Neurogenetics Made Easy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MOLECULAR GENETICIST UBC's Centre for Applied Neurogenetics, Within the Faculty of Medicine, Division of Neurology and Departm
MOLECULAR GENETICIST UBC’s Centre for Applied Neurogenetics, within the Faculty of Medicine, Division of Neurology and Department of Medical Genetics, is seeking a talented and highly motivated Postdoctoral Fellow/Research scientist with a strong background in human genetics. The post- holder will join a multi-discipline team and contribute significantly to identify genetic variability that either causes or contributes to the onset of neurologic and neurodegenerative disease. His/her role will involve working closely with bioinformatician, scientific and medical staff to elucidate the genetic architecture of these diseases (particularly Parkinson’s disease) using state- of-the-art approaches, which range from classical linkage, genome-wide genotyping, through next-generation sequencing, mainly exome and other targeted sequencing experiments (Farrer M. Nat. Rev. Genet. 2006; Farrer M. et al., Nat. Genet. 2008; Vilarino-Guell C. et al., Am. J. Hum. Genet. 2011). Results are used for diagnostic and therapeutic development in partnership with other academic groups and the Pharmaceutical industry (Lewis J. et al., Mol. Neurodegeneration 2008; Melrose H et al., Neurobio Dis. 2010). He/she may also participate in the supervision of interns and graduate students, as well as grant writing. The successful candidate will hold a Ph.D. specializing in human molecular genetics, with an aptitude for molecular biology, statistical genetics and/or bioinformatics. Must have experience with Sanger sequencing, Sequenom, TaqMan and microsatellite genotyping, and strong interest in NGS applied to human disease is desired. He/she will have demonstrated research acumen and have a track record of successful publications, ideally in neurologic and/or neurodegenerative disease. For its beauty and amenities Vancouver is consistently ranked within the top 5 cities to live in the world. -
Genetics and Other Human Modification Technologies: Sensible International Regulation Or a New Kind of Arms Race?
GENETICS AND OTHER HUMAN MODIFICATION TECHNOLOGIES: SENSIBLE INTERNATIONAL REGULATION OR A NEW KIND OF ARMS RACE? HEARING BEFORE THE SUBCOMMITTEE ON TERRORISM, NONPROLIFERATION, AND TRADE OF THE COMMITTEE ON FOREIGN AFFAIRS HOUSE OF REPRESENTATIVES ONE HUNDRED TENTH CONGRESS SECOND SESSION JUNE 19, 2008 Serial No. 110–201 Printed for the use of the Committee on Foreign Affairs ( Available via the World Wide Web: http://www.foreignaffairs.house.gov/ U.S. GOVERNMENT PRINTING OFFICE 43–068PDF WASHINGTON : 2008 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON FOREIGN AFFAIRS HOWARD L. BERMAN, California, Chairman GARY L. ACKERMAN, New York ILEANA ROS-LEHTINEN, Florida ENI F.H. FALEOMAVAEGA, American CHRISTOPHER H. SMITH, New Jersey Samoa DAN BURTON, Indiana DONALD M. PAYNE, New Jersey ELTON GALLEGLY, California BRAD SHERMAN, California DANA ROHRABACHER, California ROBERT WEXLER, Florida DONALD A. MANZULLO, Illinois ELIOT L. ENGEL, New York EDWARD R. ROYCE, California BILL DELAHUNT, Massachusetts STEVE CHABOT, Ohio GREGORY W. MEEKS, New York THOMAS G. TANCREDO, Colorado DIANE E. WATSON, California RON PAUL, Texas ADAM SMITH, Washington JEFF FLAKE, Arizona RUSS CARNAHAN, Missouri MIKE PENCE, Indiana JOHN S. TANNER, Tennessee JOE WILSON, South Carolina GENE GREEN, Texas JOHN BOOZMAN, Arkansas LYNN C. WOOLSEY, California J. GRESHAM BARRETT, South Carolina SHEILA JACKSON LEE, Texas CONNIE MACK, Florida RUBE´ N HINOJOSA, Texas JEFF FORTENBERRY, Nebraska JOSEPH CROWLEY, New York MICHAEL T. MCCAUL, Texas DAVID WU, Oregon TED POE, Texas BRAD MILLER, North Carolina BOB INGLIS, South Carolina LINDA T. -
The Neurogenetics of Group Behavior in Drosophila Melanogaster Pavan Ramdya1,*, Jonathan Schneider2,* and Joel D
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 35-41 doi:10.1242/jeb.141457 REVIEW The neurogenetics of group behavior in Drosophila melanogaster Pavan Ramdya1,*, Jonathan Schneider2,* and Joel D. Levine2,* ABSTRACT that are ripe for neurobiological investigation: the formation of Organisms rarely act in isolation. Their decisions and movements are social networks and the regulation of collective behavior. often heavily influenced by direct and indirect interactions with conspecifics. For example, we each represent a single node within a Social networks social network of family and friends, and an even larger network of In animal groups, individuals can be drawn toward or away from one strangers. This group membership can affect our opinions and another for a variety of reasons. For example, long-lasting bonds actions. Similarly, when in a crowd, we often coordinate our may exist between family members. On shorter time scales, movements with others like fish in a school, or birds in a flock. individuals may be sexually attracted to one another, or to Contributions of the group to individual behaviors are observed environmental resources such as food patches (Ramos-Fernández across a wide variety of taxa but their biological mechanisms remain et al., 2006). Individuals may also avoid one another because of largely unknown. With the advent of powerful computational tools social or sexual competition, or to maintain a comfortable distance as well as the unparalleled genetic accessibility and surprisingly from their neighbors (Simon et al., 2011). The process of satisfying rich social life of Drosophila melanogaster, researchers now have a these opposing forces gives rise to a dynamic group-level structure unique opportunity to investigate molecular and neuronal called a social network (Kossinets and Watts, 2006). -
Computational Neurogenetics
Journal of Theoretical and Computational Nanoscience, vol.1 (1) American Scientific Publisher, 2004, in print Computational Neurogenetics ∗ Nikola Kasabov ∗∗ and Lubica Benuskova Knowledge Engineering and Discovery Research Institute School of Information Technology Auckland University of Technology Auckland, New Zealand Address: AUT Technology Park, 581-585 Great South Road, Penrose, Auckland, New Zealand Phone 64 9 917 9506 Fax 64 9 917 9501 Emails: [email protected]; [email protected] WWW: http://www.kedri.info ∗ The author to whom correspondence regarding the manuscript should be directed. 1 Journal of Theoretical and Computational Nanoscience, vol.1 (1) American Scientific Publisher, 2004, in print Abstract The aim of the paper is to introduce the scope and the problems of a new research area called Computational Neurogenetics (CNG), along with some solutions and directions for further research. CNG is concerned with the study and the development of dynamic neuronal models integrated with gene models. This area brings together knowledge from various science disciplines, such as computer and information science, neuroscience and cognitive study, genetics and molecular biology. A computational neurogenetic model is created to model a brain function or a brain disease manifestation, or to be used as a general mathematical model for solving complex scientific and engineering problems. The CNG area goes beyond modelling simple relationship between a single gene and a single neuronal function or a neuronal parameter. It is the interaction between hundreds and thousands of genes in a neuron and their relationship with the functioning of a neuronal ensemble and the brain as a whole (e.g., learning and memory, speech and vision, epilepsy, mental retardation, aging, neural stem cells, etc.). -
Neurochemistry & Metabolic Test Request Form
5424 Glenridge Drive NE Neurochemistry & Metabolic Atlanta, GA 30342 USA toll-free: 678.225.0222 Test Request Form fax: 678.225.0212 mnglabs.com We gladly accept deliveries Monday-Saturday, excluding holidays CLIA License #11D0703390; CAP License #1441004; State of Georgia License #060-381 Patient Name DOB STAT Testing Now Available For STAT Testing, please see page 4. Metabolic CSF (MET01) Amino Acids (NC04) Neurotransmitter Metabolites (NC07) Sialic Acid [Disorders with Hypomyelination of Unknown Etiology/ (MET07) Lactate (5HIAA, HVA, 3OMD) [Includes Biomarkers for Pyridoxine Responsive Seizures] Sialic Acid Storage Disorders] (MET11) Pyruvate* (NC05) Pyridoxal 5’-phosphate (NC08) Alpha-Aminoadipic (NC01) 5-Methyltetrahydrofolate [Pyridox[am]ine Phosphateoxidase Deficiency + Semialdehyde [Pyridoxine-Responsive Seizures] (NC02) Neopterin [Marker for CNS CNS Pyridoxal 5’-phosphate Deficiency] Immune System Stimulation] (NC09) 4-Hydroxybutyric Acid (NC06) Succinyladenosine [Succinic Semialdehyde Dehydrogenase (NC03) Neopterin/Tetrahydrobiopterin [Adenylosuccinate Lyase Deficiency] Deficiency] (NC10) Glucose [Glucose Transporter Deficiency] Blood & Muscle (MET02) Amino acids (Plasma) (MET08) Lactate (Plasma) (MET23) Creatine & Guanidinoacetate (MET04) Coenzyme Q10 Level (MET09) Phenylalanine Loading (Plasma) (Leukocytes) Assay (Plasma) (MET24) Glucose (Plasma) (MET05) Coenzyme Q10 Level (MET10) Pyruvate* (Blood) (MET29) 3-O-Methyldopa (Plasma) (Muscle) (MET12) Thymidine/Deoxyuridine [Specific Marker for Aromatic L-Amino Analytes (Plasma) -
Epigenetics the Epicenter for Future Anesthesia Research?
Epigenetics The Epicenter for Future Anesthesia Research? Creed M. Stary, M.D., Ph.D., Hemal H. Patel, Ph.D., David M. Roth, M.D., Ph.D. ONRAD Hal Wadding- approximately 80% of the human C ton (1905–1975), a British genome is indeed associated with embryologist, geneticist, and phi- at least one biochemical func- losopher, proposed the concept tion: regulation of the expression of epigenetics, defined broadly of coding genes.4 These results in as the bridge between an organ- part explain the observation that Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/123/4/743/372860/20151000_0-00008.pdf by guest on 26 September 2021 ism’s inheritable genome and the the majority of RNA species that observable traits of that organism, are generated are not subsequently such as morphology, physiologi- translated to protein5 and demon- cal properties, and behavior.1 For strate that gene regulation is far example, although a majority of more complex than has been tra- a given organism’s cells share an ditionally believed. identical set of chromosomes, The list of noncoding RNAs embryological development has grown from transfer RNAs results in a wide diversity of cell and ribosomal RNAs to include types, each with individualized the discovery of small nucleolar gene expression patterns and func- “miRs are small (19 to 22 RNAs, long noncoding RNAs, tions. In this light, epigenetics is and, the topic of the current generally now defined as the study nucleotides), highly conserved study by Qiao et al., miRs. miRs of gene expression processes that across species, and.… [Their are important posttranscriptional are impacted by the external envi- regulators that interact with ronment and can be passed to suc- binding to target genes] multiple target mRNAs to coor- cessive generations, independently dinately regulate protein expres- of changes in Watson-Crick DNA results in gene silencing or sion. -
Neurogenetics FRIDAY OCTOBER 27, 2017
Department of Neurology Fall Symposium: Neurogenetics FRIDAY OCTOBER 27, 2017 https://bit.ly/2fNFmBZ Check in begins at 7:30am Damasio Conference Room University of Iowa Hospitals and Clinics Elevator C, Level 7 PROVIDED BY INTENDED AUDIENCE University of Iowa Health Care Department of Neurology Neurologists, Healthcare Providers, Allied Health, Resi- University of Iowa Roy J. and Lucille A. Carver College of Medicine. dents (current and Former), Fellows, & Students GENERAL INFORMATION OBJECTIVES Upon completion of this program the learner should be able to: • Identify neurogenetic disease of the brain, spinal cord, nerve, and muscle • Utilize the current standards of care for managing these disorders • Describe how to diagnose and differentiate these disorders in a rational manner • Discuss the clinical presentation and management of genetic diseases of the brain, spinal cord, nerve and muscle • Explain advances in translational science for these neurogenetic disorders • Review the underlying etiologies for these disorders and approaches to treatment • Evaluate patients and families with neurogenetic conditions Welcome Reception REGISTRATION A welcome reception will be held Thursday Thanks to several sponsors this years October 26th from 7-9 at the Share Wine Lounge hile symposium is free for all attendees. W & Small Bistro at the Sheraton Iowa City Hotel. registration is open until the start of the conference, we encourage early registration to enable us to provide the Parking best possible service. Parking is available in the hospital -
Clinical Exome Sequencing Tip Sheet – Medicare Item Numbers 73358/73359
Clinical exome sequencing Tip sheet – Medicare item numbers 73358/73359 Glossary Chromosome microarray (CMA or molecular Monogenic conditions (as opposed karyotype): CMA has a Medicare item number to polygenic or multifactorial conditions) are for patients presenting with intellectual caused by variants in a single gene. Variants disability, developmental delay, autism, or at may be inherited (dominant or recessive least two congenital anomalies. CMA is the fashion), or may occur spontaneously (de recommended first line test in these cases as novo) showing no family history. it can exclude a chromosome cause of disease which is unlikely to be detected by Whole exome sequence – sequencing only exome. the protein coding genes (exons). The exome is ~2% of the genome and contains ~85% of Gene panel is a set of genes that are known to disease-causing gene variants. be associated with a phenotype or disorder. They help narrow down the search Whole genome sequence – sequencing the for variants of interest to genes with evidence entire genome (all genes, including coding linking them to particular phenotypes and noncoding regions) Human phenotype ontology (HPO) terms Singleton – Analysis of the child only. describe a phenotypic abnormality using a Trio – analysis of the child and both biological standard nomenclature. Ideally, all clinicians parents. and scientists are using the same terms. Variant - A change in the DNA code that Mendeliome refers to the ~5,000 genes (out of differs from a reference genome. about 20,000 protein coding genes) that are known to be associated with monogenic disease. As variants in new genes are identified with evidence linking them with human disease, they are added to the Mendeliome. -
Questions You May Want to Ask Your Genetics Team
Q uestions you May Want to Ask Your Child’s Genetics Team Names of Geneticist and Genetic Counselor: ________________________________________ Phone/Contact Information: _____________________________________________________ Appointment Date: ____________________________________________________________ Next Appointment Date: ________________________________________________________ A “genetics team” is made up of a The purpose of a genetic testing or exam is to find out if the cause of your child’s hearing loss is genetic. About sixty clinical geneticist, a genetic counselor, percent of all hearing loss in babies is caused by changes in and other health care professionals. genes. Genes contain the instructions that tell a person’s cells A clinical geneticist is a doctor who how to grow and support the body. Some changes in a gene can cause hearing loss. Hearing loss can also be caused by specializes in diagnosing and caring infections, certain medication, and risks such as prolonged for people with genetic conditions. loud noise in the environment. For many children, the cause of hearing loss may not be known. A genetic counselor is a health care professional who talks with people The genetics team will ask you questions about your child and family. They will do a complete physical exam and may about the risk for genetic conditions recommend that your child and you have a blood test. They and provides counseling and support. may suggest your child see another doctor or specialist to Members of the genetics team work help them better understand the cause of your child’s hearing loss. Knowing the cause may help you and all the professionals together during a genetics exam. who work with your child better plan for his/her future needs. -
Guide to Interpreting Genomic Reports: a Genomics Toolkit
Guide to Interpreting Genomic Reports: A Genomics Toolkit A guide to genomic test results for non-genetics providers Created by the Practitioner Education Working Group of the Clinical Sequencing Exploratory Research (CSER) Consortium Genomic Report Toolkit Authors Kelly East, MS, CGC, Wendy Chung MD, PhD, Kate Foreman, MS, CGC, Mari Gilmore, MS, CGC, Michele Gornick, PhD, Lucia Hindorff, PhD, Tia Kauffman, MPH, Donna Messersmith , PhD, Cindy Prows, MSN, APRN, CNS, Elena Stoffel, MD, Joon-Ho Yu, MPh, PhD and Sharon Plon, MD, PhD About this resource This resource was created by a team of genomic testing experts. It is designed to help non-geneticist healthcare providers to understand genomic medicine and genome sequencing. The CSER Consortium1 is an NIH-funded group exploring genomic testing in clinical settings. Acknowledgements This work was conducted as part of the Clinical Sequencing Exploratory Research (CSER) Consortium, grants U01 HG006485, U01 HG006485, U01 HG006546, U01 HG006492, UM1 HG007301, UM1 HG007292, UM1 HG006508, U01 HG006487, U01 HG006507, R01 HG006618, and U01 HG007307. Special thanks to Alexandria Wyatt and Hugo O’Campo for graphic design and layout, Jill Pope for technical editing, and the entire CSER Practitioner Education Working Group for their time, energy, and support in developing this resource. Contents 1 Introduction and Overview ................................................................ 3 2 Diagnostic Results Related to Patient Symptoms: Pathogenic and Likely Pathogenic Variants . 8 3 Uncertain Results -
Psychiatric Genetics, Neurogenetics, and Neurodegeneration
EDITORIAL published: 14 January 2015 doi: 10.3389/fgene.2014.00467 Psychiatric genetics, neurogenetics, and neurodegeneration Berit Kerner* Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA *Correspondence: [email protected] Edited and Reviewed by: Valerie Knopik, Rhode Island Hospital, USA Keywords: risk gene identification, functional genomic variants, social epigenetics, heterogeneity, pleiotropy, amyotrophic lateral sclerosis (ALS), genome-wide association studies (GWAS), environmental exposure Neuropsychiatric disorders are common, complex, and severe observation that variations in the same gene can influence several disorders that affect the core of a person: their emotions, intel- seemingly unrelated phenotypic traits. Heterogeneity describes lect, and ability to self-regulate. Millions of individuals world- the observation that the same disease can be caused by genetic wide suffer from these disorders; nevertheless, the factors that variationinanyoneofanumberofgenes.Theauthorsalsohigh- lead to the manifestation of symptoms are poorly understood. light recent successes in risk gene identification that were brought Neuropsychiatric disorders are characterized by heterogeneity, about with the help of next-generation sequencing in combi- which means that disorders with similar symptoms and disease nation with linkage studies and/or functional studies in small course do not necessarily share the same disease mechanisms or animals and cell cultures. Sequeira et al. explore -
DP-Genome-Editing-EN-Web
Discussion paper focusing on the scientific relevance of genome editing and on the ethical, legal and societal issues potentially involved ISSUED BY THE ETHICS COUNCIL OF THE MAX PLANCK SOCIETY 1. Introduction and motivation for the discussion paper Christiane Walch-Solimena As an organization dedicated to fundamental research, the intense controversies have emerged around some of its Max Planck Society (MPG) is committed to pursue issues at applications. Thus, first experiments in human embryonic cells the very frontiers of current knowledge and bears a special re- have been performed already since 2015 in China1 intended to sponsibility to critically evaluate novel scientific developments. correct certain disease-causing mutations. These publications Such assessment includes both the scientific potential as well have set off discussions throughout the scientific community as the risks that may be faced if the scientific findings may be and beyond about the ethical and safety implications of this put into practice one day in the future. To this end, the MPG research. An International Summit on Human Genome Editing Ethics Council has been asked to assemble a working group focused on the future of human genome editing and convened to outline and discuss questions arising from a revolutionary by the US National Academy of Medicine, the UK’s Royal Socie- technology that in recent years has opened up unforeseen ty and the Chinese Academy of Sciences in December 2015 opportunities in the manipulation of genes and genomes: the voiced the need for an ongoing global forum. Statements on CRISPR-Cas9 gene editing and genome engineering technolo- ethical and societal questions of genome editing, also cover- gy.