Developmental Cell Review Genetic Changes Shaping the Human Brain Byoung-Il Bae,1 Divya Jayaraman,1 and Christopher A. Walsh1,* 1Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA *Correspondence:
[email protected] http://dx.doi.org/10.1016/j.devcel.2015.01.035 The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-gener- ation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both pro- tein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. All life forms develop, reproduce, and age based on their genetic changes affecting the development and evolution of the human blueprint. The human genetic blueprint is written in approximately neocortex. three billion base pairs (bp) and contains protein-coding genes (estimated at 21,000 or fewer), RNA genes (e.g., microRNAs,