Chapter 2

Agricultural Meteorological Variables and their Observations

This Chapter was compiled by Vasiraju R.K. Murthy with James Milford, Kees Stigter, Simone Orlandini, Andrew Oliphant, Richard Grant and Jon Wieringa

The set up was assisted by facilitators Amador Argete, Han Yadong, Valentin Kazandjiev, Branislava Lalic , Swami Nathan, Francesco Sabbatini and Tom Sauer

The Chapter was externally reviewed by Tom Keane and Marianna Nardino, also this way improving the draft manuscript

There was internal coordination by Vasiraju R.K. Murthy and external coordination by Kees Stigter

1 2.1 Basic aspects of agricultural meteorological observations

Observations of thephysical and biological variables in the environment are essentialinagricultural.Meteorologicalconsiderationsenterinassessingthe performanceofaplantoranimalbecausetheirgrowthis a result of thecombined effect ofgenetic characteristics (nature)andtheir responsetoenvironment (nurture). Without quantitative data, agrometeorological planning, forecasting, research and servicesbyagrometeorologistscannotproperlyassistagriculturalproducerstosurvive andtomeettheeverincreasingdemandsforfoodandagriculturalbyproducts.Suchdata arealso neededtoassess theimpacts of agriculturalactivities andprocesses onthe environment and climate. The following sections provide guidance on the types of observations required, their extent, organization and accuracy, as well as on the instrumentsneededtoobtainthedata,withemphasisonthoseforoperationalandlong termstations.Thereareolderbooksonmeasurementsintheopenbutmorerecentlythe numberwithcomponentsusefulinagriculturalmeteorologyhasreduced.Referencecan hereforexample be madetobooksthathavebecomemorewidely in useafterthe previouseditionofthisGuidewascompiledsuchasFritschenandGay(1979),Greacen (1981), Meteorological Office (1981), Woodward and Sheehy (1983), Russell et al. (1989),Pearcyetal.,(1989),GoelandNorman(1990),KaimalandFinnigan(1994), SmithandMullins(2001),Strangeways(2003)andWMO(1984;1994,2006,2007)as wellasforoperationalagrometeorologychaptersinRosenbergetal.(1983),Griffiths (1994),BaldyandStigter(1997)aswellasWMO(2001). Theobservationsrequireddependonthepurposeforwhichtheywillbeused.For thecharacterizationofagroclimate,forclimatemonitoringandpredictionaswellasfor themanagementofnaturalresources,nationalcoverageoverperiodsofmanyyearsis required.Thesedataalsoprovidethebackgroundfortheshortertermdecisionmaking involvedinactivitiessuchasresponsefarming, monitoringof,andpreparednessand earlywarningfornaturaldisasters,alongwithforecastsforpestsanddiseases.Forthese activities,additionalobservationsareneeded.Thepreparationofadvisoriesandservices on farming methods, including irrigation and microclimate management and manipulation, also requires specialised data. Finally, the needs of research call for detailedandprecisedataaccordingtoeachresearchtopic.Therearetoomanyspecialised methodstobeincludedinthisreview,butalmostallresearchprojectsrequireinformation onthebackgroundclimatologywhichmaybederivedfromtheoutputsofthelongterm typesofstationlistedbelow.

2.1.1 Data as parts of support systems to agrometeorological services In Chapter 1, Annex 1B, data are considered parts of support systems to agrometeorologicalservices.Thisappliestoassessmentsaswellaspredictions.Itshould be stressed that this refers to real data, observed parameters, "ground truth". As mentionedalreadyinChapter1,collectionofgoodobservationshasgoneoutoffashion inmanycountriesbecauseoftheillusionthatcomputermodelledestimatescanreplace them. Models can only be useful if they get real input data and if additional real observationsareavailabletocheckthevalidityofmodeloutput.

2 Whenthedataaretoberelatedtoagriculturaloperations,agriculturaldataare alsoessential,includingthestateofthecropsandofanimals.Thesecomplementarydata are often collected by nonmeteorological personnel. For all agrometeorological applications,inordertomakeinformationavailabletoassistfarmersallthetimeatthe fieldlevel,toprepareadvisories,andforlongertermplanning,itisnecessarytocombine the agricultural and the meteorological data. To make better use of the agrometeorological data in supporting agrometeorological services, and for effective transferoftheknowledgeofagrometeorologytofarmersatfarmlevel, thescienceof informationtechnologyisalsoveryuseful(seealsoChapter17ofthisGuide).

2.1.2 Physical climatic variables Agriculturalmeteorologyisconcernedwitheveryaspectoflocalandregional climatesandthecausesoftheirvariations,thusmakingstandardobservationofclimatic variablesafundamentalnecessity(e.g.Hubbard,1994).Itisalsoconcernedwithany climaticmodificationswhichmaybeintroducedbyhumanmanagementof, animal husbandry or operations (e.g. Stigter, 1994a). Physical variables of climate are observed to assist the management of agricultural activities. Such managementincludesdeterminingthetime,extentandmannerofcultivationandother agricultural operations (sowing, harvesting, planting, application of biocides and herbicides,ploughing,harrowing,rolling,irrigation,suppressionofevaporation,deign, constructionandrepairofbuildingsforstorage, animalhusbandryetc.)anddifferent methodsofconservation,industrialuseandtransportationofagriculturalproducts. Indispensableclimaticparametersinthedevelopmentofagriculturalmeteorology include,moreorless,allthosepertainingtogeographicalclimatology,especiallythose permittinginterpretationofphysicalprocessesinthelowestatmosphereanduppersoil layers,whicharetheclimaticdeterminantsforthelocalorregionalbiosphere(Monteith andUnsworth,1990).Parameterspertainingtoenergyandwaterbalancearethusvery important,suchasprecipitation,humidity, temperature,solarradiationandairmotion. Further,certainphysicalandchemicalcharacteristicsoftheatmosphere,precipitationand soilarealsoimportantinagriculturalmeteorology,e.g.pollutantssuchasCO 2,SO 2, dissolved and suspended matter in precipitation, thermal, hydrological contents and salinityofsoil. Theserequirespecialisedequipmentwhichisavailable onlyatafew selectedstations.Nonroutinephysical(andbiological,seebelow)observations,suchas thoserequiredforresearch,surveysandspecialservices(e.g.AppendixIIinBaldyand Stigter,1997),areusuallymoredetailedthanstandardobservationsandtheyusuallyneed tobemoreaccuratewhereprocessesmustbestudiedinsteadofphenomena.

2.1.3 Biological variables Besides scientific observation of the physical environment, the simultaneous evaluationofitseffectontheobjectsofagriculture,i.e.,plants,animalsandtrees,bothas individualsandascommunities,isalsoaprerequisiteofagriculturalmeteorology.The routineobservationsprovidedbyclimatologicalandagrometeorologicalstationsshould be accompanied by routine biological observations. For the best results these observationsshouldbecomparable withthoseofthephysicalenvironment inextent, standard and accuracy. Biological observations generally are phenological or

3 phenometricinnatureorboth.Phenologicalobservationsaremadetoevaluatepossible relationsbetweenthephysicalenvironmentandthedevelopmentofplantsandanimals whilethephenometrictypesaremadetorelatethephysicalenvironmentwithbiomass changes.TheWMO Technical Regulations andsomeoftheTechnicalNotesmentioned underthereferencessectionofthischapterincludecertaindetailsaboutobservationsof this type. Literature is given in 2.3.2 and connections within this Guide in 2.4.2. Importantobservationsincludeassessmentsofdamagecausedbyweather,diseasesand parasitesaswellasmeasurementsofgrowthandyield.

2.1.4 Scale of observations Inagriculturalmeteorologyobservationsarerequiredonthemacro,mesoand microscale.Onthelargerscalesitshouldmakeuseofallavailablelocalobservationsof environmentalphysicalparametersmadebytheinternationalsynopticnetworkofstations (seealso2.1.5).Practicallytheycanbeusedinrealtimeinagriculture.Forparameters withverylittlespatialvariation(e.g.sunshineduration)lowdensityobservationnetworks normallysufficeforagriculturalpurposes.Mostoftheplanningactivitiesofagricultural undertaking,however,requirehigherdensitydata. Thesecansometimesbeobtained fromsynopticstationsobservationsbyuseofappropriateinterpolations(Wieringa,1998; WMO,2001). Forbiometeorologicalresearchthemicroscaleobservationsareoften required. New typicalcharacteristicdistancesoftheseclimatic scales arereferredtoin Chapter1ofWMO(2006).TheretheMesoscaleisdefinedas3–100km,theToposcale orLocalscaleas100mto3kmandtheMicroscaleaslessthan100m(inthelastcase withtheaddition“foragriculturalmeteorology”).Indeed,aMesoscaleof100kmdoes notfeelrightinagriculturalproductionandToposcaleisalsonottherighttermfora farm.However,inWMO(2006)itisalsostatedthatinparticular,applicationshavetheir ownpreferred time andspace scales foraveraging, stationdensityandresolutionof phenomena–smallforagriculturalmeteorology,largeforgloballongrangeforecasting. Withrespecttoagriculturalmeteorologythisis(differently)discussedinWMO(2001) andinKeane(2001),partlyafterGuyot(1998). Itfollowsfromtheabovethatitisdesirablethatwecanuseobservationsfrom agricultural meteorological stations. Such stations are equipped to perform general meteorological and biological observations and are usually located at experimental stationsorresearchinstitutesofagriculture,,animalhusbandry,forestryand soilsciences.Frequenciesofobservation,thetimescaletobeappliedformeasurements andtheiraveraging,dependonthephenomenaandprocessesunderstudy,theirscales andratesofchange. InWMO(2006)thisisdealtwithunder“representativeness”(see also2.2.2.1). Forresearchworkinagriculturalmeteorology, standardinstrumentationunder standardenvironmentalconditionsareoftenuseful,butinmanycasesspecialstations, withspecialequipmentandnonstandardexposureconditions,arerequired(e.g.Stigter, 1994b). Forbiometeorologicalresearchandformanyagrometeorologicalproblems, additional observations in confined areas, such as within crops, woods, agricultural buildingsorcontainersforconservationortransportationofproduceareoftenrequired. 2.1.5 Extent of observations

4 Agricultural meteorology can and should make use of all available local observationsofenvironmentalphysicalparametersfromfixed pointsinthesynoptic, climatologicalorhydrologicalnetworksincludingabroadrangeofareaandpointdata derivedfromnumericalweatheranalysisandpredictions.Thisincludescertainupperair data(atleastinthelowerlayersfromupto3000m),e.g.upperwinds(aerobiology), temperatureandhumidityprofiles(forenergybudgets).Infact,itisdesirablethatata selectionofthesestationsadditionalobservationsofmorespecificinteresttoagriculture bemade. Climatologicalandhydrologicalstations,whichareoftenmorerepresentativeof agricultural areas than synoptic stations, provide information (daily precipitation amounts,extremetemperatures,etc.)whichareusefulforoperationalagrometeorological purposesandinthemanagement ofrisks anduncertainties. Since these networksof synoptic,climatologicalandhydrologicalstationsarerestrictedindensityorinkindof observation,it is desirable thatthesebesupplementedbyagriculturalmeteorological stations.Thecompletenetworkshouldincludeallaspectsofclimaticandsoilvariations and each type of agricultural, horticultural, animal husbandry, hydrobiological, and forestryoperationsthatexistinthecountry. Newpossibilitiesforagriculturalmeteorologyareofferedbytheavailabilityof remotesensingtechniques(e.g.Milford,1994),whichmaketheevaluationpossibleof somevariablesofthephysicalenvironmentandthebiomassoverextendedareasandto guide interpolation. Thesetypesofdataareusefultosupplement agrometeorological informationandtoaidforecastingandwarningservicestoagriculture.

2.1.6 Data without metadata are unreliable data Meteorologicalobservationsdonotinformusforsureaboutthestateofthelocal atmosphere unless weknowhowtheobservations weremade —theinstrument, its installationheight andexposure,usedsampling andaveraging times, andthewayin whichthemeasurementswereprocessed.Specificationsofalltheselinksoftheobser vationchainarecalled metadata,andtheiravailabilitydeterminesthevalueofmea surements.Averagewindspeedobservedat2mheightwillbeabouttwothirdsofthe windspeedat10mheight.Amaximumtemperatureobservedwithafastthermometer abovedrysandcanbemanydegreeshigherthanthemaximumobservednearbyonthe same dayabovewetclaywithaslowthermograph.Tojudgecontentandqualityof observationsitisessentialtoknowtheirmetadata(WieringaandRudel,2002). Traditionally, for synoptic stations this issue was dealt with by WMO rules specifying standard instrument exposures and comparable observation procedures. However,therequiredveryopenterrainisnotalwaysavailable (evenatairports)and many observationbudgets areinsufficient tomeet the rules. Around1990, climate investigationsshowedthegreatimportanceofknowingtheactualstationexposuresetc., evenforofficiallystandardizedsynopticstations.Foragrometeorologicalstations,which make varying types of observations in varying terrain, metadata have always been importantbutgenerallywerenamed"stationhistory". Therefore it is more important than ever that for agrometeorological stations recordsaremadeandkeptoftheinstrumentation(type, calibration, maintenance), instrument exposures (mounting, siting, surroundings at toposcale), and observation

5 procedures (sampling, averaging, frequency of measurements, recording, archiving). Fullerspecificationofnecessarymetadataisgiveninsection2.2.5ofthischapter.

2.2. Agricultural meteorological stations

2.2.1 Classification ReferenceshouldbemadetoLinacre(1992 ). Accordingtothe WMO Technical Regulations ,eachagriculturalmeteorologicalstationbelongstooneofthefollowing categories:

(a) A principal agricultural meteorological station is a station which provides detailed simultaneous meteorological and biological information and where researchinagriculturalmeteorologyiscarriedout. Theinstrumentalfacilities, rangeandfrequencyofobservations,inbothmeteorologicalandbiologicalfields, and the professional personnel are such that fundamental investigations into agricultural meteorological questions of interest to the countries or regions concernedcanbecarriedout.

(b) An ordinary agricultural meteorological station isastationthatprovides,ona routinebasis,simultaneousmeteorologicalandbiologicalinformationandmaybe equippedtoassistinresearchintospecificproblems;ingeneral,theprogramme ofbiologicalorphenologicalobservationsforresearchwillberelatedtothelocal climaticregimeofthestationandtolocalagriculture.

(c) An auxiliary agricultural meteorological station is a station which provides meteorologicalandbiologicalinformation.Themeteorologicalinformationmay includesuchitemsassoiltemperature,soilmoisture,potentialevapotranspiration, durationofvegetativewetting,detailedmeasurementsintheverylowestlayerof the atmosphere; the biological information may cover phenology, onset and spreadofplantdiseases,etc.

(d) An agricultural meteorological station for specific purposes is astationsetup temporarilyorpermanentlyfortheobservationofoneorseveralvariablesand/or ofspecifiedphenomena.

Stationscorrespondingto(a)arenotcommonbecauseoftheirrequirementsfor trainedprofessionals,technicalpersonnelandequipment.Inmostcountriesthemajority ofagriculturalmeteorologicalstationsbelongtocategories(b),(c)and(d).

2.2.2 Selection and layout of a station site

2.2.2.1 Selection of a representative site location Forobservationstheiraccuracyatagiventimeisadeterminablefixedquality,but theirrepresentativityvarieswiththeirapplication.Representativityofameasurementis thedegreetowhichitdescribesreliablythevalueofsomeparameter(e.g.humidity,or

6 wind speed) at a specified space scale for a specified purpose (WMO 2001). Instrumentation,exposureandobservationproceduresmustbematchedtoachieveuseful representation—e.g.local2minuteaveragesforaviation,orhourlymesoscaleaverages forsynopticforecasts. Therefore,whenselectingasiteforastation,thepurposeofitsobservationsmust bedecidedfirst—shoulditberegionallyrepresentative,theneveninawoodyregionan openlocationispreferable, becausethestation'sobservationmustrelatetothelower atmosphere of the region. If the station's establishment purpose is monitoring or operationalsupportofsomelocalagriculturalsituation, thenit canberepresentative whenitslocationistypicalforthatapplication,maybeinaforest,inaveryhumidarea (fordiseaseprotectionpurposes)oratthebottomofa valley (for studying frost protection).Evenso,locationsshouldbeavoidedwhichareonornearsteeplysloping ground,ornearlakes,swampsorareaswithfrequentsprinklingorflooding. Thesiteofaweatherstationshouldbefairlylevelandundernocircumstancesit shouldbeonconcrete,asphalt,orcrushedrock.Whereverthelocalclimateandsoildo notpermitagrasscover,thegroundshouldhavenaturalcovercommontothearea,asfar aspossible.Obstructionssuchastrees,shrubsandbuildingsshouldnotbetoocloseto theinstruments. Sunshine andradiationmeasurementspermit noshadowduringthe greaterpartoftheday; briefperiodsofshadowsnearsunrise and/orsunsetmay be unavoidable.Windshouldnotbemeasuredclosertoobstructionsthantentimestheir height.Treedripintoraingaugesshouldbeimpossible. Accessibilitytotheweatherstationandthepossibilitytorecruitgoodobservers locallyshouldalso becriteriaforselectionofasite.Finally, formajorstationstheir chanceofsemipermanentlocationtenurewithlittlechangeinthesurroundingsshould beinvestigated.

2.2.2.2 Layout of station instruments Tominimizetamperingbyanimalsandpeople,itisverydesirabletofencethe weatherstationenclosure.AsamplelayoutisshowninFigure1(Figure1.1ofWMO, 2006).This layout is designedtoeliminateasfaraspossible mutualinterference of instrumentsorshadowingofinstrumentsbyfenceposts.Thedoorofthethermometer screenmustopenawayfromthesun,toensurethatdirectsunlightdoesnotenterthe screenduringobservations.Atequatorialandtropicalstations,thescreenwillhavedoors openingtoboththenorthandthesouth.Alargerenclosureisrecommendedwhensmall plantsforphenologicalobservationsareused.Arathershelteredenclosureisnotagood place for measuring wind, and then anotherbetterexposed nearby location may be preferableforthewindmast.

2.2.3 Primary handling of data Iftheweatherstationispartofanetwork,anotherfactortobeconsideredisthe useofthedata;whetherforclimatologicalorforrealtimeinformationpurposes.Iffor thelatter,arapidcommunicationsystemisnecessaryfordatatransmission,whetherby landline,radioorsatellite.Astotheformer, underagendapoint10.3ofCAgMXIV (New Delhi, 2006) on the “Expert team on database management, validation and applicationofmodels,researchmethodsattheecoregionallevel”,itwasemphasized thatdatashouldbeenteredlocallyastheyarecollected(eitheronanhourlyordaily

7 basis)andthatthedatashouldbeenteredonlyonceintoaDatabaseManagementSystem (DBMS)andbemadeavailable toallportionsoftheNational Meteorological and HydrologicalService(NMHSs).TheDBMSsystemusedshouldbecapableofhandling climaticandothertypesofdata,suchasecological,hydrological,agricultural,andgeo referenceddataandshouldbeabletoeasilyimportdatafromavarietyofformats.Also, alldatashouldbedirectlyinputtedintoaDBMSandthenusedbyvarioussoftware applicationpackages.Somequalitycontrol(QC)ofthedatacanbeconductedlocallyas thedataarebeingentered.OtherQCsuchasspatialqualitycheckscanbeundertakenat thecentraldatabase.Itisimportantthatalldata,bothrawandthoseprocessedforthe longtermarchive,shouldbebackedupsecurelyateverystage.

2.2.4 Networks Whenagriculturalmeteorologicalstationsarebeingestablishedorreorganized, thenumberofstationswithineachregionshoulddependonitsextent,itsclimatictypes andsubtypesandthespatialvariationsofsuchfactorsasthenaturalvegetation,main cropsand agriculturalmethods. As far as possible eachlarge homogeneous phyto geographical region should be represented by at least one principal agricultural meteorologicalstation. Similarly, eachcharacteristicareadevotedtoaparticularaspectofagriculture, animalhusbandry,hydrobiologyorforestryshould,whereverpossibleberepresentedby an ordinary agricultural meteorological station. Sufficient auxiliary agricultural meteorological stations should be installed to ensure adequate spatial density of the observationsofthemeteorologicalandbiologicalvariablesofmajoragrometeorological concerntothecountry. Fromanotherpointofview,marginalareasofagricultureandsilviculturewill oftendeservespecialattention. Onemainobjectofobservationsmadeinsuchareas wouldbetodeterminetheboundaryoftheregionwhereanindividualcropcouldbe grown successfully or a specific agricultural or silvicultural procedure might be profitable; anotherwould be to ascertain thefrequency and thetypicalgeographical distributionsofthemainweatherhazards,withaviewtoreducingasfaraspossibletheir adverseeffectsbyprotectivemeasures. Areaswhereagriculturalproductionismarkedlyexposedtolossesthroughplant andanimaldiseasesareofspecialinterest,asmeteorologicalfactorscanbeimportantin thedevelopmentofthesediseases.Nationalparksandnaturereserves,althoughusually notrepresentativeoftheareasthatareofmajoreconomicimportanceinagriculture,may providegoodlocationsforreferencestationswhereobservationscanbemadeoverlong periodsunderpracticallyidenticalconditions. The selection of these stations, whether principal, ordinary, auxiliary or for specificpurposes,willvaryfromonecountrytoanother,butsomegeneralguidancemay begiven.Perhaps,thefirstconsiderationisthatallagrometeorologicalstationsshouldbe locatedinregionsofagricultural,silvicultural,pastoralorotherformsofproduction.On representativity,see2.2.2.1.Therefore,thefollowinglocationswilloftenbeverysuitable forprincipal(andordinary)stations:

(a) Atexperimentalstationsorresearchinstitutesforagriculture,horticulture,animal husbandry,forestry,hydrobiologyandsoilsciences;

8 (b) Atagriculturalandalliedcolleges;

(c) Inareasofimportanceforagricultureandanimalhusbandry;

(d) Inforestareas;

(e) Innationalparksandreserves.

Inthecaseofauxiliarystationsandstationsforspecificpurposes,selectedfarms shouldalsobeconsidered. However,experiencehasshownthatif,asinthecaseofobservatorieslocatedin colleges, the observations are made by alternating groupsofstudentswhomaybe insufficientlytrainedforthispurpose,verycarefulsupervisionwillbeneededtoensure observationsofacceptablequality.Ingeneral, theobservationalaccuracyshouldbea majorconsideration;qualitymustnotbesacrificedforquantity. Nodifficultiesshouldnormallyariseinlocatingbasicequipmentinareasdevoted toagriculture,horticultureandanimalhusbandry,sincetheterrainisusuallyrelatively level and open, satisfying the general standards for locating agrometeorological and climatologicalstations. Stationslocatedinforestedorsilviculturalregionsrequirespecialconsideration. Theyshouldberepresentativeofthegeneralclimateintheforest,andshouldreflectthe effectsoftreedevelopmentwithintheforest.Theexposureconditionsandinstrumental requirementsofthesestationsaredescribedinChapter11. At CAgM XIV (New Delhi, 2006) it was restated that adequate density of (agrometeorological) stations and intra and extrapolationofroutinestationdatato agriculturalfieldconditionsremaingreatworries,particularlyindevelopingcountries. Automatic weather stations can assist in solving some of the related problems but instrumentcoordination,calibrationandmaintenanceareseriousissuestobeconsidered withgreatattention,andevenmoresowithautomaticweatherstations,againparticularly indevelopingcountries. Specialequipmentrequiredfornonroutineobservations,suchasthatneededfor experiments, research and special agrometeorological services, is generally installed outsidestandardenclosures,forinstance,withincrops,abovecropcanopiesorinareas undercultivation.

2.2.5. Documentation of agricultural meteorological stations The necessary metadata information which should support reliable observations is describedatlengthinWMO(2003)andmorebrieflyinWMO(2006).Itsacquisitionis summarizedbelow. Full information should be available in the NMHS’s of all agricultural meteorologicalstationsinthecountry.Forthispurposeanuptodatedirectoryofthese stations,whethercontrolledbytheNMHSorbyotherservicesoragencies,shouldbe maintained.Incountrieswheretherearemanyregionalagrometeorologicalservicesor wherenetworksaremanagedbyfarmersandcommercialenterprises,therewillbeaneed toconstantlyupdatethisgeneraldirectoryatnationallevel.Thedirectoryshouldarchive foreachstation:

9 (a) Stationidentification:name,networkcodenumber(s),categoryofstation.

(b) Geographicallocation:latitudeandlongitude(accurateinunitsofafewhundred meters,e.g.0.001degree),mapping ofmesoscale region(≈1:100000)withmajor terrainelevationchanges;physicalconstantsandprofileoflocalsoil.

(c) Observing programme specification and history: for each parameter dates of beginningandendofrecords,ofchangesofinstrument,ofobservationheightorofsite. Archiveofallupdatesofstationmappings(e)(h)asdescribedbelow.Descriptionof observation routine procedures and basic data processing. Units in use. Routine transformationsofobservedparameterstoarchiveddata.

(d) Station information contact: name of stationsupervising organization or institution,identification(name,address,telephoneorfaxoremail) ofobserver(s)or otherperson(s)responsibleforlocalmeasurementsand/ortheirarchiving.

Tosupportandcomplementthisnationaldocumentation,atindividualstationsthestation observer(s)shouldmaintainlocaldocumentationofthefollowingmetadata:

(e) Toposcalemapofsurroundings(scale≈1:5000)asspecifiedbyCIMO(WMO 2006), including location and size of obstacles, of surrounding vegetation, and of significantterrainfeatures(e.g.hillsandhollows,lakes,builtupareas,roads).Thismap shouldbeupdatedatleastyearly.

(f) Microscalemapofstationenclosurewithlocationofinstrumentsandtheirheight abovetheground,updateduponchanges.Instrumentshelterdescription.

(g) Photosoftheenclosureandallinstrumentpositions outside the enclosure, showingthemintheirsurroundings(i.e.fromsufficientdistance,20mormore),taken fromalldirections(atleastsixoreightidentifydirectiononphotoprint!),updatedupon significantchanges.

(h) Horizon mapping of solar radiation observation (see WMO 2006), regularly updated.

(j) Specificationofallinstruments:manufacturerandmodel,serialnumber,output typeandsensitivity,recordingorfrequencyofobservation,beginningandendofuse.

(k) Regularlyusedlogbookwithhistoryofstationactivities:calibrationsandother controlactivities, maintenance, allinterruptions andmissing observations, significant developments(e.g.nearbybuildingactivities,growthofvegetation).

Forsomeparameters,"particular"metadatarequirementsarementionedinsection2.4.It isadvisabletoconsultWMO(2003)forthefullmetadatastory,thisisonlyasummary.

10 2.2.6 Inspection and supervision of stations AgriculturalmeteorologicalstationsmaintainedbytheNationalMeteorological Serviceshouldbeinspectedatleastonceayeartocheckwhethertheexposurehasnot changed significantly and to ensure that observations conform to the appropriate standardsandthattheinstrumentsarefunctioning correctlyandarecalibratedatthe requiredtimes.Thetimeintervalbetweensuccessiveinspectionsofanindividualstation will depend upon the programme of the station and the qualifications of the local personnelresponsiblefortheprogramme. If agricultural meteorological observations are made by other authorities, co operative arrangements or special agreements should be made to ensure adequate supervisionandmaintenanceofthenetwork,includingcalibrationsofequipment.

2.2.7 Fixed agrometeorological stations Thesestationsareforeseenasoperatingforanextendedperiodatafixedplace, andmaybe: a) Minimum equipment stations. Small portable screen, minimum and maximum thermometers,dryandwetbulbthermometers,totalizinganemometerataconvenient height,andraingauge.Forscreenswhicharenotstandard,theradiationerrorshould bedetermined; b) Standard equipment stations. Standardscreeninstrumentsandraingaugeasina) above,thermohygrograph,windvane,windrunandsunshinerecorder.Thesepermit determinationofevaporationusingempiricalmethods;

(c) Semi-automatic stations. When trained personnel are not available, semi automaticstationsarerequiredwithuninterruptiblepowersupplytoprovidethe measurements.Thereisnoautomaticdatacommunication;

(d) Automatic stations. Thesestationsrequirelesssupervisionbutinstallation,calibration andinspectionmustbeofahighstandard.Uninterruptiblepowersupplyisrequired. Data from these stations can be used for direct computer processing. Initial and maintenancecostsaswellaspropercalibrationsmaybelimitingfactors.Datashould preferablyalsobecommunicatedautomatically.

2.2.8 Mobile stations Mobile stationsareusedforsurveysandresearch.Somemobilestationsmove continuouslyandothersneedequilibriumofsensorsorcertainperiodsformeasurements, suchasforlocalwindobservations. Whenanextendedbutsuperficialsurveyofair temperatureandhumidityisrequired,theinstrumentsareusuallycarriedbyvehicles.In thesecircumstancesuseismadeofthermocouplesandthermistorswhichhavearapid response(low“timeconstants”)andhighsensitivity. Whenusingmotorvehicles, allmechanicalinstrumentsshouldhaveantishock mountsandshouldbemountedsothattherecordingmovementisperpendiculartothe directionofthemostfrequentvibrations,toreducetheireffectontheinstruments.

11 2.2.9 Agricultural meso-climatological surveys The objective of agricultural mesoclimatological surveys is to determine meteorologicalvariables orlocalspecialfactorsaffectingagriculturalproductionona localmesoscale thatarenotrepresentativeofthegeneralclimateoftheregion. The surfacerelief(topoclimatology)andcharacter(landscape),regionalwindcirculations, waterbodies,forests,urbanareasetc.,comeunderthesecategories. Referencemaybe madetoWMOTN133.Thesesurveysareparticularlyusefulwherehighmeasurement densitiesareneededandindevelopingcountriesorsparselypopulatedregions,where networksitesarewidelyseparated.Additionaldatafromtemporarystations,functioning fromonetofiveyearsareusefulforcomparisonwiththoseofthebasicnetworkandfor evaluationofinterpolationbetweenthelatter.Observations withspecialinstruments, fromfixedormobilestations,mayservetocompletethegeneralpattern. In the older literature, mesoclimatology and topoclimatology were seen as studyingtheinfluenceoftheactualearth’ssurfaceonclimateandoftheclimateonthat surface. Many important factors which influence the localexchanges ofenergy and moisturewerenoted:configurationandroughnessoftheearth’ssurface,colour,density, thermal capacity, moisture content and permeability ofthesoil, propertiesofthe vegetationcoveringit,albedoetc.Morerecentliteraturestillusesthesameapproach(e.g. Geiger et al., 1995), adding exchanges of other gasses than water vapour, liquids, particlesetc.CAgMXIV(NewDelhi,2006)agreedthatspecialattentionshouldbepaid topeakvaluesofrain,wind,andflowsofwater,sedimentandothermaterialscarried, becausetheyarelocallyofgreatimportancetoagriculture. The series ofWMO TechnicalNotes(56, 86, 125,161,and179)presenting agroclimatological studies in several developing regions, published by the FAO/UNESCO/WMOInteragencyprojectonagroclimatologyfrom1963to1982,does contain various aspects of mesoclimatological surveys. The start of a newer agro ecological approach, where mesoclimatological surveys are incorporated in wider productionevaluations,canbefoundinBunting(1987).Modernquantitativeapproaches inagroclimatologyatthemesoscale using remotesensing andGIStechnologies are foundinthisGuideasagrometeorologicalservices(Chapters4and6).Theyhaveoften to be combined with classical measurements as ground truth or farm scale details (Salingeretal.,2000).Thelattermaybefromfixedormobile, standardorautomatic equipment, while complementary observations to describe the special mesoclimatic processesmaysometimesbeused(e.g.WMO,2006andbelow).

2.2.10 Complementary observations to describe special mesoclimatic processes Thespatialcharacterization,includingthevertical, ofmesoclimaticpatternsof temperature,humidity,pressureandwindinthelowertroposphereforresearchpurposes aredeterminedasfollows: a) Aircraftmeteorographsoundingsondayspresentingtypicalairmassesforeach season.Itmaybeadvantageoustocarryoutsoundingsathoursofminimumand maximum surface temperatures. The soundings which are made should be selectedfortheproblemunderstudy,verticallyspacedevery100150mupto 8001000m,andthenevery300500mupto3000m;

12 b) Soundingsupto300500m, withafixedmeteorographorradiosonde,suspended fromananchoredballoon.Toavoidwindmotion,balloonswereusuallyfixedwith threebracinglinesbutmoderninstrumentscompensateforthemovementifrequired; c) Windstructure.Forthestudyofwindstructureupto300m,anchoreddirectional balloonsandorsodarspointingintothedirectionofthewindmaybeused.For greaterheightspilot balloonsoflowrateofascentareused;their flightsare followedfromthegroundwithtwotheodolites.Atnighttheballoonsmustbe batteryilluminated.Smokebombsmaybeusefultoshowwinddirectionaswell asturbulenceuptoalimitedheight.

2.2.11 Detailed physical observations of a non-routine or non-permanent character (agricultural micrometeorological research ) Detailed accurate observations which are neither routine nor permanent are neededforfundamentalresearch,andareusuallycarriedoutindependentlyofthescheme ofconventionalagroclimatologicalobservations. Phenomena andprocessesconcerned wereforexamplelistedandexplainedinStigter(1994c).Suchobservationsaremadetoa high degree of accuracy by skilled, scientifically trained staff and mostly include micrometeorological measurements made with specially designed instruments. For observationsashighlyspecificasthesenogeneralmethodcanbeformulated(seefor exampleWoodwardandSheehy,1983,Pearcyetal.,1989).

2.3 Observations to be carried out at agricultural meteorological stations.

2.3.1 Observations of the physical environment Theobservingprogrammeatagriculturalmeteorologicalstationsshouldinclude observations of some or all of the following variables characterizing the physical environment: solar radiation, sunshine and cloudiness, air and soil temperature, air pressure, wind speed and direction, air humidity and soil moisture, evaporation and precipitation (including observations of hail, dew and fog). The water balance, evapotranspirationandotherfluxesmaybededucedfromtheseandothermeasurements. MinimumaccuracyforthevariousvariablesisrecommendedinWMO(2006)asgiven hereinTable2.

Table2:WMOrecommendedminimumaccuracyofsomevariables.

Variable Accuracyrequiredindailyvalues Temperature(incl.max/min,wetanddrybulb,soil) <±0.5ºC Rainfall ±1mm SolarRadiation 10% (incl.Sunshine) (±1h) Evaporation ±1mm RelativeHumidity ±5%

13 Photoperiod 10%(±1h) WindSpeed ±0.5ms 1 Airpressure ±0.1hPa

These measurements refer to the programme that should be followed for permanentorroutinenationwideobservations.Nevertheless,theneedsofagricultural meteorologyfrequentlyrequireadditionalandspecialinformation,mainly atprincipal andordinarystations,suchasthefollowing: (a) resultsofagriculturalmesometeorologicalsurveys;

(b) dataderivedfromremotesensing;

(c) accuratephysical observations on anonroutine basis (for agriculturalmicro meteorologicalresearch).

Somegeneralcommentsareofferedinthefollowingparagraphsconcerningeach ofthesevariables orgroupsofvariables. WMO(2007)givesmoredetailedguidance regardingclimatologicalobservationsingeneralandcontainsmaterialwhichisequally applicable,whetherclimaticvariablesareobservedforroutineclimatologicalpurposesor fortheprogramme ofanagriculturalmeteorologicalstation. Detailedinformationis giveninWMO(2006)regardinginstrumentstobeusedandobservingpracticestobe followed. ReferencestothevariouschaptersofthisGuideandtootherpublications relevantinthisconnectionarementionedineachsubsection. Itmustbestressedthatthematerialcontainedinthesepublicationsandinthe succeeding chapters of this Guide refer to the ultimate aims of an Agricultural MeteorologicalService.TheinitialstepstakenbyanysuchServicecanobviouslybeofa simplercharacter,butshouldbesuchthatfurtherexpansioncanbemadealongthelines indicated.Normally,onlyprincipalagriculturalmeteorologicalstationswouldattemptto takealltheobservationsdescribedherein.

2.3.1.1 Radiation and Sunshine Reference may be made toCoulson(1975), Fritschen and Gay(1979), Iqbal (1983),WMO(1984),GoelandNorman(1990),WMO(2001),Strangeways(2003)and WMO(2006)aswellasWMOT.N.172.Thedurationofdaylength,whichinfluences thefloweringandgrowthofshootsofcropplants,should be recorded or obtained otherwise at all agricultural meteorological stations. This information should be supplementedwhereverpossiblebydataobtainedfromradiationinstruments.Principal stationsshouldmakedetailedobservationsofradiationincludingglobalsolarradiation, Photosynthetically Active Radiation(PAR) and net allwave radiation. The spectral distributionofsolarradiationinfluencesthegrowthanddevelopmentofpantsandefforts shouldbemadetoincludeitintheobservingprogramme. Importantcomponentsare ultraviolet(UV),PARandnearinfrared(NIR). Mostwidely,asolarimeter(pyranometer)ismountedhorizontallyandmeasures thetotalsolarirradianceonahorizontalsurface.Inaddition,ashadering(orocculting disk)maybeusedtocastashadowonthesensitivearea,eliminatingthedirectbeam.The instrumentthenindicatesonlythediffuse(sky)radiation.Thepowerofthedirectbeam

14 maybe calculatedbysubtracting thediffuse reading fromthetotalradiation. Beam FractionSensorswithoutmovingpartsarenowavailablealso. Solarimeterscanalsobeusedtomeasuretheshortwaveradiationreflectedfrom acropsurface.Anadditionalsensorisinverted,fittedwithashieldtoeliminatediffuse skyradiation,andmountedhighenoughoverthesurfacesothattheshadowitcastsisa verysmallpartofthesurfacearea(cropcanopy)beinginvestigated.Apairofupward anddownwardfacingsolarimetersformsanalbedometer.(Thereflectioncoefficientofa surfaceiscalledthe“albedo”). Researchresultsshowthatshadeinfluencesphotosynthesisandtemperature.At themacrolevelshadeoccursduetoclouds,mountainslopes,etc.Atmicrolevelshade varies due to the plant canopy itself, intercropping choices, surrounding trees etc. Photosynthesis is the major metabolic process in agriculture that depends on solar radiation.So,occurrencesofshade,itsdistribution,durationandintensityinfluencethe photosynthesis and thereforeproductionprocesses. Shade and light also cause many morphological processes in plants and behavioral changes in animals. Thoughmore shadeisreducingagriculturalproductioninmanyfieldcrops,itisimprovingqualityin manycases.Inmanyfruitcrops,fruitqualityisimprovedwithpartialshadetreatments. Theeffectofshadeoncropscanbemeasuredusing clothsthatreduceinsolationby requiredpercentoverplotsoftheexperimentalfield.Tubesolarimeters(madeintubular formforeasyinsertionhorizontallyunderacropcanopy)arevitalformeasuringsolar radiationandshadeinfluenceincropgrowth,agroforestryandmulchstudies.Fordetails see2.4.1.1,wherealsopyrgeometersforlongwaveradiationfromskyandearthand infraredthermometersarementioned.

2.3.1.2 Temperature of air ReferenceshouldbemadetoFritschenandGay(1979),WMO(1984),Goeland Norman(1990),WMO(2001),Strangeways(2003)andWMO(2006).Thetemperature oftheairshouldbemeasuredinrepresentativeplaces,atdifferentlevelsinthelayer adjacenttothesoil.Itshouldbemadeatprincipalagriculturalmeteorologicalstations fromgroundleveluptoabout10mabovetheupperlimitoftheprevailingvegetation becauseitaffectsleafproduction,expansionandflowering. Atordinaryorauxiliary stations,however,themeasurementswillusuallyberestrictedtothelowestfewmeters abovethesurface–themostsignificantlayersforstudyingclimaticconditionsaffecting agriculturalcrops,thegrowthanddevelopment,andalsothelayershavingthelargest gradientsandmostrapidfluctuations.Tostudytheverticaldistributionoftemperature withinthelowesttwometresoftheatmosphere,measurementsshouldbemadeatthree levels,atleast,selectedfromthefollowingheights:5,10,20,50,100,150and200cm. Observationstakenforspecialresearchprojectsvarywiththeneedsoftheproblems underinvestigation. Inordertostudythe diurnalvariations oftemperature,recording instruments shouldbeusedatleastatonelevel. Whereacontinuousrecordoftemperatureisnot possible,themaximumandminimumvaluesshouldberecordedattwoorthreelevels. Primarily, suchmeasurementsshouldbemadeunderstandardconditions, i.e.,overa shortgrasscovermaintainedasfaraspossibleunchangedthroughouttheyearor,ifthisis impossible,overbaresoil.Observationsshouldbemade,asfaraspossible,inthemiddle ofafairlylargerepresentativearea(diameter2050m)withlevelgroundwithsoilor vegetationcover. At principal agriculturalmeteorologicalstations themeasurements

15 should be supplemented by similar ones taken in various regional crops during the growingseason. Thesesupplementaryobservationsshouldbecarriedoutatthesame levelsastheobservationsoverbaresoilorgrass,andalsoatlevelsimmediatelybelow andabovetheupperlimitofthevegetation. Exposuretoradiationisaserioussourceoferrorinmeasuring atmospheric temperature.Probablythebestmethodofmeasuringairtemperatureisbyusingfreely exposedelectricalequipment(resistanceorthermocouplethermometers)havingthinor reflective sensitive elements with a very low absorption of radiation. Where such instrumentsarenotavailable,shadescreensorventilatedthermometersmaybeusedfor levelsatleast50cmabovebaresoilordensevegetation.Nonstandardscreensgenerally usedatothermeteorologicalstationsrunariskofhamperingtheflowofairpastthe thermometersand,inbrightsunshineandlightwindstobeheatedtoatemperatureabove thatoftheambientair.Thedisadvantageisespeciallymarkedformeasurementsbelow thestandardlevelof1.25to2m.Thermometerscreensarethereforenotrecommended whentheverticaldistributionoftemperatureupto2or3misdesired,althoughsmall openreflectivescreenshavebeenusedwithsomesuccess. Itisnecessarytoprotect thermometersintheopenfromprecipitationbysmallroofshapedshelters.

2.3.1.3. Temperature of soil ReferenceshouldbemadetoRosenbergetal.(1983),WMO(1984;2001;2006). Soiltemperaturedirectlyinfluencescropgrowthbecausethesownseeds,plantroots,and microorganismsliveinthesoil.Thephysicochemicalaswellaslifeprocessesarealso directlyaffectedbythetemperatureofthesoil.Underlowsoiltemperatureconditions nitrification is inhibited and the intake of water by roots is reduced. Extreme soil temperaturesinjureplantsandgrowthisaffected. Thereforetheprogrammeatallcategoriesofagriculturalmeteorologicalstations should also include soiltemperature measurements. The levels at which soil temperaturesareobservedshouldincludethefollowingdepths:5,10,20,50and100cm. Atthedeeperlevels(50and100cm),wheretemperaturechangesareslow,dailyreadings aregenerallysufficient.Atshallowerdepthstheobservationsmaycomprise,inorderof preference, either continuous values, daily maximum and minimum temperatures, or readingsatfixedhours(theobservationsbeingpreferablynotmorethansixhoursapart). Whensoiltemperaturedataarepublished,informationshouldbegivenonthe waytheplotismaintained.Thedepthsofthethermometersat5,10and20cmshouldbe checkedperiodicallyandmaintained.Effortsshouldbemadetoensurethatgoodcontact ismaintainedbetweenthethermometerandthesoil. Regardingthesurfaceoftheplotwheresoiltemperatureismeasured,twotypesof standardcoverareused–baresoilandshortgrass. Whereverpossible,simultaneous readingsshouldbemadeunderbothstandardsforcomparison.Inmanyplaces,however, itmaybedifficultorevenimpossibletomaintainplotsconformingtobothstandards. Hencetheonemostsuitedtotheregionshouldbeused. Also,whereverthestandard surfaceisnotrepresentativeofthesurroundings,theinstrumentsshouldbeplacednear the center of a large plot (for bare soil WMO (2006) recommends 2 x 2 m.). A comparisonofsoiltemperatureobservations underastandardcoverandundercrops showthemodificationsofthetemperatureregimeduetotheprincipalregionalcropsand theircultivation,depending onsoilmodification, soilshading andsuppressionofair movementoverthesoil(Mungaietal.,2000).

16 Whensoiltemperaturesaremeasuredinaforest,thereferencelevelforthedepths ofmeasurement shouldbe clearly indicated: whethertheuppersurface of thelitter, humusormasslayerisconsideredtobeat0cm;orwhetherthesoillitterinterfaceis takenaszeroreference.Thesedetailsandanyseasonalchangesthereinshouldbequoted whenthedataarepublished(forfurtherdetails,seeChapter11ofthisguide). Wheneverthegroundisfrozenorcoveredwithsnow,itisofspecialinterestto knowthesoiltemperatureundertheundisturbedsnow,thedepthofthesnowandthe depthoffrostinthesoil.Measurementofthethermalpropertiesofthesoil(e.g.specific heat,thermalconductivity),temperatureprofilesandchangesintheseprofilesshouldbe included.

2.3.1.4 Atmospheric pressure Reference should be made to Murthy(1995 and 2002). The lowerpressures experiencedasaltitudeincreaseshaveimportantconsequencesforhighaltitudeplantlife. Athighaltitudesandlowatmosphericpressuresthesolubilityofcarbondioxideand oxygeninwaterarereduced.Someplantsshowstuntedgrowthathigheraltitudesas concentrationsofoxygenandcarbondioxidereacheslowconcentrations.Plantswith strongrootsystemandtoughstemscanliveunderincreasedwindspeedsatlowpressures inhighaltitudeareas.Itisusuallyadequatetoknowthealtitudeatwhichaneventtakes place,butifairdensityisneededwithin+5%thenpressurevariationshavetobetaken intoaccount.Usually,astationwillrecordpressureaspartoftheirdataforclimatological work.

2.3.1.5 Wind ReferenceshouldbemadetoMazzarella(1972),Wieringa(1980),WMO(1984), KaimalandFinnigan(1994),Stigteretal.(1998),WMO(2001,2006).Windtransports heatineithersensibleorlatentformbetweenlowerandhigherlayersoftheatmosphere aswellasfromlowertohigherlatitudes.Moderateturbulencepromotestheconsumption ofCO 2bycropsduringphotosynthesis.Windpreventsfrostbydisruptingatemperature inversion. Wind dispersal of pollen and seeds is natural and necessary for certain agricultural crops, natural vegetation, etc. As far as the action of wind on soil is concerneditcausessoilerosionandtransportofparticlesanddust.Extremewindscause mechanicaldamagetocrops(e.g.,lodgingorleafdamage)andforests(windthrow). Knowledgeofthewindisalsonecessaryforenvironmentallysensitivesprayapplication andforthedesignofwindprotection.Forthemainregionalcropsitmaybeusefulto make observations of wind profiles inside and above thecropcanopies forabetter understandingofexchangeproperties. Agriculturalmeteorologicalstationsneedtoposcalereferenceobservationsofboth windspeedanddirection,preferablyat10mheight,butatleastatthreetimestheheight ofanynearbyvegetation(e.g.crops)andanynearbyobstacles,inordertobeabove significantflowinterference.Lowerlevelwindmeasurementsarenotrepresentativeat toposcaleandcannotwellbecorrectedeither,sotheycannotbeusedaslocalreferenceor forcomparisonwithotherstations(WMO2001).Horizontaldistancetoobstaclesshould beatleast10timestheirheight. Whenpossible,thewindspeedgustinessshouldbe obtainedalongwithaveragewind,forinstancebyrecordingthelargest3secondgustin eachaveragingperiod.

17 This basic programme maybe supplemented, wherecircumstances permit, by measurementsofwindspeedatoneormorelevelsbetweenthesurfaceand10m;wind directionvarieslittleinthatlayer.Exceptforlayersratherclosetothegroundthiscanbe donebymeans ofsensitive cupanemometersorpropeller vanes that,however, lose accuracybecauseoftheneedforthemtorotateintothewind(WMO,2006).Anymore ambitious programme should be carried out at principal agricultural meteorological stationsoroperationallywithmobilestations,asrecentlydoneinAfrica(Stigteretal., 2005).Windspeedandgustinessthenismeasuredatvariouslevelsrightdowntothe ground by means of anemometers of high sensitivity, with parallel temperature measurementsatthoselevels.

2.3.1.6 Air humidity and soil moisture (including leaf wetness) ReferenceshouldbemadetoWMO(1984,2001,2006).

2.3.1.6.1 Humidity Humidityiscloselyrelatedtorainfall,windandtemperature.Differenthumidity related parameters such as relative humidity, vapour pressure, dew point and other derived ones areexplained in many textbooks.Theyplaya significant role in crop productionandstronglydeterminethecropsgrowninaregion.Internalwaterpotentials, transpirationandwaterrequirementsofplantsaredependentonhumidity. Extremely highhumidityisharmfulasitenhancesthegrowthofsomesaprophyticandparasitic fungi,bacteriaandpests,thegrowthofwhichcausesextensivedamagetocropplants. Extremelylowhumidityreducestheyieldofcrops. Liketemperatureandforthesamereasons,thehumidityoftheairshouldbe measuredinrepresentativeplaces,atdifferentlevelsinthelayeradjacenttothesoilat principalagriculturalmeteorologicalandothercategorystations.Theproceduresforair temperatureshouldalsobefollowedforthisweathervariable,includingworkaboveand withinvegetation.

2.3.1.6.2 Soil moisture ReferencemaybemadetoGreacen(1981),ViningandSharma(1994),Smithand Mullins (2001) and WMO (2001; 2006). In scheduling irrigation the estimation of moisturecontentisthebasicrequirement.Thesoilwatercontentcanbedeterminedby directmethodssuchasgravimetricandvolumetricdeterminationsandindirectmethods, includingtheuseofdevicessuchastensiometers,resistanceblocks,neutronmoisture metersandTimeDomainReflectometry(TDR),see2.4.1.6.2. Soilmoistureshouldbemeasuredatallprincipalstationsand,whereverpossible, atotheragriculturalmeteorologicalstations. Althoughrigid standardizationis neither necessarynor,perhaps,evendesirable,thesemeasurementsshould,whereverpossible,be madefromthesurfacetodepthsof10,20,30,40,50,60,70,80,90and100cm.Indeep soils,withahighrateofinfiltration,measurementsshouldbeextendedtogreaterdepths. Oftenlevelswillbeselectedinrelationtotheeffectiverootingdepthsoftheplants.Until it is possible to make reliable continuous recordings at some of these levels, it is recommendedthatobservationsbemadeatregularintervalsofabouttendays;forthe shallowerdepths,shorterintervals(sevenorfiveday)willbenecessary.Inareaswith snowcover,morefrequentobservationsarerequiredwhenthesnowismelting.

18 Standard soilmoisture observations should be made below a natural surface representativeoftheuncultivatedregionalenvironment. Simultaneousobservationsin areasdevotedtoprincipalregionalcrops,andcoveringallculturaloperations,willshow modificationsintroducedbyagriculturalprocesses. Thesesoilmoisturemeasurements areparticularlyusefulinverifying soilmoisturevaluesestimatedfrommeteorological measurements.FurtherdiscussionofsoilmoistureproblemsmaybefoundinWMOTNs 21and97.Inoperationalagrometeorology,theproblemofonfarmmeasuringdensity wasdealtwithbyIbrahimetal.(1999),whosubsequentlyaccuratelydeterminedwater wastein irrigatedgroundnutandsorghum(Ibrahimetal.,2002).Oluwasemire etal. (2002)discussedasampling methodinintercropping conditions, while infiltrationof rainwateranduseofthissoilmoisturecouldbefollowedsimplyinthefieldbyMungaiet al.(2000). The following additional parameters will contribute to gaining better understandingofsoilmoistureconditions: a)Fieldcapacityandotherhydrologicalconstantsofthesoil; b)Permanentwiltingpoint;and c)Depthofgroundwater.

2.3.1.6.3 Leaf wetness and dew Theweatherprovidesliquidwaternotonlybyprecipitation,butalsobydew, whichisnotthesameasleafwetnessbutoneofitspossiblecauses.Dew(fall)occursin ahumidatmospherewhentemperaturefallsandwindisweak,resultingincondensation bothonthevegetationandonthesoil.Dewoftenoccursduetodistillationofwaterfrom (wet)soil(dewrise).Guttationoccursonvegetationwhenitsinternalwaterpressureis excessive.Insomeverydryregionsdewmaywellbeasignificantsourceofmoisturein maintainingplantlife(AcostaBaladon,1995). Leaf wetness can result from precipitation, from dew or from guttation. Knowledge of leaf wetness duration (LWD) is extremely vital information for the protection of crops against fungi and diseases (WMO T.N.192), which can notbe deducedusefullyeitherwithrulesofthumbsuchasRH>90percent.Actualmonitoring hassofar beencarriedoutonlyin afewcountries onaroutinebasis withspecific agrometeorologicalrequirementsinmind.StudiesandrecordingsofLWDalsohelpin developingearlywarningsystemsandplantprotection,inunderstandingsoilevaporation andinimprovingleafsurfacewaterevaporationmodeling.Calibrationofsensorsisthis wayalsoenhanced.

2.3.1.7 Precipitation (clouds and hydrometeors) ReferenceshouldbemadetoMeteorologicalOffice(1981),Murthy(1995),Baldy andStigter(1997,forformsinwhichrainwaterreachesthesoil)andMurthy(2002), WMO(2006).AlsoTechnicalNote55maybeuseful. At an agricultural meteorological station, visual observations and automatic instrumentationtomeasuretotalcloudcoveragei.e.,allskycameraobservations,maybe madeatregularintervalstomeasurethetotalamountofcloud.Inaddition,cloudtype andheightofcloudbasearerequiredforstudiesoftheradiationbalance.Observations ofhydrometeorsareusefulformanyagriculturalpurposes.Theyincluderainanddrizzle (includingintensity);snow(includingthicknessanddensityofsnowcover,andwater

19 equivalent);hail(includingwaterequivalentandsizeofhailstones);dew(amountand duration),hoarfrost,rimefog,etc. Theamountofprecipitationshouldbemeasuredinthemorningandeveningasat synoptic stations. Additional measurements are desirable and the intensity of precipitation could be obtained by means of a recording rain gauge. Hail is the precipitationofsolidicethatisformedinsidecumulonimbusclouds,thethunderstorm producingclouds. Itis measuredaccordingtoindividualhailstonesize oritsliquid equivalency. Advanced techniques like remote sensing provide a quick and clear illustrationofhailstormpatterns. Dataobtainedbymeteorologicalradarcanusefully supplement rainfall measurements and may make it possible to identify and locate hydrometeorswhichareparticularlyharmfultoagriculture(hail,veryheavyshowers), withaviewtotakingappropriateaction(WieringaandHolleman,2006). Therearestill examples ofvolunteersdoing agreatjobinsimply increasing rainfall measurement densities for disaster detection, these days in richer countries makinguseofthenewlyavailablemeansofcommunication(e.g.Walsh,2006).Another such networkin which simple rainfall measurements are made in combination with agriculturally important hail and snow was described by O'Driscoll (2006). The importanceofsuchsimplerainfalldataformodernfarmingcanalsobereadfromaUSA sitelike. The extent and depth of snow cover should be observed regularly where appropriate;it may be desirable to give informationabout water equivalent and consistencyofthesnowcover,forinstance,oneortwiceperweek. Especiallyindryclimateswithlargedailyfluctuationsoftemperature,theamount ofwaterdepositedintheformofdew(orrime)maybeofgreatimportanceinthewater balanceofthebiosphere.Inadditionthedurationandamountofdewareimportantin connectionwithcertainplantdiseases(seealso2.3.1.6). 2.3.1.8 Evaporation and water-balance measurements ReferenceshouldbemadetoRosenbergetal.(1983),WMO(1984,1994,2001; 2006,2007)andWMOTechnicalNotesNos.11,21,26,83,97and126.Measurementof evaporation from free water surfaces and from the soil and of transpiration from vegetation remains of great importance in agricultural meteorology. Potential evapotranspirationisdefinedastheamountofwaterthatevaporatesfromthesoilair interfaceandfromplants,whenthesoilisatfieldcapacity.Actualevapotranspirationis definedastheevaporationatthesoilairinterface,plusthetranspirationofplants,inthe existingconditionsofsoilmoisture. Therearesuitable publications thatexplain theupdatedinternationally agreed energybalancecalculationsofcropevaporation(e.g.Houghetal.,1996;Allenetal., 1998,MonteithandUnsworth,2007)whiletheirapplicationsunderonfarmtropicalfield conditionsarenowalsoreported(e.g.Ibrahimetal.,2002).Particularattentionisdrawn tothedifficultyofmeasuringpotentialevapotranspirationforasmallwetsurfacewithin alargedryarea(oasiseffect).Observationsofthefollowing,whichcontributetowards knowledgeofthewaterbalance,shouldbemadewheneverpossible: a)Evaporationfromafreewatersurface; b)Heightofthewatertable;

20 c)Irrigationwaterapplied.

Generally, waterisappliedinfields bydifferentirrigationmethodsdepending upon the crop and soil condition: surface irrigation, subsurface irrigation, sprinkler irrigation,anddripirrigation.Surfaceirrigationincludesflooding,checkbasin, basin, borderstripandfurrowirrigation.Floodingisexclusive forlowlandrice.Thecheck basinmethodisadoptedwhenthefieldisquitelargeandisnoteasytoleveltheentire field.Thefieldisdividedintosmallplotssurroundedbysmallbundsonallfoursides.In thebasinmethodonlythebasinaroundthetreesisirrigated.Itissuitableforfruitcrops. Intheborderstripmethodthefieldisdividedintonumberofstripsbybundsofaround 15cmheight.Theareabetweentwobordersistheborderstrip.Infurrowirrigation, differentmethodswereincludedlikedeepfurrow,corrugation,alternatefurroworskip irrigation,widespacedfurrowirrigation,withinrowirrigation. Surfaceirrigationmethodsaremosteconomicandeasilyoperated.Thereisno requirementofadditionalinputbutthemethodrequireslevelingofthefield,highlabour costandthereislowwaterdistributionefficiency(e.g.Ibrahimetal.,2000).Inthecase of subsurface methods, where water gradually wets the root zone through capillary movement,weedsarelessofaproblemduetodrysurfacesoil.Evaporationlossesare minimized,butinthistypeofirrigationmaintenanceofpipelinesisproblematic.Micro irrigation,adoptedwherewaterisscarce,includesdripandsprinklerirrigationanditis suitableforhorticulturalcrops. Becauseofthegreatimportanceofwaterresourcesforagriculture,adetailed knowledgeofthefactorsaffectingthedifferenttermsoflocalsoilwaterbudgetsand larger scale waterbalances is highly desirable. Theprogramme ofobservations for agriculturalmeteorologymustthereforeincludehydrologicalobservations,suchaslake andwatershedwaterbalancesandthewaterstagesinanadjacentlakeorriver,whichare importantinconnectionwithriverfloodssignificantforagriculture.Thecooperationwith NMHSsisnecessaryinthisdirection(WMO,1994,2007).

2.3.1.9 Fluxes of weather variables (derived from measured quantities) Theterm‘flux’meanstherateofflowoffluid, particlesorenergythrougha givensurface.Thebasisofmodernmicrometeorologyisthe‘energybudget’.Thismay beformedoverasurface(lake,largefieldofcrop)orvolume(individualtree).Thekey totheenergybudgetisthepartitionofthetypesorforms ofenergyatasurface.A surfacecannotstoreanyoftheheatitreceivesfromnetradiation.Therefore,thenetall waveradiationmustbepartitionedintootherformsofenergywhichincludestorageof energybythesoil(groundheatflux)orbodyofwater,energyusedinevaporationor gainedfromcondensation(latentheatflux),energyusedtoheattheairorgainedfrom coolingtheair(sensible heatflux),andtheenergyassociatedwithbiologicalprocess suchasphotosynthesis, respiration etc.Net radiation is the difference between total incoming andoutgoingradiationofallwavelengths,andisameasureoftheenergy available at the surface that drives the above processes. The knowledge of ‘energy budget’isalsousefulindevising‘frostprotectionmethods’byalteringanyofthefluxes (groundheat,sensible heatandlatentheat).Excellenttextbooksgivethemathematical detailsandapplications(e.g.MonteithandUnsworth,2007).

2.3.1.10 Remote sensing and GIS

21 Reference should be made to Goel and Norman (1990), Milford (1994), Sivakumaretal.(2004),WMO(2006).Remotelysenseddataprovideinmanywaysan enhancedandveryfeasiblearealsupplementtomanuallocalobservations,withavery shorttimedelaybetweendatacollectionandtransmission.Itcanimproveinformationon cropconditionsforanearlywarningsystem.Duetotheavailabilityofnewtools,suchas Geographic Information Systems (GIS), management of an incredible quality and quantityofdatasuchastraditionaldigitalmaps,database,models,etc.,isnowpossible. GISreferstotoolsusedinorganizationandmanagementofgeographicaldata,andisa rapidmeansforcombiningvariousmapsandsatelliteinformationsourcesinmodelsthat simulatetheinteractionsofcomplexnaturalsystems.RSandGISincombinationwill continue to revolutionize the inventory, monitoring, and measurement of natural resourcesonadaytodaybasis.Likewisethesetechnologiesareassistinginmodeling and understanding biophysical processes at all scales of inquiry (Holden, 2001, Sivakumaretal.,2004).Chapter4ofthisGuideprovidesdetailsandexamples.

2.3.1.11 Recorders and integrators Reference should be made to Woodward and Sheehy (1983). Recorders and integrators(fortotalsorperiodaverages)arethedevicesbetweenthesensing ofan environmentalvariableandthefinalsiteofcomputationsonthatvariable.Avarietyof techniquesisavailableforuseoftransducersinthisprocess(betweensensorsanddisplay orrecording).Toconvertatransduceroutputintoastatesuitableforhumanvisionorfor recording, translation devices are useful. The electrical translators, amplifiers, etc., belongtothiscategory.Thetechniquesofinterfacingbetweenthetransducerandthe humaneyearethemostrapidlyevolving.Interfacingdevicesaregenerallyclassifiedinto two categories viz., analogue and digital. Analogue devices provide a visual representation of transducer outputs marked on scales. Digital devices provide a numericalreadoutofthetransduceroutput. A tube is the characteristic link for devices that measure pressure (e.g. manometer, bourdon tube etc). Mechanical linkages are used between temperature sensors,constructedasbimetalstripsorhelices,andadisplay,suchasameterorachart. Hairhygrometersandbarometersalsorelyonmechanicallinkages. Theproblems of electricalinterfaces canbe virtually eliminated byreplacing electricalconductorsby fiberopticlinks.Transmissionofdatafromaremotelocationtoaconvenientreceiving stationisreadilyachievedbytransmittingthedatausingradioortelemetriclinkage. Choosing theappropriateset ofinstrumentsis acomplex procedure when considerablerangeofinstrumentationisavailablefordisplayingandrecordingtheoutput fromtransducers.Smallnumbersoftransducerscanbeefficientlyinterfacedwithvisual display and manual recording. A chart recorder is useful if automatic recording is required. Where large numbers oftransducers are required, automatic recording and display is a necessity. Careshould be takentoprovide sufficient visual displays of currentmeasurementstoallowcheckupsandcontroloftheobservationchain.Ifallthe channelsareofsimilarvoltage,withsimilarresponsetimes,thenacomplexdataloggeris probablynotrequired;adataacquisitionunitmaysuffice. Whendatacomputationis required, for example for linearization of thermocouple voltages and conversion of voltagestoenvironmentalunits,thenadataloggerwithprogrammingstepscontainedin areadonlymemorymaybesufficient.

22 Particularmetadataforrecordingofsensorsignalsaresignaltransmissiondata, suchascablelength(forsignallossestimation),andamplificationormodificationofthe signal.

2.3.2 Observations of biological nature Reference should be made to Slatyer and McIlroy (1961), WMO (1982), WoodwardandSheehy(1983),Russelletal.(1989),Pearcyetal.(1989),Bakerand Bland(1994),LowryandLowry(2001).Biologicalobservations(physical,physiological andphenologicalmeasurementsofcanopies,leaves,roots,growthandyields,seeBaker andBland,1994)areneededbeforerelationshipsbetweenweatherandvariousaspectsof agricultureareexplained.Suchobservationsgive,atleast,aqualitativebut,preferably,a quantitativemeasureoftheresponseofaplantoranimaltoweatherconditions. The biologicalobservationsassistagrometeorologistsinsolvingtheproblemsthatarisefrom therelationsbetweenplants,animals andpestsononehand,andtherelationships of growthandyieldofplantsandanimals withweatherontheother. Itshouldneverbe forgottenthatsuchobservationsaremadeonlivingorganismswithaninherentvariability thatshouldbetakenintoaccountinsamplingmethods. Asaworkingmethodforbioclimaticinvestigations,phenologyshouldlaydown standards for the observation of those periodic processes that are of the greatest importance for agricultural crops. In the case of annual crops, a wide variety of bioclimaticfactorsmustbetakenintoconsideration.Theyincludewhetherthecropsare winter,summerormidseasoncrops,howfartheyaresensitivetolowandhighairand soiltemperatures,therequirementofGrowingDegreeDaysandotherheatunitsinuse, irrigationandotheragronomicmanagement.Observationsofthestart,climaxandendof eachphasearecarriedout.Firstforthosecropswhichcovertheentireground(difficultto observe)andsecondforthecropsplantedinrows(easytoobserve). Inthecaseof perennialplantstheobservationsarecarriedoutonindividuals, eachofwhich, when takeninisolation,representsarepetitivesample.Threetofivefruittrees,foresttreesor shrubsofthesameageandplantedinrepresentativelocationsintheorchard,woodor plantationaresufficienttogiveaccuratephenologicalaverages. In explaining the effects of the annual weather cycle on the growth and developmentoflivingorganisms,itisnecessarytorecord a) whetherthephenologicalprocessfollowsapatternadjustedtothemeteorological pattern;onlytherepresentativemomentsofphaseswillbeobserved; b) whether the phenological pattern and its phases are interrupted by weather phenomena;itisnowessentialtocarryoutsimultaneousobservationsofthestage ofdevelopmentofallthevisiblephasesoftheindividualplant.

Therefore,eachuserofbiologicalobservationsmustremembertheirlimitations astogeneralapplicability;oftenthebestmethodsforrecordingthemdifferfromcountry tocountry.Asageneralprinciple,itisessentialthattheaccuracyandextentofbiological observationsmatchesthoseofmeteorologicalobservationswithwhichtheyaretobe associated. Biologicalobservationscanbeconvenientlydividedintosixbroadcategories:

23 a) networkobservationsofnaturalphenomenatakenoveralargegeographicalarea, dealingwithwildplants,animals,birdsandinsects; b) network observations (similar to (a)) and quantitative measurements on the periodicalgrowthandyieldsofcultivatedplantsandfarmanimals.Theyshould includeobservationsondatesofcertaineventsinanimalandplantlifeaswellas cultural operations: dates of ploughing, sowing/planting, weeding, spraying, irrigation(includingquantities)andharvesting(includingquantities)inthecase ofplants;calving,milkproduction,etc.inanimals.Thesedataarerequiredfor the objective study of the relationship between environmental factors and agriculturalproduction; c) Observations of damage to cultivated crops, weeds, animals etc., caused by meteorologicalfactors;occurrenceofcertain pestsanddiseasesin plants and animals, their severity and areas in which centers of infection are situated; damagecausedbyatmosphericevents,e.g.hail,drought,frost,stormsandtheir accompanyingphenomena; d) Detailedobservations,ofhighaccuracyorconsiderable complexity–required duringaspecific experimentataresearchstationorexperimentalsite(seefor exampleBakerandBland,1994); e) Networkobservationsofalesscomplexcharacterthanin(d)above,takenovera muchgreatergeographicalareaandatalargenumberofsites,whicharerequired foroperationaluseoradministrativeactionshortlyaftertheyaretaken,i.e.,for immediateuse; f) Globalbiologicalobservationsforassessingthearealextentofspecificbiological events.

Theseareelaboratedoninthefollowingparagraphs.

2.3.2.1 Observations of natural phenomena Theseobservationsconcernweathereffectsonwildplantsandanimalsthatare, forthemostpart,free fromdeliberatehumaninterference. Becauseofthis relative freedom,thesedataareregardedasprovidingaformofintegrationoflocalclimate,and assuchmayprovesuitableforuseasanoperationalparameter.Wildflowers,treesand shrubsaresuitablefortheseobservationsasalso aremigrating birdsandhibernating animals. Theorganizationoftheseobservationsshouldbesimilar tothatforcultivated plantsandmayoftenbeidenticalinextentandprocedure.Somecountriesmakemuch use of volunteer nonscientific observers for this work and many countries conduct phenologicalinvestigationsofthetypesdescribedhere. 2.3.2.2. Observations for agroclimatological use Inthiscategoryarephenologicalobservationsoncultivatedcropsandtrees,on farmanimals, and ongeneralactivities ontheland thatareallrequiredtoforman

24 accuratepictureoftheagriculturalyear.Theydifferfromthoseintheoperationaluse category, inthattheobservationsaremadeonawiderselectionofphenomena ata permanentnetworkofreportingstations.Theobservationsaresubsequentlyanalyzed, published orotherwisepermanentlyrecordedbyacentralauthority, butwithoutany degreeofoperationalurgency. Thenetworkcanbelessdensethanrequiredforoperationalpurposesbutshould cover the entire country and not be confined to any smaller area of specialized agricultural production. The observations can be simpler in character than those specifiedinsomesectionsofthisChapter,butanagreedandfullyunderstoodstandardof observationisessential.Theynormallyconsistoftherecordingofdatesonwhichcertain eventstakeplaceandofmeasurementsofgrowthandyields. Eachcountryshouldselectitsownstandardprogramme ofobservations, then drawupastandardsetofinstructionsforreportingandrecordingthem,bearinginmind thatitems ofsuchaprogramme will serve asabasis forintroducing anoperational systeminthefuture,astheneedarises. Thenecessityforcontinuity,reliabilityanduniformitymustbeimpressedonthe observers,whomaybevolunteerswithlittlescientifictraining.Eachshouldbegivena recordingnotebookofpocketsize,whichnotonlyhasspacefortheappropriateentries but also contains the necessary instructions and illustrations. Notebooks should be retained at the observing site; entries should be transcribed into standard forms of transmissiontothecentralauthorityatconvenientregularintervals.

2.3.2.3. Observations of direct and indirect damage due to weather

2.3.2.3.1 General weather hazards Weatherhazardswhichmaycauselossordamagetosoils,plantsandanimalsare usuallysnow,ice,frost,hail,heavyrain,weatherconditionsleadingtohighairpollution, unseasonableheatorcold,drought,strongwinds,floods,sandandduststormshighand low(crop)levelozone(seeWMO,2006),etc.Thesecondaryeffectsofweatherlikelyto haveadverseeffectsonagriculturalproductioninclude forestandgrassfiresandthe incidenceofpestsanddiseases. In some cases, an adequate observational system will have been included, particularlyinrelationtopestsanddiseases,forestfires,ortheeffectsofanyregularly occurringhazard,suchassnoworfrost.Regularsystemsforobservingweatherdamage canalsobeincorporatedintothecategoriesdescribedaboveinthischapter.Wheresuch systemsdonotexist,however,specialarrangementsshouldbemadetoassesstheextent ofdamageaccurately. Thenatureoftheobservationsvarieswiththetypeofhazardandcanbeselected onlybyeachindividualcountry,orbyagroupofcountrieswithsimilarclimates.They must, however, be clearly specified to eliminate the risk of inaccurate assessments. Furthermore,observationsystems mustbedevisedinanticipationofdamage,sothat actioncanbetakenbyselectedobserversimmediatelyaftertheunusualweatherhas occurred.Itisalsoimportantthatgoodscientificinformationisavailableonthecausesof thedamage.Agoodrecentexampleisforhail(WieringaandHolleman,2006). 2.3.2.3.2 Greenhouse gases Similarly,contemporaryagrometeorologistsmustunderstandthatclimatechange and its variability because of greenhouse gases related to agricultural production

25 indirectlycauseenormousdamagetotheenvironmentasalsotoagriculture.Overrecent decades,theearthhasbecomewarmerthanexpectedduetotheincreasedpresenceinthe atmosphereofgasessuchascarbondioxide(CO 2),chlorofluorocarbons(CFCs),methane (CH 4)andNitrousoxide(N 2O).CH 4andN 2Oarethegasesmainlyresponsibleforglobal warmingasaconsequenceofagriculture,whiledeforestationleadstolessCO 2 absorption fromtheatmosphere.Anincreaseofthesegasesintheatmosphereenhancesretentionof the reradiated heat and thus adds tothe warming of the earth’s surface and lower atmosphere.Observationsonthesegasesandtheproductionrelatedprocessesbehind their ratesofrelease are thereforenecessaryfor thosepurposes. Research results of agronomistsandsoilscientistsrelevanttotheseproblemsforexampleprovedthatthesoil texturehasasignificantroleonthemagnitudeofCH 4emissionfromricefields.Thisis because percolating irrigation water removes organic acids by aeration and high percolationratesinlightsoils.

2.3.2.3.3 Soil erosion Soilerosionandrelatedphenomenaareothermajorformsofdamagescaused directly or indirectly by weather. Soil erosion is the process of detachment of soil particlesfromtheparentbodyandtransportationofthedetachedsoilparticlesbywind andwater.Theycausefurtherproblemsinwaterprovisiontoandbiologicaldamagein cropsandinoperationalagrometeorologyobservationsarethereforenecessarywherever thisisorbecomesamajorproblem(e.g.Mohammedetal.,1995). The detaching agents are falling raindrops, channel flow and wind. The transportingagentsareflowingwater,rainsplashandwind.Dependingontheagentsof erosionitiscalledaswatererosionorwindorwaveerosion. Therearethreestagesof sandmovementbywind,allofthemusuallyoccurringsimultaneously.Thefirstoneis “suspension”(themovement offine dustparticles smaller than0.1mmdiameterby floatingintheair).Windvelocitiesabove3.0kmhr 1 (0.8ms 1 )arecapableofliftingsilt andveryfinesandparticlestoheightsgreaterthan3to4.5km.Soilparticlescarriedin suspensionaredepositedwhenthesedimentationforceisgreaterthantheforceholding theparticlesinsuspension.Suspensiondoesnotusuallyaccountformorethan15%of totalmovement. Thesecondis“Saltation”whichisthemovementofsoilparticlesbyashortseries ofbouncesalongthegroundsurface.Itisduetothedirectpressureofwindonsoil particlesandtheircollisionwithotherparticles.Particleslessthan0.5mmindiameter areusuallymovedbysaltation.Thisprocessmayaccountfor5070%oftotalmovement. The third is surface creep, the rolling andsliding ofsoilparticles alongtheground surfaceduetoimpactofparticlesdescendingandhittingduringsaltation.Movementof particlesbysurfacecreepcausesabrasionofsoilsurfaceleadingtobreakdownofnon erodablesoilaggregatesduetoimpactofmovingparticles.Surfacecreepmovescoarse particleslargerthan0.52.0mmdiameter.Thisprocessmayaccountfor525%ofthe totalmovement.Measurementsofdust,saltatingandcreepingsandaswellasrelatedsoil andcrophazardsanddefensemechanismsareessentialinoperationalagrometeorology ofaffectedareas(e.g.Mohammedetal.,1996,Sterk,1997). Soillossesbysheetandrillwatererosionsaremostcriticalinsubhumidand humidareas,whereaswinderosionexactsahighertollinsemiaridandaridareas.For bothtypesofsoilerosionthemaintenanceofsoilcoveratornearthesoilsurfaceoffers themosteffectivemeansofcontrollingsoilandwaterlossandcanbeeasilyquantified

26 (Kinama etal.,2007).Conservationtillagesystems areundoubtedlyamongthemost significantsoilandwaterconservationpracticesdevelopedinmoderntimesbutare,in someplaces,traditionalfarmingpractices(Reijntjesetal.,1992).Quantificationoftheir impactsshouldbeimproved.

2.3.2.3.4 Water run-off and soil loss Theportionoftheprecipitationthatisnotabsorbedbythesoilbutfindsitsway intothestreamsaftermeetingthepersistingdemandsofevaporation,interceptionand otherlosses is termedrunoff. Insomehumid regions,thelossmayriseashighas 5060%oftheannualprecipitation.Inaridsections,itisusuallylowerunlesstherainfall isofthetorrentialtype.Althoughthelossofwateritselfisdeplorable,thesoilerosion thataccompaniesitisusuallymoreserious.Thesurfacesoilisgraduallytakenawayand thismeansalossnotonlyofthenaturalfertility,butalsoofthenutrientsthathavebeen artificiallyadded.Also,itisthefinerportionofthissoilthatisalwaysremovedfirst,and thisfraction,asalreadyemphasizedishighestinfertility.Arecentexampleinoperational agrometeorologyofmeasuring (diminishing)soillossandwaterrunofffromsloping agriculturallandisgivenbyKinamaetal.(2007).

2.3.2.4 Detailed biological observations As in the case of physical observations mentioned above, detailed accurate biologicalobservationsareneededforfundamentalresearch.Suchobservationsaremade by scientifically trained personnel to ensure great accuracy. WMO’s Technical Regulations listthetypesofbiologicalobservationswhichmayberequired.However,it must bestressedthattheseobservationsrequirehigh precisionsince theyhave been especiallyselectedforresearchpurposes.Becausethesekindsofobservationsareneither routinenorpermanentitisimpossible torecommendgeneralmethodssuitableforall purposes.Thisworkmaybecarriedouteitherundernaturalconditionsinthefieldor under laboratory conditions, which may often involve the use of climatecontrol chambers,windtunnels,microscopesandotherexperimentaltools,tostudythereactions ofbothplantsandanimalstosingleorcomplexmeteorologicalfactors. Itisalwaysimportanttomeasureboththephysicalandphysiologicalresponsesof living organisms,e.g.inplants,thecarbondioxideintake,osmoticpressure,chemical constitution,leafarea,drymatterindex,andgrowthrate;inanimals,basalmetabolism, pulse and respiration rate, rectaltemperature, blood volume and composition, blood pressure,compositionoffoodetc. Care must be taken in controlchamber experiments because the climate simulationoftendoesnotrepresentopenfield ornaturalconditionsquantitatively or qualitatively.Inordertoachievereliableresults,itmaybenecessarytoselectasound statistical experimental design under natural conditions. In this kind of research, teamworkishighlyrecommended.

2.3.2.5 Observations for operational use Ingeneralthemeandataprovidesastrongbasisforcomparisonwithcurrentdata sincedeparturefromnormalprovidemostusefulinformationforoperationaluse.These are observations needed by regional or central authorities to assist them in taking

27 administrativeaction,makingfunctionalforecasts,orgivingtechnicaladvice.Although they must be standard in nature, so thatobservations from different sources canbe compared,suchyardsticksas30yearsaveragesstarttobecomesomewhatmeaninglessin thelightofarapidlychangingclimate.Otherapproachesneedtobedevelopedthattake timetrendsandincreasingvariabilityintoaccountsimultaneously. Such observations will be needed from a large number ofsitesthatforma national network, and will be made by skilled or semiskilled observers who have receivedadequatetrainingtomeetthedesiredobservationalstandards. Arrangements mustbemadetocommunicatetheseobservationsasquicklyaspossibletotheregionalor centralauthorities.Postalservicesmaybeadequatebutmorerapidmeanslikeinternet, fax,radioetc.,mayoftenbeneeded. The density of the network may be limited by the availability of efficient observing staff. All areas of the country concerned with one type of operational requirementshouldbeadequatelycovered.Ideally,thenetworkdensitywilldependon thetypeofproblem,thecroptypesanddistributions,thesoilvariations,theclimateand thepopulationdensityintheregionthatdeterminethegeneralandrepetitivesampling rates. Theexactnatureofthebiologicalobservationsmustbestrictlyspecifiedbythe authoritiesinanagreedpattern,preferablyaccompaniedbygoodillustrations.Underthis heading are observations on yield, which may concern small experimental plots or regional or national areas of production. In planning these observations, the agrometeorologist should collaborate with statisticians and agricultural experts. Wherevernecessary,heshouldencouragetheagriculturalauthoritiestoobtainthedatain aformsuitable forestablishing weatheryield relationships. Forregionalornational yieldsheshouldmakehimselfawareoftheaccuracyoftheyieldmeasurements. Themeteorologicalandbiologicaldataareanalyzedsimultaneouslybyregional andcentralauthoritiesthattakeoperationaldecisionsafterproperanalyses.Asummary oftheseason’sworkshouldbepreparedandeitherpublishedorpermanentlyretainedfor reference, so that the experience of each year is always available for subsequent consideration. Someexamplesofinformationrequiredforoperationaluseare: a) Forest fires Thestateoftheforestlitteranditssusceptibilitytoburning(seechapter8); b) Diseases Thestateoftheplant,thepresenceandreleaseofspores,theincidenceandspread ofinfection; c) Pests Thehatchingofharmfulinsects;thebuildupofinsectpopulations,ortheir invasionfromotherterritories. d) Weather hazards Thestateofcrops,andwhethertheyareatastageparticularlysusceptibleto weatherhazards;animalsunderstressduetounseasonalclimateorothersevere weatherconditions.

28 e) Farming operations Theprogressmadeinthefarmingyear–inordertomakeweatherforecasters awareoftheoperationalimplicationsofforthcomingweather.

2.3.2.6 Global biological observations Besidesthelocalobservationsdescribedinsectionsabove,therearenowmodern methodsforgloballyevaluatingthedistributionsofbiologicalphenomenasuchas: a) (i) Aerophotogrammetry (conventionalphotography)

This is for the mapping of relief and for determining the types of natural vegetationandcrops,theirphenologicalstate,soiltype,cattledistribution,etc. Flyingheightoftheaircraftmustcorrespondtothephotographicresolutionofthe phenomenonunderstudy(throughuseofmultispectralphotography).Although thisisdiminishinginthedevelopedworld,inthedevelopingworlditcouldbe stillimportantifenoughfundsandhardwarecanbeavailable.

(ii) Aerial photography (particularwavelengths)

Remotesensingwithspecialfilm,sensitizedtoaregionofthevisiblespectrum, or to infrared radiation, gives valuable information on albedo, intensity and ground emission active in the energy balance. Scanners have also become available.Informationcanbeobtainedonsoilmoisturedeficit;droughtstressin vegetation;compositionofplantcommunityanditsphenologicalcondition;state ofcropsandcattle. b) Satellite observations

Satelliteimagesareuseful,especiallyforextendedareas(Chapter4).Estimates ofrainfallandofvegetationindicesareroutinelyavailable,althoughtheyhave veryvariableaccuracydependingonlatitude,observingsystemetc.

2.4 Instruments used at agricultural meteorological stations

Mostoftheinstrumentsincludedasbasicequipmentatanagrometeorological stationaredescribedinWMO(2006). Shortdescriptionsofsomeagrometeorological instrumentsgenerallyusedforspecificapplicationsaregivenbelow.Thereisaclearneed forfrequentrecalibrationofallinstruments.

2.4.1 Measurement of the physical environment

2.4.1.1 Radiation and sunshine

29 ReferencemayagainbemadetoCoulson(1975),FritschenandGay(1979),Iqbal (1983),WMO(1984),GoelandNorman(1990),WMO(2001),Strangeways(2003)and WMO (2006) as well as WMOT.N.172. Some basic remarks on mounting instrumentationhavealreadybeengivenin2.3.1.1.Globalsolarradiation(directand diffuse solar radiation) is measured with pyranometers containing thermocouple junctionsinseriesassensors. Thesensorsarecoatedblacktohaveuniformthermal responseatallspectralwavelengths.WithfiltersnonPARradiationcanbemeasuredand the difference between solarimeter outputs withand without filters gives PAR data. StigterandMusabilha(1982)didthisforthefirsttimeelaboratelyinthetropics.Solid statesensors(photoelectricsolarcells, photoemissive elements,photoresistorsetc.) maybeusedwhereradiationcanbeassumedtohaveconstantspectraldistribution(e.g. solar radiation within limits). Different types of photometers and ultra-violet illuminometers ,whichareadaptionsofthese,areusedinagrometeorologicalresearch. Light,asindispensableforphotosynthesis,isoneofthemajorcomponentsofthe short wave radiation. What is measured with a lux meter is not light intensity, but luminance,thatisdefinedasluminousfluxdensityinterceptedperunitarea.Quantum sensors which measure the PAR directly in the range 0.4 to0.7 micrometers are available.Ideallycropprofilemeasurementswithquantumsensorsshouldbedoneon perfectlyclearoruniformlyovercastdays.However,ifthisisnotpossibletheproblemis partially overcome by expressing the values at each level relative to the incident radiation.Theseprofilesarecomparedwithleafareaprofileswhenthelightrequirements ofcropsarebeingstudied. Tube radiometers foruseincropsandagroforestryareinherentlylessaccurate thaninstrumentswithahemisphericaldome,butcanbeofgreatuseinestimatingthe averageradiationbelowacropcanopyormulchrelativetothataboveit.Whenmounted N–S,thesensitivityvarieswiththeangleofthesolarbeamtotheaxis,particularlyin thetropics(Mungaietal.,1997).Thisaddstoerrorsduetohighambienttemperatures underlowwindspeedsanderrorsduetocondensationinsidethetubes.Calibrationsasa functionoftimeandambientconditionscanlargelycopewithsucherrorsbutfiltered tubesforphotosyntheticallyactiveradiationappearedunreliableinthetropics(Mungaiet al., 1997). To measure the fractional transmission of solar radiation through a crop canopy, a number of tubes are placed beneath the canopy. Their numbers and arrangement depend ontheuniformityofthecrop stands(Mungaietal., 2000). A reference measure of incident solar radiation above the canopy is needed. For crop studiestheoutputforeachtubeisusuallyintegratedoverperiodsofadayorlonger duringthegrowingseason.Integratorsorloggersareidealforthispurpose.Thevaluesof fractionalinterceptionaresubsequentlycalculatedfromtheintegrals(e.g.Mungaietal., 2000). Surface temperature radiometers areusedformeasurementsofinfraredradiation emittedfromnearorremotesurfaces.Theyaremainlyusedashandheldremotesensors tomeasuretemperaturesofradiating irregular surfaces suchassoil, plant coverand animalskinandrequireknowledgeoftheemissivitycoefficientoftheobservedsurface (WMO,2001).OperationalprecautionsweregivenbyStigteretal.(1982). Pyrgeometers areusedforthemeasurementoflongwaveradiationfromthesky (whenupwardlooking)orfromtheearth(facingdownward). Net all-wave radiometers (measuring netflux ofdownwardandupward total radiation i.e. solar, terrestrial and atmospheric) contain blackcoated heatflux plate

30 sensors,inwhichthermocouplesareembeddedtomeasurethetemperaturedifference betweenthetwosidesofathinuniformplatewithwellknownthermalproperties.Errors due to convection and plate temperature are avoided by using forced ventilation, appropriateshields,andbuiltintemperaturecompensationcircuits. Net radiometers or net pyrradiometers or net exchange radiometers or balancemeters mayhaveastandard (about6cm)diameterforregularuseoraminiature(about1cm)diameterforspecial workonradiationexchangefromplantorgansorsmallanimals. Standardmeteorologicalstations usually measureonlysunshine duration. The traditional instrument to observe this is the Campbell-Stokes sunshine meter . WMO abolishedtheworldstandardstatusofthissunshine meterin1989,astheprocessof evaluating theburns onits daily cardswasbothcumbersome andarbitrary. Instead, sunshinedurationhasbeendefinedasthetimeduringwhichdirectradiation(onaplane perpendicular totheSun’s beam) is larger than120 Wm 2 .This definition makes it possibletonowuseautomaticsunshinerecorders(e.g.WMO,2001,2006). Particularmetadataofradiationmeasurementsare:(1)wavelengthtransmission spectralwindowofpyranometerdome;(2)sunshinerecorderthresholdradiationvalue; (3)horizonmappingforeachinstrumentmeasuringradiationorsunshine;(4)procedures ormeanstokeepradiometerdomescleanandclear.

2.4.1.2 Temperature of air ReferenceshouldagainbemadetoFritschenandGay(1979),WMO(1984),Goel andNorman(1990),WMO(2001),Strangeways(2003)andWMO(2006).AlsoWMO TN 315 is useful. General issues were discussed in 2.3.1.2. Besides the standard instrumentsthereareseveralothersusedinagrometeorologicalsurveysandresearch. Smallandsimpleradiationscreens,someofwhichareaspiratedwhenthisdoes not destroy temperature profiles, are useful for special field work. High outside reflectivity, low heat conductivity, high inside absorption and good ventilation are desirablerequirementsintheconstructionmaterialsanddesign.Anideaoftheradiation errorscanforexamplebedeterminedbysimultaneous,replicatedobservationswiththe ventilatedAssmannpsychrometeratthehoursofmaximumandminimumtemperature. The most common thermometers for standard observations in air are those generally called differential expansion thermometers , which include liquidinglass, liquidinmetal,andbimetallicsensors.Becauseoftheirsizesandcharacteristicsmany of these instruments are of limited use for other than conventional observations. However,spiritinglass,mercuryinglass,andbimetallicsensorsmakeuseful maximum and minimum temperaturemeasurements.Whentemperatureobservationsarerequiredin undisturbed and rather limited spaces, the most suitable sensors are electrical and electronicthermometerswhichpermitremotereadingstobemade. Resistance thermometers aremetallic annealedelements,generallyofnickelor platinum,whoseelectricalresistanceincreaseswithtemperature;readingsaremadewith appropriatelyscaledmeterssuchaspowerbridges. Thermocouples are convenient temperature sensors because they are inexpensive and easy to make. Those most frequently used in the environmental temperature range are copperconstantan thermocouples, which have a thermal electromotiveforceresponseofabout40V°C 1 .Thisrelativelyweakresponsecanbe increased by connecting several thermocouples in series or using stable solidstate d.c.amplifiers. Thermocouples are excellent for measuring temperature differences

31 betweenthetwojunctions,e.g.dryandwetbulbtemperatures,orgradients.Whenthey areusedtomeasuresingletemperaturesorspatialaveragetemperatures(suchassurface temperatures,usingthermocouplesinparallel),thereisalwaysneedforonejunctionto beataknownsteadyreferencetemperature. Thermistors aretemperaturesensorsincreasinglyusedinagriculturalandanimal micrometeorology. Theyaresolidsemiconductorswithlargetemperaturecoefficients andareproducedinvarioussmallshapessuchasbeads,rodsandflakes. Theirsmall size,highsensitivityandrapidresponsearevaluablecharacteristics,offsethoweverby theirlackoflinearresponse(lessthanmetallicresistances)intheresistancetemperature relationship.Additionalcomponentsarethereforerequiredtoachievelinearoutput. Diodes and transistors with aconstant current supply which provide outputs much higher than 1 mV°C 1 have been used to construct sensitive and accurate thermometersforapplicationinplantenvironments. Infrared thermometers werediscussedin2.4.1.1.A black-globe thermometer isa blackened copper sphere commonly 15 cm in diameter, with a thermometer or thermocoupleinserted.Whenablackglobethermometerisexposedintheopenorunder aventilatedshelter,theeffectsofdifferentradiationfluxesareintegratedwiththatof convective heat(windandairtemperature). Installed inside closedbarnsorstables, understillairconditions,itgivestheaverageradianttemperatureofsoil,roofandwalls atequilibrium. Particularmetadatafortemperaturemeasurementare:(1)heightofsensor;(2) descriptionofemployedscreens(dimensions,material,ventilation).

2.4.1.3 Temperature of soil and other bodies

2.4.1.3.1 Soil ReferenceshouldagainbemadetoRosenbergetal.(1983),WMO(1984;2001; 2006).Allsensorsmentionedin2.4.1.2maybeused,althoughthethermocouplemustbe of a sturdy construction, provided that presence of the sensor does not affect the temperaturebeing measured. Mercury in glass typesoilthermometersarefrequently used.Formeasurementsofthesoiltemperatureatshallowdepthsthesethermometersare bent in between angles 60 0 and 120 0 for convenience. At greater depths lagged thermometersareloweredintotubes.Careshouldbetakentoseethatwaterdoesnot enter the tubes. Alternatively, shielded thermocouples or thermistors can be used. Temperatureofdeepersoillayerscanbemeasuredwithglassthermometers,thermistors, thermocouples,diodesandplatinumresistancethermometerswhengoodcontactismade withthesoil. Incoldandtemperateclimateswherethesoilisoftendeeplyfrozenandsnow covered, when continuous soiltemperature records are not available or when many observingpointsareneeded,differenttypesof snow-cover and soil-frost depth gauges canbe used. Theseinstrumentsgenerally consist ofawaterfilled transparenttube, encasedinaplasticcylinderthatisfixedinthesoil.Thetubeisperiodicallyremoved fromitsplasticcasingtodeterminethedepthtowhichtheentrappedwaterisfrozen.If thefixedcylinderextendssufficientlyfarabovethesoilsurfaceitcanbeusedasasnow coverscaleprovidedtheexposedpartisgraduated. For the soil surface temperature, noncontact infrared thermometers are preferableaslongasemissivityisknownandagainthepresenceofthesensordoesnot

32 affectthetemperaturebeingmeasuredbyshadingorotherwiseinfluencingthenatural radiationbalance(e.g.Stigteretal.,1982). Particularmetadataforsoiltemperatureprofile measurementsareinstrument depths,andregularspecificationsoftheactualstateofthesurface.

2.4.1.3.2 Other bodies Likethesoil,plantpartssuchasleaves,stems,roots,fruitsetc.,havemassand heat capacity. The temperature of all these organs, can be measured withplatinum resistancethermometers,thermistors,thermocouples,infraredthermometers,diodesetc. iftheinstrumentsdonotinfluencetheenergybalanceofthosebodies.Tomeasuretheir surfacetemperatures,andthoseattheoutsidesurfaceofanimals,smallcontactsensors likethermocouplesandthermistorornoncontactmethodsshouldbeused. Inanimalmicrometeorologyspecialandrelatively simple instrumentshave beenusedtosimulatethecoolingpoweroftheairortheheatloadoverthehomeothermic animalbody.Katathermometersarespiritinglassthermometerswitharatherbigbulb ofaccuratelydeterminedarea.Withthesethetimerequiredforafixedamountofcooling afterthethermometerhasbeenwarmedabovebodytemperatureismeasured. Sucha readingisanindexintegratingthecoolingeffectoftemperatureandwind. Apracticalthermoanemometeristheheatedglobeanemometer,whichprovides areasonablevalueofthecoolingpowerofairmotionsinclimaticchambersandother indoorenvironments.Itisconstructedwithachromeplatedsphereof15cmdiameter heatedbyanichromewirethatcanreceiveavariablepowerinput.Severalthermocouples inparallelwithonejunctionfixedinternallytotheglobewallmeasurethetemperatureof theglobewall. Thevoltageoftheheateris regulatedtogive adifferentialairglobe temperatureof15 ºC.Thepowerneededtomaintainasteadytemperatureisafunctionof theventilation.However,acorrectionfactorforthermalradiationofwalls,ground,and roofmayberequiredifthesearesignificantlyhotterthantheair.

2.4.1.4 Atmospheric pressure ReferenceshouldbemadetoWMO(2006).Analyzedpressurefieldsareusefulin agriculturalmeteorology.Thesepressurefieldsmustbeaccuratelydefinedbecauseallthe subsequentpredictionsofthestateoftheatmospheredependtoagreaterextentonthese fields. Inmercurybarometersthepressureoftheatmosphereis balancedagainstthe weightofthecolumnofthemercury,whoselengthismeasuredusingascalegraduated inunitsofpressure.Oftheseveraltypesofmercurybarometers,fixedcisternandFortin aremostcommon. Forthepurposeofcomparisonpressurereadingsmayneedtobe correctedforambientairtemperature. In electronic barometers, transducers transform the sensor response in to a pressurerelated electrical quantity in the form of either analogue or digital signals. Aneroid displacement transducers, digital piezoresistive barometers, cylindrical resonatorbarometersfallintothiscategory.Calibrationdriftisoneofthekeysourcesof errorwithelectronicbarometers.Thereforetheongoingcostofcalibrationmustbetaken intoconsiderationwhenplanningtoreplacemercurybarometerswithelectronicones. Aneroidbarometershavetheadvantageoverconventionalmercurybarometers thattheyarecompactandportable.Anotherimportantpressuremeasuringdeviceisthe Bourdontubebarometer.Itconsistsofasensorelement(aneroidcapsule),whichchanges itsshapeundertheinfluenceofpressure,andtransducerswhichtransformthechange

33 intoaformdirectlyusablebytheobserver,suchasonabarograph.Thedisplaymaybe remotefromthesensor. 2.4.1.5 Wind ReferenceshouldagainbemadetoMazzarella(1972),Wieringa(1980),WMO (1984),KaimalandFinnigan(1994),Stigteretal.(1998),WMO(2001,2006).Wind speedanddirectionmeasuredwithstandardinstrumentsunderstandardexposureare fundamentalrequirementsofthescienceofagriculturalmeteorology.Themostcommon routineobservationisthewindrun,providinganaverageoverthemeasuringperiod.That periodshouldbeatleasttenminutesforsmoothingouttypicalgustiness,andatmostan hourbecausesurfacewindhasaverypronounceddiurnalcourse.However,different instrumentsareusedwhenitisnecessarytoobservethemoredetailedstructureofair motion,e.g.inagriculturalmesoandmicrometeorologicalstudies.Insuchcaseswind speedsaremeasuredwithcupanemometersofhighsensitivityatlowvelocitiesorwith electricalthermoanemometersorsonicanemometers. Sensitive cup anemometers arethemostcommoninroutineandresearchuse, measuringallwindcomponentswithanangleofattackwiththehorizontalsmallerthan about45º.Thebesthavealowstallingspeed(thresholdofwindspeedbelowwhichthe anemometers does not rotate) of about 0.1 m s 1 , because friction loads have been minimized. The rotation produces an electrical or phototransistor signal which is registeredbyarecorderorcounter.Suchtransducersalsoallowseparaterecordingof gustiness. Sensitive propellers, ifmountedonavane,canbeanalternativeforcups(WMO, 2006)butarethesedaysmainlyusedinresearchinstruments(WMO,2001). Pressure tube anemometers onavanearereliable,butsounwieldythattheyaredisappearingin favorofsmallerinstruments.Anewinstrumentforhorizontalwindspeedanddirection measurementisthe hot-disk anemometer ,whichhastheadvantagethatithasnomoving parts.Forsteadywinddirectionmeasurement,windvanesmusthavefinswhoseheight exceedstheirlength. Sonic anemometers , sensing the transport speed of sound pulses in opposite directions along a line, so being totally linear, respond quickly enough to measure turbulenceandhavebecomeusefulinfluxmeasurementsinresearch. However,they cannotbeusedinsmallspacesandtheircalibrationshiftsinwetweather. For research of wind speeds in restricted spaces, such as crop canopies and surfaces,severalkindsofthermoanemometersareused.The hot-wire anemometer isan electricallyheatedwire,ofwhichtheheatlossisafunctionoftheairspeedatnormal incidencetothewire.Itisparticularlyusefulforlowspeedwindsbutveryfragile,andin pollutedsurroundingsitlosesitscalibrationsoitcannotbeusedoperationally.Because ofthedependenceofwireheattransferonwinddirection,crossedwiresensorscanbe usedtoseparatethewindcomponentsinturbulentmotion. Hot-bead anemometers have heated beads, of which heat transfer is less dependentonwinddirectionbuthasaslowerresponse.Thermocouplesorthermistors sensedifferencesintemperaturebetweenheatedandnonheatedbeads,whichdifferences areafunctionofthewindspeed. ShadedPicheevaporimetershavealsobeenusedas cheap interpolating and extrapolating ancillary anemometers in agroforestry under conditions of not too high turbulence and low temperature and humidity gradients (KainkwaandStigter,2000;Stigteretal.,2000).

34 Particularmetadataforwindmeasurementare:(1)responsetimesofinstruments; (2)sensorheight; (3)exposure,i.e. adequatedescriptionofsurrounding terrainand obstacles; (4)typeofanemometersignal,itstransmissionanditsrecording;(5)sam plingandaveragingprocedure;(6)unitspecification(m/s,knots,km/hr,orsometypeof milesperhour).

2.4.1.6 Air humidity and soil moisture (including leaf wetness)

2.4.1.6.1 Humidity ReferenceshouldagainbemadetoWMO(1984),Griffiths(1994)andWMO (2001,2006)aswellasWMOTN21.Themostcommonlyusedhairhygrometersand hairhygrographsmaygiveacceptablevaluesonlyifgreatcareistakenintheiruseand maintenance. The accuracy of other equipment has improved. Besides standard psychrometers equipped with mercury-in-glass thermometers, portable aspirated and shielded psychrometers and mechanical hygrometers , many instruments have been developedtomeasuredifferentaspectsofairhumidity. Since,theabovementioned routineinstrumentsarebulkyandinadequateforremotereading,theyareunsuitablefor many agrometeorological observations. For observations in undisturbed and small spaces,electricalorelectronicinstrumentsareused. Thebestmethodformeasuring humidity distribution in the layers near the ground is also by using thermoelectric equipment,unventilatedthermocouplepsychrometersbeingmostsuitableinvegetation (e.g.Rosenbergetal.,1983;WMO,2001).Ventilatedpsychrometersmaybeusedfor levelsatleast50cmabovebaresoilordensevegetation. Formeasuringrelativehumiditydirectly,usehasbeenmadeof lithium chloride or sulphonated polystyrene layers ,since theelectricalresistanceoftheseelectrolytes changeswithrelativehumidity.However,theseelectrolyticsensorsbecomeaffectedby aircontaminationandhighrelativehumidityconditionsandarethereforetobeusedwith greatcareandfrequentrecalibration.Forexample resistive polymer film humiditysensors are increasingly used. Instruments are usually contaminant resistant and common solvents,dirt,oil,andotherpollutantsdonotaffectthestabilityoraccuracyofthesensor. Electrical dew-point hygrometers indicatedewpointratherthanrelativehumidity. For example, the lithium chloride dew-point hydrometer measures the equilibrium temperatureofaheatedsoftfiberglass wickimpregnatedwithasaturatedsolutionof lithium chloride. This temperature is linearly related to atmospheric dew point. However,theresponseoftheinstrumentunderlowrelativehumidityconditionsisnotso good. Moreexpensiveandcomplicated,butmoreaccurate,instrumentsrequirethatthe airbesampledanddelivered,withoutchangingitswatervapourcontent,toameasuring unit.Onesuchinstrument,anilluminatedcondensationmirror,isalternatelycooledand heatedbyacircuitenergizedbyaphotocellrelay,whichmaintainsthemirroratdew pointtemperature. Infra-red gas analyzer hygrometers (IRGAs)arebasedonthefactthat watervapourabsorbsenergyatcertainwavelengthsandnotothers.Twosamplingtubes arealsousedtomeasureabsolutevaluesofwatervapourconcentrationattwolevels,at thesametimeastheirdifferences. Single or double-junction peltier psychrometers areextensivelyusedforaccurate measurement of water potential values in plant tissues and soil samples. They are generally based on the Peltier effect in chromelconstantanjunctions and the water

35 potentials are derived from measurements of equilibrium relative humidity in representativeair. Particularmetadataforanytypeofhygrometryareregularnotesinthestation logbookofmaintenanceactivities,suchaspsychrometerwickreplacementorcleaningof sensorsurfaces.Moreoveritshouldberecordedifsensorsareventilated.Becauseso manydifferenthumidityparametersareinuse,themetadatashouldspecifynotonlythe actuallyusedparametersandunits,butalsocontaininformationonthewayinwhichthe archivedhumiditydatawerecalculatedfromoriginalobservations(conversiontables, graphs,smallconversionprogrammes).

2.4.1.6.2 Soil and grain moisture ReferencemaybemadetoGreacen(1981),Gardner(1986),ViningandSharma (1994),Dirksen(1999),SmithandMullins(2001)andWMO(2001;2006).AlsoWMO TN97describesinstrumentsusedforthemeasurementofsoilmoisture.Timeandspace variationofsoilmoisturestorageisthemostimportantcomponentofthewaterbalance foragrometeorology.Severalinstrumentshavebeenconstructedtomeasuresoilmoisture variationsatasinglepointbuttheyavoidthevariabilityofsoilsinspaceanddepth(e.g. Ibrahimetal.,1999,2002).Gardner(1986)stilldescribedasarelevantindirectmethod ofobtainingsoilwatercontent“measurementofapropertyofsomeobjectplacedinthe soil,usuallyaporousabsorber,whichcomestowaterequilibriumwiththesoil”.Blotting paperis popularhereand theymay be also usefulforsoilpotentialdeterminations, characterizingthewatersupplyingpowerofthesoilinrepresentationofroothairs. Subjectivemethodsofestimatingsoilmoisturehavebeenusedwithsatisfactory resultsinsomeregionswhereregularobservationsinadensenetworkarenecessaryand suitableinstrumentslacking.Skilledobservers,trainedtoappreciatetheplasticityofsoil sampleswithanysimpleequipment,formtheonlyrequirementforthismethod.Periodic observationsandsimultaneousdeterminationsofsoiltextureatdepths,bycompetent technicians,allowapproximatechartstobeconstructed. Thedirectmethodsofsoilwatermeasurementfacilitateimplementationofeasy followupmethodsatoperationallevels.Gravimetricobservationsofsoilwatercontent havebeeninuseforalongtimeinmanycountries.Anaugertoobtainasoilsample,a scaleforweighingit,andanovenfordryingitat1001050Careusedforthepurpose. Comparisonofweightsbeforeandafterdryingpermitsevaluationofmoisturecontent whichisexpressedasapercentageofdrysoilor,wherepossible,byvolume(inmm)per meterdepthofsoilsample.Becauseoflargesamplingerrorsandhighsoilvariabilitythe useofthreeormorereplicatesforeachobservationaldepthisrecommended(seealso WMOTN21).Thevolumetricmethodisusefultomeasuretheabsoluteamountofwater inagivensoilandithasknownvolumesofsoilsampled. Tensiometers measure soilmoisture tension, which is a useful agriculture quantity,especiallyforlightandirrigatedsoils.Theinstrumentconsistsofaporouscup (usuallyceramicorsinteredglass)filledwithwater,buriedinthesoilandattachedtoa pressuregauge(e.g.amercurymanometer).Thewaterinthecupisabsorbedbythesoil throughitsporesuntilthepressuredeficiencyintheinstrumentisequaltothesuction pressureexertedbythesurroundingsoil. Nexttothisdirectmeasurementanindirect measurementofsoilmoisturetensioncanbeobtainedfromelectricalresistanceblocks. Electrical resistance blocks ofporous materials (e.g. gypsum), the electrical resistance of which changes when moistened without alteration of the chemical

36 composition,canbecalibratedasasimplemeasureofsoilmoisturecontent.Itwasfor exampleoperationallyusedsuccessfullybyMungaietal.(2000). Among radioactive methods, the neutron probe measuresthedegreetowhich highenergyneutronsarethermalizedinthesoilbythehydrogenatomsinthewater.It determinesvolumetricwatercontentindirectly in-situ atspecificsoildepthsusingapre designed network ofaccess tubes (Ibrahim etal., 1999). Theneutronscattering and slowing method was until recently most widely used, relatively safe and simple to operate.Thetotalneutroncountperunittimeisproportionaltothemoisturecontentofa sphereofsoilofwhichthediameterislargerwhenthesoilisdrier.Soilmoistureis measured with the gamma radiation probe by evaluating differential attenuation of gammaraysastheypassthroughdryandnaturalsoils.Thismethodgenerallyrequires twoprobesintroducedsimultaneouslyintothesoilafixeddistanceapart,onecarryingthe gammasourceandtheotherthereceiverunit. Time Domain Reflectometry (TDR)determines thesoilwatercontent through measuringthedielectricconstantofthesoil,whichisafunctionofthevolumetricwater content.Itisobtainedbymeasuringthepropagationspeedofalternatingcurrentpulsesof veryhighfrequency(>300MHz).Thepulsesarereflectedatinhomogeneities,eitherin thesoilorattheprobesoilinterface, andthetraveltime betweenthereflections is measured.Fromthetraveltimethedielectricconstantisdeterminedandinthatwaythe volumetricwatercontentofthesoil.Aswithneutronscattering,thismethodcanbeused overalargerangeofwatercontentsinthesoil.Itcanbeuseddirectlywithinthesoilorin accesstubes.Comparedtotheneutronscatteringmethod,thespatialresolutionisbetter, calibrationrequirementsarelesssevereandthecostislower(WMO,2001). Inagricultureanotherimportantmeasurementneededisthemoisturecontentof grainswhichinfluencesviabilityandgeneralappearanceoftheseedbeforeandafter storage.Itisimportanttoknowthemoisturecontentimmediatelyafterharvest,priorto storage,shipment and afterlong periods of storageetc.The methods formeasuring moisture content are generally classified as reference methods, routine methods and practicalmethods.Thephosphorouspentoxide(moistureisabsorbedbythischemical) and KarlFisher method (water is extractedfrom seed using areagent) come under referencemethods.The“ovendrymethod”iscategorizedasroutinemethodinwhichthe seedmoistureisdeterminedbyremovingthemoisturefromtheseedsinanoven.Among thepracticalmethodsthemoisturecontentdeterminationbyusingsamplesininfrared moisturemetersiseasyascomparedtoothers.WMOTN101dealswithsomeofthe abovebutalsowithpracticalmethodsusingelectricalresistancesensors.Thelatterwere successfullyusedbyAbdallaetal.(2001).

2.4.1.6.3 Leaf wetness and dew Reference should be madetoGetz(1992)andWMO(2001).Theverylarge numberofinstrumentsthathavebeendevelopedforthemeasurementofdeworduration ofleafwetness(WMOT.N.55)indicatesthatnotevenamoderatelyreliablemethodhas yetbeenfound.TwomaincategoriesofLeafWetnessDuration(LWD)sensorsbeing usedare:(i)mechanicalsensorswithrecordersand(ii)electricsensors,whichexploitthe conductivityvariationasafunctionofwetness. Inaddition to electric conductivity measurements ofdew (variations onboth natural and artificial surfaces), principles of mechanical dew measurement are (i) modificationofthelengthofthesensorasafunctionofwetness,(ii)deformationofthe

37 sensor, (iii) water weighing type (dewbalance recorder), (iv) adsorptiononblotting paper,withorwithoutchemicalsignaling.Thereisalsovisualjudgmentofdropsizeon preparedwoodensurfaces(Duvdevani). Porcelainplates(Leick),piecesofclothandotherartificialobjectscansharein anydewfallordistillationoccurringonagivennaturalsurface.Unlesstheyaremoreor lessflushwiththatsurfaceandhavesimilarphysicalproperties(surfacestructure,heat capacity, shape, dimension, flexibility, color and interception) they will not indicate reliablytheamountofdewthatthesurfacereceives.Ifexposedabovethegenerallevelof theirsurroundings,asisnormalwithDuvdevaniblocksandusuallyappearstobethecase withmorerefined “drosometer”devices, theirbehaviorwilldivergefromthatofthe surfacebelow,andtheobservedamountsofdewmaybearlittlerelationtothedewon adjacentnaturalsurfaces. Weighingtypeinstruments,modifiedhygrographswithahempthreadinsteadofa hairbundle,andsystemswithsurfaceelectrodesthatconnectwhenthesurfaceiswet,all havetheirproblems(WMO,2001).Thesurfaceelectrodeinstrumentsarethesimplestto read,butagaindonotmeasurerealleafwetness,becausethesensorisagainafakeleaf, withdifferentheatcapacityetc.

2.4.1.7 Precipitation (clouds and hydrometeors) ReferenceshouldbemadetoMeteorologicalOffice(1981),WMO(1994,2006). WMOTechnicalNotes21,83and97alsoprovideinformationandguidanceconcerning instrumentssuchasraingaugesandtotalisators,rainrecorders(floatandtippingbucket types)andsnowgauges.Manyoftheserequireloweraccuracyinagrometeorologythan as standard climatological measurements. For some purposes no great precision in rainfallisneeded,forexampleinclassifyingdaysaseither“wet”or“dry”forinsurance claimsorwhenonlyroughideasarewantedofaccumulationofrainfalloveragricultural fieldsoveranongoingseasoncomparedtothesameperiodinearlieryears,atopicmost farmerswillbeinterestedin.Thesameappliesinschool(agricultural)environmental scienceteaching.InMalitheNationalMeteorologicalDirectorateisoftheopinionthat farmersneedtohaveameansofmeasuringrainfalliftheywishtoderivefullprofitfrom theagrometeorologicalinformationdisseminatedbyruralradio,andfarmerraingauges arenowlocallymanufactured(Rijks,2003). Afewadditionalremarksareappropriatehereonanumberofinstrumentsused forspecific workandontheiroperation. Hailfallobservationscannotbeautomatized, becausetheonlyusefulobservationmethodsofarisemploymentofanetworkofhail pads. It should first be noted that since close to 150 years wind, and therefore particularlyheightandshapeoftheraingauge,havecorrectlybeenseenasbyfarthe mostimportantfactorsdeterminingerrorsinrainfallmeasurement. Whencostisimportant,includingneedsforhighmeasuringdensities,raingauges smallerinsizethanthenormalstandardareemployed,buttheyareunsuitableforsnow. Sometimesthesearemadeofplasticandshapedlikeawedge,sometimestheyareplastic or other can like receptacles. Commercially theformer are oftencalled “raingauges according to Diem” or“farmer raingauges”, the latter, if from plastic, “clear view raingauges”. Inexpensive raingaugesandsmallsizetotalizerraingaugesareusedfor

38 studyingthesmallscaledistributionofprecipitation,asinlimitedmesoclimates,forest orcropinterception,shelterbelteffects,etc. In addition to routine rainfall measurements agricultural practices need the amount,durationandintensityofprecipitationatthetimeoffloodsandrelateddisasters. Asthesevereweathersystemsaffectingcoastalareasoriginateinseasandoceansthe oceanbaseddatacollectionsthroughshipsandbuoysarenecessary.Also,installationof automaticweatherstationsthatmeetthenecessarycriteriawillhelpmonitoringandearly warningcoastalzonesabouthazardousweather.However,capabilityfordisseminating theweatherdata,topographyandvulnerabilityofthecoastalzonetosevereweather decideontheweatherstationnetworkrequirements.Invulnerablecoastalzonesadense networkofobservationsisrequiredtodiagnoseandplaninadvancethemitigationof weatherrelatedhazards. Radar,sometimestogetherwithsatelliteremotesensing,isincreasinglyusedto estimatebothpointandarearainfallfromcharacteristicsofcloudstructureandwater content. These data complement the surface raingauge networks in monitoring and mappingrainfalldistributionbutitisessentialthatrepresentativeactualobservationsat thesurfaceareusedwhentakingdecisionsonthetrackofthestormforforecasting purposes.Suchderivedrainfalldataneedongoingintensitycalibration. Particular metadata for precipitation measurement are: (1) raingauge rim diameterandrimheightaboveground;(2)presenceofanipherscreenorsomeother airflowmodificationfeature;(3)presenceofoverflowstorage;(4)manner,ifany, of dealingwithsolidprecipitation(heating,snowcross).

2.4.1.8 Evaporation and water-balance Standardinstrumentsusedformeasuringthedifferentcomponentsofthewater balanceforclimatologicalandhydrologicalpurposes(suchasherescreenedandopen panevaporimeters,lysimeters)arealsoemployedinagriculturalmeteorology.Thesame literatureasin2.4.1.7shouldbereferredto,togetherwithWMO(1984;2001).

2.4.1.8.1 Evaporation While it is possible to estimate actual or potential evapotranspiration from observed values of screen or open pan evaporimeters or from integrated sets of meteorological observations, more accurate, direct observations are often preferred. Actualevapotranspirationismeasuredbyusingsoilevaporimetersorlysimeters,which arefieldtanksofvaryingtypesanddimensions,containingnaturalsoilandavegetation cover(grass,cropsorsmallshrubs).Potentialevapotranspiration(PET)canbemeasured bylysimeterscontainingsoilatfieldcapacityandagrowingplantcover.Asurfaceat almostpermanentfield capacityisobtainedbyregularirrigationorbymaintaining a stablewatertableclosetothesoilsurface.Astrictcontrolmustbekeptofinfiltration fromrainfallofexcesswatersupply.Thereliabilityofobservationbylysimetersdepends upontheconditionsattheinstrumentalsurfaceandbelowitbeingverysimilartothe conditionsofthesurroundingsoil. Among the different lysimeters the most important ones for agricultural applicationsareThornthwaitelysimeters(drainagetype),Popofflysimeters(combined drainageandweighingtype),weighinglysimetersandhydrauliclysimeters(morerobust weighing type). Lysimeters are used for measurement of evaporation, transpiration, evapotranspiration(ET),effectiverainfall,drainage,chemicalcontentsofdrainagewater,

39 tostudyclimaticeffectsofETontheperformanceofcrops. Lysimetryisoneofthemost practicalandaccuratemethodsforshorttermETmeasurements,butanumberoffactors causealysimetertodeviatefromrealityviz.,changesinthehydrologicalboundaries, disturbanceofsoilduringconstruction,conductionofheatbylateralwalls,etc. Atmometersor“smallsurface”evaporimetersarealsostillinuse,amongwhich thecheapPichecanbeutilizedanywhereinmeteorologyandagricultureifthephysics arewellunderstood(StigterandUiso,1981).ShadedPicheevaporimeterswereusedto replacehumidityandwindspeeddataintheaerodynamictermofthePenmanequationin Africa(Ibrahimetal.,1989). Devicesformeasuringnetradiation,soilheatfluxandsensibleandadvectedheat areneededinenergybudgetmethods,while continuousmeasurementsofwindspeed, temperatureandwatervapourprofilesareneededfortheaerodynamicmethod(seealso Allenetal.,1998;Houghetal.,1996).Whenadequateinstrumentationfacilities and personnelareavailable,itispossibletocomputeactualevapotranspirationusingenergy balance or masstransfer methods. Certain semiempirical methods which require relativelysimpleclimatologicalmeasurementstoprovideestimatesofPETareoftenof littlevaluewhenevaporationislimitedbywatersupply. Microlysimetersareverysmall lysimeters,forsoilevaporationmeasurements, whichcanbeputintothegroundandusedforshorttimes,suchthatdisturbanceofthe soil boundary condition does not appreciably effect evaporation from the soil. PrecautionstobetakenandameasuringprotocolweregivenbyDaamenetal.(1993)and operationallyappliedbyDaamenetal.(1995)andKinamaetal.(2005). Particularmetadataforpanevaporationarethepandimensionsandrimheight, andanyemploymentofpandefenseagainstthirstyanimals(e.g.wirenetting).

2.4.1.8.2 Irrigation Water balance studies are incomplete without proper reference to different methodsofirrigationbecausewaterwithacceptablequalityisbecomingamoreandmore scarceresourceforagricultureandthissectoristhemostprolificuserofwater.Thiswas alreadydealtwithin2.3.1.8.Measurementsandcalculationsparticularlyinclude soil moisture conditions, water use efficiencies and water flow conditions in canals of differentdimensions, including thesmallest field channels (e.g.Ibrahimetal., 1999, 2000,2002).

2.4.1.9 Fluxes of weather variables (derived from measured quantities) ReferenceshouldbemadetoFritschenandGay(1979),KaimalandFinnigan (1994),Griffiths(1994),Murthy(1995,2002),Allenetal.(1998)andWMO(2001). Areliable,butcomplex,methodtomeasureatmosphericfluxesisthatof‘eddy covariances’. Inthismethodveryfastresponsedevicessuchashotwire,hotfilm, or sonicanemometersareusedtomeasurewindandsimilarlyfastresponsesensorsareused tomeasuretheremainingquantities.TheseincludetheIRgasanalyzer(forwatervapour andCO2)andfinewiretemperaturesensors.Thecorrelationofinstantaneousdepartures fromthemeanofthewindandothervariablesprovidesanestimateoftheflux.Eddy covariance systems use commercially available instruments like a three axis sonic anemometer and IR gas analyzer, controlled by software which also calculates and displaysthesurfacefluxesofmomentum,sensibleandlatentheatandcarbondioxide. TheBowenratio(theratioofthesensibletolatentheatfluxes)energybalance

40 methodisareliable techniqueforobtaining evaporationratesandisoneofthemost frequently used methods for estimation of surface energy balance components and evaporation. The required observations are differences in temperature and humidity betweentwolevelsorinaprofile.TheBowenRatioEnergyBalance(BREB)system providescontinuousestimationofevaporativeloss.Thissystemisless complexthan eddycovariancesandneedsreducedmaintenanceandpowerconsumption. In all the studies pertaining to flux measurements the temperature profile observationsaresupportedwithdirectmeasurementofthesoilheatfluxdensity.Heat fluxdensitiesinthesoilorinplantoranimaltissuesaremeasuredclosetotheinterface betweenairandsoil,plantandanimalwith transducers or heat-flux plates. Generally these instruments are thermopiles whose output is proportional to the temperature differencebetweenthesidesofaplatecrossedbytheflux.Suchthermopilesareusually constructedbywindingaconstantanspiralonaglassorplasticplate,copperplatinghalf ofeachwindinginsuchawaythatportionsoftheplatedandnonplatedconstantan remainexposedintheupperandthelowersides.Theconductivityoftheplatematerial shouldmatchtheheattransmissionofthemediummeasured.Forsoils,thesmallplates aretypicallyburiedatacompromisedepthof10cm.Deeperdepththanthismakesthem unrepresentativeforsoilheatfluxatthesurface,butveryshallowplacementleavesvery thincoveringsoillayer,whichthenmaydryoutorcrack.Thepresenceofplantrootsalso hastobeconsidered(WMO,2001).

2.4.1.10 Remote sensing and GIS ReferenceshouldbemadetoGoelandNorman(1990),Milford(1994),WMO (2006). Theremotelysensedimageistypicallycomposedofpictureelements(pixels), whichvaryinsizefromafewmetrestoafewkilometresacross.Foreachpixelan associateddigitalnumber(DN)orBrightnessValue(BV)depictstheaverageradiance fromthatpixelwithinaspectralbandwhichisspecified bytherelevantsensor. For usefulinformationsuchasavegetationindextobederivedfromtherawdata,itis usuallynecessarytoprocessthedatafrommorethanoneband.Ageometricalcorrection isnecessarytoensurethatthelocationofeachpixelinanimageisaccuratelyknown,a processknownasrectification Whereanimage is tobeviewed,image enhancements improve itsquality as perceivedbythehumaneye.TheLinearandNonlinearContrastStretcharedoneto improvetheresolvingpoweranddetectabilityoftheimage.Later,thenumberofchanges inBVperunitdistanceforanyparticularpartofanimagecalled“SpatialFiltering”is doneatlowandhighfrequencylevels.Theedgeenhancementinthespatialdomainusing lineartechniqueisdonetohighlightpoint,linesandedgesintheimages.Bandratioingis donetoreducethedifferencesinbrightnessvaluesfromidenticalsurfacematerials. ImagesmaybetransformedwithinaGeographicInformationSystem(GIS),for examplebyPrincipalComponentAnalysisthatcreatesnewimagesfromtheuncorrelated values ofdifferent images. This analysis is usedforspectralpatternrecognitionand imageenhancement.Twoormoredifferentimagesmaythenbecombinedtoformanew one using a variety of different techniques. Then supervised and unsupervised classificationsaretakenuptofindcomplexityofterrain.Finallyaccuracyassessmentis carriedoutforuseofallthesetechniquesinoperationalagriculturalmeteorology. In additiontheconceptsofGISareusefulforefficient planninganddecisionmakingat farmer level, to integrate information from many sources and to generate new

41 informationsuchastheslopeoftheregion,winddirection,possibleflowofwaterat disasterstimesandotherrisks.MuchmoredetailisinChapter4.

2.4.1.11 Recorders, integrators and AWS’s ReferenceshouldbemadetoWoodwardandSheehy(1983).Meteorologicaldata canbeobtainedbydirectreading(instantaneous)ofmeasuringinstrumentsandalsoby instrumentsprovidingacontinuousrecordoftheparametersovertime,withmechanical or electrical or other analogue or digital displays. All the instruments have to be calibratedtomeetcomparabilityrequirementsandrecalibrationsarea‘must’afterrepairs orreplacementofessentialpartsoftheinstruments.Themostcommonwaytocalibrateis by comparison with standard instruments kept at national centers and specialized laboratoriesandcheckedfromtimetotimeagainstinternationalstandards.

2.4.1.11.1 Mechanical and electrical devices Observationswithinstrumentswhichdonothaveselfrecordingdevicesaremade byindividualreadingsatthegivenobservationtimesandwrittenintoanappropriately designed observations book, in accordance with the instructions. From this basic document,datacanbetransferredtomonthlysummaries andbeextractedforspecial analysis. In mechanical reading instruments the changes of the length of the sensing elementorsensorforceistransmittedmechanicallywithorwithoutamplificationtoa recordingsystemthatisusuallybasedonclockdrivenpaperstripeitherofthedrumor endlessbelttype.Thevariationsovertimeoftheparametertobemeasuredaredisplayed ingraphicalformordiagramchart.Themainadvantagesofmechanicalrecordersare theirrelativelylowcost,easymaintenanceandindependencefromanexternalpower supply. In electrical recording instruments sensors are used which produce electrical signals(voltage,differencesinpotential,resistance,etc.)tobereferredtotheparameters under considerations, or detectors are used where initial mechanical ‘signals’ (longitudinalchanges, rotation, etc.)aretransformed into electricalonesby appropriatedevices(potentiometer,switches,etc.).Dependingonthesignaloutputofthe sensor different recorders viz., null balance potentiometric recorders, galvanometric recorders,Wheatstonebridgesforelectricalresistancemeasurementsetc.,areused.

2.4.1.11.2 Micro processors Withtheprogressinmicroelectronictechnologiesovertherecentyearsmoreand moreinstrumentsusingintegratedcircuitsandmicroprocessorsarebeingdesignedfor the purpose of measurement of meteorological parameters. Together with electrical sensors, the use of integrated circuit chips has allowed the construction of highly sensitiveandlowweightdigitalreadoutinstruments.Theyhavetheadvantageofthe builtin‘conversion’fromelectricalsensoroutputstotechnicalunitsincludingcomplex linearizations.Thesubsequentuseofintegratedelectroniccircuitsandmicroprocessor chips has led to the construction of automatic environmental control systems and automaticweatherstations. Electronicintegratorswithmemorycapacityfordatastoragethatcanberecalled arealsoavailable. Foranyparticularloggermemorythedurationofrecordavailable dependsonthenumberofsensorsandthefrequenciesofobservation

42 2.4.1.11.3 Automatic Weather Stations Reference is made to Hubbard and Sivakumar (2001), WMO (2006). An automatic weather station (AWS) is defined as a meteorological station at which observations are made and transmitted automatically. If required, they may be interrogatedeitherlocallyorfromaneditingstation.Mostofthevariablesrequiredfor agriculturalpurposescanbemeasuredbyautomaticinstrumentation.Asthecapabilities ofautomaticsystemsincrease,theratioofpurelyautomaticstationstoobserverstaffed weather stations (with or without automatic instrumentation) increases steadily. The guidanceregardingcitingandexposure,changesofinstrumentation,andinspectionand maintenance apply equally to automatic weather stations as that of staffedweather stations. AWSs areusedtosatisfyseveralneeds, ranging fromasingle aidtothe– observer at manned stations to complete replacement of observers at full automatic stations.Ageneralclassificationofthesestationsincludesstationswhichprovidedatain realtimeandthosewhichrecorddatafornonrealtime oroffline analysis. Itis not unusual,however,forboththesefunctionstobedischargedbythesameAWS. WhenplanningtheinstallationandoperationofanetworkofAWSsitisofthe utmostimportancetoconsiderthevariousproblems associatedwithmaintenance and calibration facilities, with their organization and with the training and education of technicalstaff.Ingeneral,anAWSconsistsofsensorsinstalledaroundameteorological tower, housed in appropriate environmental shields, a centralprocessing system for sensor data acquisition and conversion into computerreadable format, and some peripheralequipmentsuchasastabilizedanduninterruptiblepowersupply. TheagriculturalmeteorologicaldemandsmadeonsensorsforusewithAWSsare not very different from those made on sensors for conventional use. Siting of an agriculturalAWSisaverydifficultmatterandmuchresearchremainstobedoneinthis area.Thegeneralprincipleisthatastationshouldprovidemeasurementsthatare,and remain,representativeofthesurroundingarea,thesizeofwhichdependsonagricultural meteorologicalapplication.Thedistanceoverwhichanystationmeasuredparametercan beextrapolatedalsovaries,fromsmallforprecipitationtolargeforincomingradiation (Wieringa,1998).AnAWSusuallyformspartofanetworkofmeteorologicalstations andtransmitsitsprocesseddataormessagestoacentralnetworkprocessingsystemby variousdatatelecommunicationmeans.Thecostoverafewyearsofservicinganetwork ofautomaticstationscangreatlyexceedthecostoftheirpurchase.Thesensorswith electricaloutputsshowdriftsin timeand,consequently, needregularinspectionand calibration.

2.4.2 Measurements of biological and related phenomena Referenceshouldbemadetotheliteraturementionedin2.3.2.Becauseitfollows fromtheexplanationsinthatsectionthatChapters4,6,7and10till14alldealinsome oftheirsectionswithbiologicalmeasurementsandrelatedphenomena,wehavesorted outbelowonlyafewadditionalissuesthatgotmuchattentionrelativelyrecentlyandare notwidelydealtwithelsewhereinthisGuide.Wearestilltalkingaboutmeasurementsat ornearagriculturalmeteorologicalstations.

2.4.2.1 Measurement of soil erosion

43 Auniversalsoillossequationhasbeendevelopedtomeasure/estimatewaterand winderosionfactors. ItisdiscussedinHudson(1993)andChapter10ofthisGuide. WatererosionfieldmeasurementsaredealtwithinHudson(1993)andWMO(1994)and particle analyses inVining andSharma(1994),while generalfield measurementsfor winderosionhavebeendiscussedbyZobecketal.(2003).SpaanandStigter(1991)and Mohammed et al. (1995, 1996) discussed the operational use of simple field measurements in wind erosion studies. Soil erosion (deflation) and deposition (accumulation)occurasaconsequenceoftransportandthesearescientificallyquantified as height differences (e.g. Mohammed et al., 1995, Sivakumar et al., 1998). When properly designed and carefully executed erosion pins provide sound data on these changes.Theyaremeaningfulandvisiblyimpressivetofarmersandextensionworkers. Theyallowlargenumbersofmeasurementstobetakenwithlowcostandareextremely usefultomeasurethechangesinsurfaceelevationsofsoilsexposedtowindandorwater erosion(e.g.Hudson,1993).

2.4.2.2 Measurement of run-off TheequipmentformeasurementofrunoffincludesWeirsandParshallflumes, whicharesuitable tomeasuretherunofffromsmallwatersheds,andwaterrecording equipment:waterstoragerecordersthatcontinuouslyrecordthewaterlevelinastream. Instudiesonagricultureofslopinglands,runoffplotsaresuccessfullymanagedandsoil lossandwaterrunoffcanbequantified(e.g.Kinamaetal.,2007).

2.4.2.3 Measurement of leaf area, canopy structure and photosynthesis Itisdesirabletoexpressplantgrowthonleafareabasis. Theleaves arethe primaryphotosyntheticorgansoftheplant.Afterdestructivesampling (removing the leavesfromtheplant)theleafareacanbemeasuredbyusingaleafareameter.This instrumentisportable,butexpensive.Ithasatransparentbeltconveyertospreadthe leavesandhasadigitaldisplaytoindicatetheleafarea.Moresimply,theleafareacan alsobeestimatedbygraphicalmethods,theL.B.K.method(LengthxWidthxConstant), thedryweightmethod,thepaperweightmethodetc.Theleafareaisnormallyexpressed inrelationtogroundareaastheLeafAreaIndex(LAI),whichistheratiobetweenthe totalleafareaofaplanttothegroundareaoccupied by the plant. To have more production, theplant should be able toutilize maximum amount oflight for which optimumspacingshouldbefollowed.TheLAIhelpstofixoptimumspacingtoutilizethe maximumsunlightforphotosynthesis. TherearedifferentopticalmethodsformeasuringLAIthatarewellestablished. Canopystructurescanalsobequantifiedthatway.DetailsmaybefoundinPearcyetal. (1989),Russelletal.(1989),GoelandNorman(1990),BakerandBland(1994).Details onleaf,plantandstandphotosynthesismeasurementsandtheirdevelopmentandgrowth consequencescanbefoundthereaswellbutnowwegetagainclosertospecialized research where agrometeorologists either collaborate or use the results from. Many methodsareusedsuccessfully,buttheyarenotasaccurateorrapidasIRGAsystems.A sensitivetechniqueforrapidmeasurementsofCO 2 concentrationswithattachedleaves sealedinPlexiglaschambersisalsoinvogue.Otherrelatedinstrumentsincludethose measuringstomatalconductance,sapflow,leafwaterpotentialanddendrometers,etc. Thementionedliteraturehasdetails.

44 Measurements of cropproduction including theweight of above ground dry matter, total dry matter, economic yield etc. are frequently taken at agricultural meteorologicalstations,orinadjacentfields.Theseareusefultorelatetheproductionto climaticvariablesoverperiodsfromweekstothewholeseason.

REFERENCES

Abdalla,A.T.,C.J.Stigter,H.A.Mohamed,A.E.MohammedandM.C.Gough,2001. Effectsofwallliningsonmoistureingressintotraditionalgrainstoragepits.Intern. J.Biometeorol.45:7580.

AcostaBaladon,A.N.,1995.Agriculturaluseofoccultprecipitation.Agrometeorological ApplicationsAssociates,Ornex,France,146pp.

Allen,R.G.,L.S.Pereira,D.RaesandM.Smith,1998.CropevaporationGuidelines forcomputingwaterrequirements.FAOirrigationanddrainagepaper56,FAO, Rome.

BakerJ.M.andW.L.Bland,1994.Biologicalmeasurements.Chapter8in Handbook of agricultural meteorology (Ed.J.F.Griffiths),pp.82–89,OxfordUniversityPress, NewYorkandOxford.

Baldy, C. and C.J. Stigter, 1997. Agrometeorology of multiple cropping in warm climates.TranslatedfromtheFrench(withanepiloguefortheEnglishedition). INRA,Paris,France+Oxford&IBHPubl.Co.,NewDelhi,India+SciencePubl. Inc.,Enfield,USA,237pp.

Coulson,K.L.,1975.Solarandterrestrialradiation.AcademicPress,London,322pp.

Daamen,C.C.,L.P.Simmonds,J.S.Wallace,K.B.LaryesandM.V.K.Sivakumar,1993. Use of microlysimeters to measure evaporation from sandy soils. Agric. For. Meteorol.,65:159173.

Daamen,C.C.,L.P.SimmondsandM.V.K.Sivakumar,1995.Theimpactofsparsemillet cropsonevaporationfromsoilinsemiaridNiger.Agric.WaterManagem.,27: 225242.

Dirksen,C.,1999.Soilphysicsmeasurements.CatenaVerlag,Germany,154pp.

Fritschen,L.J.andL.W.Gay,1979.Environmentalinstrumentation.Springer,NewYork, 216pp.

Gardner,W.H.,1986.Watercontent.Ch.21in:A.Klute(Ed.,Sec.Ed.),Methodsofsoil analysis.Part1,Physicalandmineralogicalmethods.Amer.Soc.Agron.Etc.Publ., Madison,USA,1188pp.

45 Geiger,R.,R.H.AronandP.Todhunter,1995(5 th Ed.).Theclimateneartheground. Vieweg,Braunschweig,528pp.

Getz,R.R.,1992.Reportonthemeasurementofleafwetness.CAgMReportNo.38, WMO/TDNo.478,Geneva,10pp.

Goel,N.S.andJ.M.Norman,1990.Instrumentationforstudyingvegetationcanopiesfor remotesensinginopticalandthermalinfraredregions.HarwoodPress,NewYork

Greacen,E.L.(Ed.),1981.Soilwaterassessmentbytheneutronprobe.CSIRODivision ofSoils,Adelaide,Australia,140pp.

Griffiths, J.F. (Ed.),1994. Handbookofagriculturalmeteorology . OxfordUniversity Press,NewYorkandOxford,320pp.

Guyot,G.,1998.Physicsoftheenvironmentandclimate.PraxisPublishing/JohnWiley &Sons,Chichester,UK,pp350.

Holden,N.M.,2001.Agrometeorologicalmodeling–principles,dataandapplications. AGMETGroup,MetÉireann,Dublin9,254pp.

Hough,M.N.,S.G.Palmer,M.Lee,I.A.BarrieandA.Weir,1996.TheMeteorological OfficeRainfallandEvaporationCalculationSystem:MORECSversion2.0(1995). TheMetOffice,Exeter.

Hubbard,K.G.,1994.Measurementsystemsforagriculturalmeteorology.Chapter7in Handbook of agricultural meteorology (Ed.J.F.Griffiths),pp.76–81,Oxford UniversityPress,NewYorkandOxford.

Hubbard, K.G. and M.V.K. Sivakumar, 2001. Automated Weather Stations for ApplicationsinAgricultureandWaterResourcesManagement:CurrentUseand Future Perspectives. 2001. Proceedings of an International Workshop held in Lincoln, Nebraska, AGM3, WMO/TD No. 1074, High Plains Climate Center, NebraskaandWMO,Geneva.

Hudson,N.W.,1993.Fieldmeasurementofsoilerosionandrunoff.FAOSoilsBulletin. FAO,Rome,

Ibrahim, A.A., C.J. Stigter, A.M. Adeeb, H.S. Adam, and A.E. Jansen, 1989. Development and validation of a shaded Piche evaporimeter for the tropics to replace humidityandwindspeeddataintheaerodynamic termofthePenman equation.InstrumentsandObservingMethodsReportNo.35,WMO/TDNo–303, Geneva,147–152.

Ibrahim,A.A.,C.J.Stigter,A.M.Adeeb,H.S.AdamandW.VanRheenen,1999.On farmsamplingdensityandcorrectionrequirementsforsoilmoisturedetermination

46 inirrigatedheavyclaysoilsintheGezira,CentralSudan.Agric.WaterManagem. 41:91113.

Ibrahim, A.A.,C.J.Stigter,H.S.Adam,A.M.AdeebandO.A.A.Fadl,2000.Farmers' practicesinonfarmirrigationmanagementintheGezirascheme,CentralSudan. Rur.Environm.Engin.(Japan)38:2029.

Ibrahim,A.A.,C.J.Stigter,H.S.AdamandA.M.Adeeb,2002.Wateruseefficiencyof sorghum and groundnut under traditional and current irrigation in the Gezira scheme,Sudan.Irrig.Sc.21:115–125. Iqbal,M.,1983.AnIntroductiontoSolarRadiation.AcademicPress,London.

Kaimal,J.C.andJ.J.Finnigan,1994.Atmosphericboundarylayerflows,theirstructure andmeasurements.OxfordUniversityPress,289pp.

Kainkwa, R.M.R. and C.J. Stigter, 2000. Measuring wind gradients in agroforestry systemsbyshadedPicheevaporimetersI.Validationofthesquarerootdependence onwindspeed.Internat.Agrophys.14:279289.

Keane T., 2001. Meteorological Data Types and Sources. Chapter 3 in: Agro- Meteorological Modelling – Principles, Data and Applications (Ed.M.N.Holden), pp2762.AGMETGroup,MetÉireann,Dublin9.

Kinama,J.M.,C.J.Stigter,C.K.Ong,J.K.Ng'ang'aandF.N.Gichuki,2005.Evaporation fromsoilsbelowsparsecropsincontourhedgerowagroforestryinsemiaridKenya. Agric.For.Meteorol.130:149–162.

Kinama, J.M.,C.J.Stigter,C.K.Ong,J.K.Ng’ang’aandF.N.Gichuki,2007.Contour hedgerowsandgrassstripsforerosionandrunoffcontrolinsemiaridKenya.Arid LandRes.Managem.21,119.

Linacre,E.,1992.Climatedataandresources.Routledge,NewYork,366pp.

Lowry, W.P.andP.P.Lowry,2001. Fundamentals ofbiometeorology,Vol.2The biologicalenvironment.PeavinePublications/MissouriBotanicalGardenPress, St.Louis,Missouri,USA,680pp.

Mazarella,D.A.,1972.Aninventoryofspecificationsforwindmeasuringinstruments. Bull.Am.Meteor.Soc.53,860871.

MeteorologicalOffice,1981(2 nd edition).Handbookofmeteorologicalinstruments.Publ. Meteor.Office919,H.M.Stationaryoffice,London,UK,eightvolumes.

Milford, J.R., 1994. Remote sensing for agricultural meteorology. Chapter 10 in Handbook of agricultural meteorology (Ed.J.F.Griffiths),pp.102–114,Oxford UniversityPress,NewYorkandOxford.

47 Mohammed,A.E.,C.J.StigterandH.S.Adam,1995.Movingsandanditsconsequences inandnearaseverelydesertifiedenvironmentandaprotectiveshelterbelt.AridSoil Res.Rehabil.9:423435.

Mohammed,A.E.,O.D.vandeVeer,H.J.OldenzielandC.J.Stigter,1996.Windtunnel andfieldtestingofasimplesandcatcherforsamplinginhomogeneouslysaltating sandindesertifiedenvironments.Sedimentology43:497503.

Monteith,J.L.andM.H.Unsworth,2007(3 rd Ed.).Principlesofenvironmentalphysics. EdwardArnold,London,inprint.

Mungai, D.N.,C.J.Stigter,C.L.Coulson,W.K.Ng'etich, M.M.Muniafu andR.M.R. Kainkwa,1997.Measuringsolarradiationtransmissionintropicalagricultureusing tubesolarimeters.Awarning.Agric.For.Meteorol.86:235243.

Mungai,D.N.,C.J.Stigter,C.L.CoulsonandJ.K.Ng'ang'a,2000.Simplyobtainedglobal radiation,soiltemperatureandsoilmoistureinanalleycroppingsysteminsemi aridKenya.Theor.Appl.Climat.65:6378.

Murthy,V.R.K.,1995.Practicalmanualonagriculturalmeteorology,KalyaniPublishers 1/1,Rajendernagar,Ludhiana,86pp.

Murthy,V.R.K.,2002.BasicPrinciplesofAgriculturalMeteorology,B.S.Publications, 44309,GirirajLane,SultanBazar,Hyderabad95,AndhraPradesh,India,260pp.

O'Driscoll,P.,2006.Allhailthebackyardweatherwatchers.USAToday , 25April.

Oluwasemire,K.O.,C.J.Stigter,J.J.OwonubiandS.S.Jagtap,2002.Seasonalwateruse andwateryieldofmilletbasedcroppingsystemsintheNigerianSudanSavanna nearKano.Agric.WaterManagem.56:207–227.

Pearcy, R.W., J. Ehleringer, H.A. Mooney and P.W. Rundell (Eds.), 1989. Plant physiological ecology–field methodsandinstrumentation. Chapman and Hall, London,512pp.

Reijntjes, C.,Haverkort,B.andWatersBayer, A.,1992.Farming forthefuture.An introduction to lowexternalinput sustainable agriculture. ILEIA/Macmillan, Leusden/London,250pp.

Rosenberg,N.J.,B.L.BladandS.B.Verma,1983(2 nd ed.).Microclimate:thebiological environment.Wiley,U.S.A.,495pp.

Russell,G.,B.MarshallandP.G.Jarvis(Eds.),1989.Plantcanopies:theirgrowth,form andfunction.CambridgeUniversityPress,Cambridge.

48 Rijks, D.,2003.A“Farmersraingauge”. AgrometeorologicalApplicationsAssociates, FerneyVoltaire,France,1p.

Salinger,J.J.,C.J.StigterandH.P.Das,2000.Agrometeorologicaladaptationstrategies toincreasingclimatevariabilityandclimatechange.In:M.V.K.Sivakumar,C.J. StigterandD.A.Rijks(eds.),Agrometeorologyinthe21stCenturyNeedsand Perspectives.Agric.For.Meteorol.,103:167184.

Sivakumar, M.V.K., M.A. Zöbisch, S. Koala and T. Maukonen (Eds.), 1998. Wind erosion in Africa and West Asia: problems and control strategies. ICARDA, Aleppo,198pp.

Sivakumar, M.V.K., P.S. Roy, K. Harmsen, and S.K. Saha, 2004. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology.Proceedings of the Training Workshop in Dehradun, India. AGM8, WMO/TDNo. 1182, WMO, Geneva.

SlatyerR.O.,andI.C.McIlroy,1961.Practicalmicroclimatology–withspecialreference tothewaterfactorinsoilplantatmosphericrelationships.CISRO,Australiaand UNESCO,Paris,pp.175+appendices.

Smith,K.A.andC.E.Mullins,2001.Soilandenvironmentalanalysis:physicalmethods. MarcelDekker,NewYork.

Spaan, W.P. andC.J. Stigter, 1991. Measuring wind erosionwithsimple devices: a synopsis.Mitt.Deut.Bodenk.Gesell.65:5156.

Sterk,G.,1997.WinderosionintheSahelianZoneofNiger:processes,modelsand controltechniques.Ph.D.thesis,WageningenAgriculturalUniversity,152pp.

Stigter,C.J.,1994a.Managementandmanipulationofmicroclimate.Ch.27in Handbook of agricultural meteorology (Ed.J.F.Griffiths),pp.273–284,OxfordUniversity Press,NewYorkandOxford.

Stigter,C.J.,1994b.Conditions,requirementsandneedsforoutdoormeasurementsin developingcountries:thecaseofagrometeorologyandagroclimatology.Extended abstract of an invited keynote paper, CIMO technical conference TECO94, InstrumentsandObservingMethodsReportN0.57,WMO/TDN0.588,WMO, Geneva(pp.1–2).[FulltextavailablefromWMOortheauthor,onrequest.]

Stigter,C.J.,1994c.Micrometeorology.Ch.5in Handbook of agricultural meteorology (Ed.J.F.Griffiths),pp.59–72,OxfordUniversityPress,NewYorkandOxford.

Stigter,C.J.andC.B.S.Uiso,1981.UnderstandingthePicheevaporimeterasasimple integratingmasstransfermeter.Appl.Sci.Res.37,213223.

49 Stigter,C.J.andV.M.M.Musabilha,1982.Theconservativeratioofphotosynthetically activetototalradiationinthetropics.J.Appl.Ecology19:853858.

Stigter,C.J.,M.M.MakondaandN.T.Jiwaji, 1982.Improvedfield useofasimple infraredthermometer.ActaBotan.Neerl.31:379389.

Stigter, C.J., R.M.R. Kainkwa, S.B.B. Oteng'i, Ahmed A. Ibrahim, Ahmed E. Mohammed andL.O.Z.Onyewotu,1998.TheshadedPiche evaporimeterasan ancillaryisothermalanemometer.InstrumentsandObserving Methods,Rep.No. 70,WMO/TDNo.877,WMO,Geneva(pp.377–380).

Stigter,C.J.,R.M.R.Kainkwa,S.B.B.Oteng'i,L.O.Z.Onyewotu,A.E.Mohammed,A.A. Ibrahim and M.G.M. Rashidi, 2000. Measuring wind gradients in agroforestry systemsbyshadedPicheevaporimetersII.AccuraciesobtainedinsomeAfrican casestudies.Internat.Agrophys.14:457468.

Stigter,K.(C.J.),S.Oteng'i,N.K.NasrAlAmin,L.OnyewotuandR.Kainkwa,2005. Windprotectiondesignsfrommeasurementswithsimplewindequipmentinfour Africancountriesinresearcheducationcapacitybuildingprojects.Paper4.1in WMOTechnicalConferenceonMeteorologicalandEnvironmentalInstrumentsand Methods of Observation (TECO2005). Instruments and Observing Methods – ReportNo.82–WMO/TDNo.1265,7pp.[AlsoavailableonCDROM]

Strangeways,I.,2003(2 nd ed.).Measuringthenaturalenvironment.,Cambridge,544pp.

Vining, K.C.andP.P.Sharma, 1994.Edaphic measurements. Ch.9in Handbook of agricultural meteorology (Ed.J.F. Griffiths), pp. 93–101,OxfordUniversity Press,NewYorkandOxford.

Walsh,T.,2006.OnlineappgaugesColoradorainfall.http://www.gcn.com/

Wieringa J., 1980. Representativeness of wind observations at airports. Bull.Am.Meteor.Soc.61,962971.

Wieringa,J.,1998.Climatologicaluseofstationnetworkdata.EUR18472EN(Seminar onDataSpatial Distribution in Meteorologyand Climatology, Volterra, 1997), 1727.

Wieringa, J.andE.Rudel, 2002. Stationexposuremetadataneededforjudgingand improvingqualityofobservationsofwind,temperatureandotherparameters.Paper 2.2 in WMO Technical Conference on Meteorological and Environmental InstrumentsandMethodsofObservation(TECO2002). [AlsoavailableonCD ROM]. Wieringa,J.andI.Holleman,2006.Ifcannonscannotfighthail,whatelse?Meteorol. Zeitschr.15,659669.

50 WoodwardF.I.andJ.E.Sheehy, 1983.Principlesandmeasurementsinenvironmental ,Butterworth,London,256pp.

WMO,1981.Meteorologicalaspectsoftheutilizationofsolarradiationasanenergy source.WMONo.557,Geneva.

WMO, 1982. CompendiumofLecturenotesfortrainingClassIVagrometeorological personnel(byA.V.Todorov).WMONo.593,Geneva. WMO,1984(2 nd Ed.).CompendiumoflecturenotesfortrainingClassIVMeteorological Personnel(byB.J.Retallack),Vol.IIMeteorology,WMONo.266,Geneva.

WMO,1994.Guidetohydrologicalpractices:dataacquisitionandprocessing,analysis, forecastingandotherapplications.WMONo.168,Geneva.

WMO, 2001. Lecture notes for training agricultural meteorologicalpersonnel (by J. WieringaandJ.Lomas),WMONo.551,Geneva.

WMO,2003. Guidelines onclimatemetadataand homogenization(byE.Aguilar,I. Auer,M.Brunet,T.C.PetersonandJ.Wieringa).WMOTDNo.1186(WCDMP No.53),Geneva.

WMO, 2006(7 th Ed.). Guide to meteorological instruments and observing practices, WMONo.8,inprint.AvailableattheWMO/CIMOwebsite,Geneva

WMO, 2007(3 rd Ed.).Guidetoclimatologicalpractices, WMONo.100,Geneva, in preparation.

Zobeck, T.M., G. Sterk, R. Funk, J.L. Rajot, J.E. Stout and R.S. Van Pelt, 2003. Measurementanddataanalysis methodsforfieldscalewinderosionstudiesand modelvalidation.EarthSurf.Process.Landfs. 28:11631188.

Alsoreferencesmaybemadeto:WMO Technical Notes 11;21;26;55;56;83;86;97; 125;126;133;161;168;179;192;315.TheycanbefoundinAppendixIBofthisGuide.

51