly harm the eggs and indirect defenses ∗ Corresponding author that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval perfor- mance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 10/19/16. For personal use only. been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition.
    [Show full text]
  • Evidence for Eocene Origin of the Yucca-Yucca Moth Association
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9178–9183, August 1999 Evolution Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association OLLE PELLMYR†‡ AND JAMES LEEBENS-MACK†§ †Department of Biology, Vanderbilt University, Box 1812, Station B, Nashville, TN 37235; and §Department of Biology, Colgate University, Hamilton, NY 13346 Communicated by Ebbe S. Nielsen, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia, June 21, 1999 (received for review October 30, 1998) ABSTRACT The obligate mutualism between yuccas and genera. The present results support the following conclusions: (i) yucca moths is a major model system for the study of coevolving an explosive radiation of the yucca moths and evolution of species interactions. Exploration of the processes that have pollination behavior had occurred no later than 40 million years generated current diversity and associations within this mutu- ago (Mya), (ii) a second burst of yucca moth diversification is alism requires robust phylogenies and timelines for both moths coincident with Pliocene desertification, (iii) derived nonpolli- and yuccas. Here we establish a molecular clock for the moths nating cheater yucca moths have co-occurred with pollinators for based on mtDNA and use it to estimate the time of major life at least 1.26 Ϯ 0.96 My, and (iv) the radiation of yuccas occurred history events within the yucca moths. Colonization of yuccas much earlier than suggested by the sparse fossil record. The -had occurred by 41.5 ؎ 9.8 million years ago (Mya), with rapid emerging picture of early diversification in this obligate mutual life history diversification and the emergence of pollinators ism is consistent with a model of pollinator colonization of partly within 0–6 My after yucca colonization.
    [Show full text]
  • Biology Projects.Pdf
    BIOLOGY PROJECTS FOR HIGH SCHOOL STUDENTS JEN McCOMB (EDITOR) SCHOOL OF ENVIRONMENTAL AND LIFE SCIENCES MURDOCH UNIVERSITY MURDOCH W.A. 6155 This book is available from : The Services Division, Science Teachers Association, Box Sl50l, G.P.O. Perth, W.A. l. INDEX PAGE NO. 5. Introduction ...................... 4 SECTION A PROJECTS l. Fungi 6. 1-1 Dung fungi . • . • . 6 1-2 Fungi that break down hair, nails and insect skins 7 1-3 Isolation of fungi from the soil 8 l-4 Nematode-trapping fungi 10 7. l-5 Freshwater fungi . ll 2. Algae 2-l Growth of algae 13 2-2 Liquid seaweed extracts 15 3. 'Mosses 3-l Life cycle of mosses • . 16 3-2 Germination and,growth of moss spores 17 4. Flowering plants 4-1 Real and fake food . • . 19 4-2 Bulbs that pull themselves down into the soil 20 8. 4-3 Root responses to gravity 21 4-4 Root parasitism by Christmas trees 22 4-5 Rooting of cuttings . • 23 4-6 Tolerance to waterlogging 24 9. 4-7 Effect of seawater and/or detergents on plants 25 4-8 Effect of different types of water on plant growth 26 4-9 Movement of plant stems 27 4-10 Floral clocks 28 4-11 Wind borne pollen 29 10. 4-12 Pollen calendar 30 4-13 Pollen in honey 31 4-14 Beetles as pollinators • 32 4-15 What causes the death of annual plants?. 33 4-16 Collection of seeds by ants 34 ll. 4-1'7 Seed survival after ingestion 35 4-18 Seed germination .
    [Show full text]