Sensor Web Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Sensor Web Introduction Geospatial Sensor Web Conference – Tutorials Sensor Web Introduction Simon Jirka ([email protected]) - 52°North GmbH 28th August 2017 – Münster (Germany) Motivation • More and more sensors are deployed • Human observations • Lots of different phenomena – Weather – Pollution – Biodiversity – Hydrological Data – Traffic – ... 2 3 Motivation • Different structures and elements of observations • Sensor interfaces are very heterogeneous • Need for harmonisation interoperability • Provide a layer on top of observation databases and low level sensor network technology integration into web applications 4 Motivation • Traditional services allow to – request maps (images) • Web Mapping Service – request (binary) raster data • Web Coverage Service – request vector data • Web Feature Service • Lack of a generic framework for integration observation data into spatial data infrastructures 5 Motivation 6 Motivation 7 SWE Building Blocks 8 Observations & Measurements • Conceptual model for – Representing observations – Exchanging observations • Implementation as application schema – XML schemata extending the Geography Markup Language (GML) • Primary use: Encode SOS GetObservation response documents • O&M 2.0 is now available (OGC and ISO standard) 9 O&M Basic Observation Model • Observation – Act of observing a phenomenon – Producing an estimate for a property of a feature of interest – Specialized event with result • Inherits temporal attributes – Observation properties support result interpretation (e.g. quality) 10 O&M Observation Model Source: OGC 11 O&M Basic Observation Model • Procedure – Determines the value of a phenomenon – A procedure can be an instrument, a sensor, a human observer, a computation, a simulation … – O&M contains only a short description of the process – More detailed information is provided via SensorML / TML 12 O&M Basic Observation Model • FeatureOfInterest – A Feature represents the observed real-world object – The feature of interest is the target of the observation – Examples: River, road, person, scene, specimen, … 13 O&M Basic Observation Model • ObservedProperty – Identifies or describes the observed phenomenon – Examples: Air temperature, water level, wind speed, air pollution concentration – Description of the observed properties are often accessible through dictionaries 14 O&M Observation Example (XML) 15 O&M Observation Example (JSON) 16 SensorML • General sensor information discovery • Facilitate processing and analysis of sensor measurements • Geolocation of observed values • Description of the process by which an observation was obtained • Current version: SensorML 2.0 17 SensorML Overview 18 Process • Base for all processes in SensorML physical and non-physical processes • Elements – Inputs & Outputs – Parameter – Processing method – Reference systems – Any further metadata 19 Aggregate process • Process chains are modelled as aggregate processes • An aggregate process describes – Processes of the chain – Data sources – Connections between processes 20 (Physical) System • Extension of process chain • Defines relative positions of all components (processes and data sources) within the system • Spatial and temporal position • Describes interfaces of the system to the external world 21 Process Metadata • Allows discovery and interpretation of results • Possible content – Common metadata (ID, classification, textual Description, Contact information) – Constraints (e.g. temporal validity of document) – Capabilities and characteristics of the sensor – References – History 22 SensorML – Example (i) 23 SensorML – Example (ii) 24 SWE - Interfaces 25 SMS Email Fax Phone Call Response Request (O&M, SensorML) Subscribe Request Response Alerts SOS Event Notification SPS Processing Service Observations Observations Commands 26 Sensor Observation Service (SOS) • Pull-based access to observations • Mediator between: – client data archive / simulation / real- time sensor system • Hides the heterogeneous structure of proprietary sensor data formats and protocols • Data formats: O&M and SensorML • Versions: 1.0 and 2.0 27 Sensor Observation Service (SOS) Response Request (O&M, SensorML) SOS Observations NetCDF NetCDF NetCDF 28 SOS – Requirements Classes Core: -GetCapabilities -DescribeSensor -GetObservation Transactional ResultHandling -InsertSensor -InsertResultTemplate -DeleteSensor -InsertResult -InsertObservation Enhanced -GetResultTemplate -GetFeatureOfInterest -GetResult -GetObservationById 29 SWE Eventing • Sensor Alert Service • Sensor Event Service • Web Notification Service • Pub-Sub Extension recently adopted as OGC standard 30 OGC Publish/Subscribe Standard 31 Sensor Planning Service (SPS) • Standardized interface for tasking sensors and sensor systems • Task management – Defining tasks – Checking tasks – Updating/modifying tasks – Cancelling tasks • Does not archive the data itself points to access points for the data 32 Introduction • Usage: – Parameterization of: • Sensors, Simulations – Planning and executing of: • UAVs, Robots, Satellites, … • Asynchronous communication with clients that submit tasks via WNS (e.g. notification if a task is completed) 33 Operations • Mandatory in SPS 1.0 and 2.0 – GetCapabilities: Request a self description of a SPS instance – DescribeTasking: Request which information is needed for submitting a task – Submit: Submitting tasks – DescribeResultAccess: Request information where the data resulting of a task can be retrieved 34 SPS workflow 35 Summary • Data Models/Encodings: – Sensor Descriptions: SensorML – Observation Data: Observations & Measurements • Web Services: – Pull-based access: Sensor Observation Service – Eventing – Tasking sensors: Sensor Planning Service 36 Further Information: https://52north.github.io/sensor-web-tutorial/ Questions? Simon Jirka ([email protected]) 37 Geospatial Sensor Web Conference – Tutorials Practical Exercise: Helgoland - A Sensor Web Viewer Simon Jirka ([email protected]) - 52°North GmbH 28th August 2017 – Münster (Germany) Helgoland • Based on JavaScript • Web application to – Discovery data offered by SOS servers – Explore sensor networks – Visualise observation data • Diagrams • Tables • Tracks (in development) • Uses 52°North Sensor Web REST-API to connect to SOS servers 39 Helgoland 40 Helgoland 41 Helgoland • Open source: https://github.com/52North/helgoland • Test it: http://sensorweb.demo.52north.org/client/ – Select a data provider – Use the map view to discover a sensor/station – Visualise the data as a diagram – Open the table view • Advanced version: http://sensorweb.demo.52north.org/client/ 42 Questions? Simon Jirka ([email protected]) 43 Geospatial Sensor Web Conference – Tutorials Deployment Strategies for the 52°North SOS Simon Jirka ([email protected]) - 52°North GmbH 28th August 2017 – Münster (Germany) Agenda 1. How to integrate the 52°North SOS into your existing IT infrastructure? 45 Existing DB via new SOS Data Access Layer SOS Client GetObservation O&M SOS Server Database (e.g. PostgreSQL, MySQL, Oracle) 46 Existing DB via Hibernate SOS Client GetObservation O&M SOS Server Hibernate Database (e.g. PostgreSQL, MySQL, Oracle) 47 Existing DB via Views SOS Client GetObservation O&M SOS Server Database Views Database (e.g. PostgreSQL, MySQL, Oracle) 48 Default SOS DB with Transactional Feeding SOS Client Data Feeder GetObservation O&M InsertObserva- tion (O&M) SOS Server Default DB 49 Default SPS DB with SQL Feeding SOS Client GetObservation O&M SOS Server SQL Data Feeder Default DB 50 SOS as Proxy SOS Client GetObservation O&M SOS Server (Translator) Proprietary Service 51 Questions? Simon Jirka ([email protected]) 52 .
Recommended publications
  • Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
    Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages.
    [Show full text]
  • Part 1- Timeseries
    OGC WaterML 2.0 OGC 10-126r4 Open Geospatial Consortium Approval Date: 2012-06-23 Publication Date: 2014-02-24 Reference number of this OGC® project document: OGC 10-126r4 OGC name of this OGC® project document: http://www.opengis.net/doc/IS/waterml/2.0.1 Version: 2.0.1 Category: OGC® Implementation Standard - Corrigendum Editor: Peter Taylor OGC® WaterML 2.0: Part 1- Timeseries Copyright notice Copyright © 2012-2014 Open Geospatial Consortium To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. Notice This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: OGC® Implementation Standard - Corrigendum Document subtype: Encoding Document stage: Approved for Public Release Document language: English OGC 10-126r4 WaterML 2.0 License Agreement Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.
    [Show full text]
  • Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
    Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data.
    [Show full text]
  • Opengis Web Feature Services for Editing Cadastral Data
    OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis T.J. Brentjens Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis Thijs Brentjens Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology) Supervisors: drs. M.E. de Vries (Delft University of Technology) drs. C.W. Quak (Delft University of Technology) drs. C. Vijlbrief (Kadaster) Delft, April 2004 Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology The Netherlands Het Kadaster Apeldoorn The Netherlands i ii Preface Preface This thesis is the result of the efforts I have put in my graduation research project between March 2003 and April 2004. I have performed this research part-time at the section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch Cadastre), in order to get the Master of Science degree in Geodetic Engineering. Typing the last words for this thesis, I have been realizing more than ever that this thesis marks the end of my time as a student at the TU Delft. However, I also realize that I have been working to this point with joy. Many people are “responsible” for this, but I’d like to mention the people who have contributed most. First of all, there are of course people who were directly involved in the research project. Peter van Oosterom had many critical notes and - maybe even more important - the ideas born out of his enthusiasm improved the entire research.
    [Show full text]
  • Download a Java Program from the Registry That Uses XSLT to Convert Sensorml files Into KML files
    MXC-L071 An SOA Approach to Sensor Services A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fufillment of the requirements for the Degree of Bachelor of Science by Keith Craig and Brett Levasseur Professor Michael J. Ciaraldi, Project Advisor This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. Abstract The purpose of this project is to demonstrate the use of Semantic Web design and Service Oriented Architecture principles to make sensor information and data readily accessible to clients across the Internet. This project produced a set of XML files that described sensors, defined an ontology that described the vocabulary used in the XML files, and configured an existing registry technology for use within our sensor domain. i Acknowledgements We would like to thank our supervisors Bill Moser and Oliver Newell at Lincoln Laboratory for their invaluable assistance in all facets of this project. We would additionally like to thank Farruk Najmi for his advice regarding ebXML Registries. We would also like to thank Professor Ciaraldi for his help on the WPI side of things. The OWL files were created using the Prot´eg´eresource, which is supported by grant LM007885 from the United States National Library of Medicine. ii Contents Abstract i Acknowledgements ii Table of Contents iii List of Figures v List of Tables v 1 Introduction 1 2 Problem Statement 2 3 Background 5 3.1 Service Oriented Architecture .
    [Show full text]
  • A Pilot for Testing the OGC Web Services Integration of Water-Related Information and Models
    RiBaSE: A Pilot for Testing the OGC Web Services Integration of Water-related Information and Models Lluís Pesquer Mayos, Simon Jirka, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH 08193 Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] Christoph Stasch, Joan Masó Pau, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] David Arctur, Center for Research in Water Resources, University of Texas at Austin 10100 Burnet Rd Bldg 119, Austin, TX USA [email protected] Abstract—The design of an interoperability experiment to The OGC is an international industry consortium of demonstrate how current ICT-based tools and water data can companies, government agencies and universities participating work in combination with geospatial web services is presented. in a consensus process to develop publicly available interface This solution is being tested in three transboundary river basins: standards. Some successful examples of OGC standards for Scheldt, Maritsa and Severn. The purpose of this experiment is to general spatial purposes are, for example, the Web Map assess the effectiveness of OGC standards for describing status Service (WMS) for providing interoperable pictorial maps and dynamics of surface water in river basins, to demonstrate over the web and the Keyhole Markup Language (KML) as a their applicability and finally to increase awareness of emerging data format for virtual globes. On the other hand, hydrological standards as WaterML 2.0.
    [Show full text]
  • "The Global Spatial Data Infrastructure Association - Advancing a Location Enabled World"
    GSDI and IGS Newsletter, Vol. 4, No. 2 News from the GSDI Association and the International Geospatial Society Vol. 4, No. 2, 2014 "The Global Spatial Data Infrastructure Association - Advancing a Location Enabled World" ASSOCIATION NEWS Association since 2010. Within local conservation circles he was primarily known for co-directing, with his partner GSDI Association Board Member Mark Becker Dies of 30 years Lori Charkey, the Bergen Save the Watershed in Tragic Accident Action Network (Bergen SWAN).” The GSDI Association learned of the tragic death of CIESIN Associate Director Mark Becker at the age of 53, on 26 February 2014 in a multi-vehicle accident on the New York State Thruway in Woodbury, NY. Mark was the GSDI Board member representing ‘GSDI Related Global Initiatives’ and was a valued member of the GSDI Outreach and Membership Committee, where his input and insight will be much missed by his colleagues at the Association. Below is an extract from the tribute to Mark from CIESIN. “In his 15 years at CIESIN Mark made contributions that will be felt for a long time. He began his CIESIN career in Mark Becker leading a teacher training workshop for the February 1999, and was soon appointed head of the CHANGE Viewer mapping tool. Pictured behind him is Geospatial Applications Division. … In many ways he Amy Work, IAGT, who helped develop the tool. Palisades, helped bring GIS to Columbia, as manager of the GIS New York, July 2013. Source: CEISIN Service Center and ESRI site license. He helped install many of the early GIS labs on campus and helped train See the full tribute to Mark on the CIESIN website at many of the people who operated them.
    [Show full text]
  • OWS-4 Geodds Mass Market (Formerly Georss) Interoperability Program Report
    OGC 07-004 Open Geospatial Consortium Inc. Date: 2007-05-02 Reference number of this OGC® document: OGC 07-004 Version: 0.0.1 Category: OpenGIS® Discussion Paper Editor: Panagiotis (Peter) A. Vretanos OWS-4 GeoDDS Mass Market (formerly GeoRSS) Interoperability Program Report Copyright notice Copyright © 2007 Open Geospatial Consortium. All Rights Reserved To obtain additional rights of use, visit http://www.opengeospatial.org/legal/ Warning This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore not an official position of the OGC membership. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard. Further, an OGC Discussion Paper should not be referenced as required or mandatory technology in procurements. Document type: OpenGIS® Discussion Paper Document subtype: Engineering Specification Document stage: Draft Document language: English File name: 07-004.doc OGC 07-004 Contents 1 SCOPE..........................................................................................................................................................1 2 CONFORMANCE........................................................................................................................................1 3 NORMATIVE REFERENCES....................................................................................................................1 4 TERMS AND DEFINITIONS.....................................................................................................................3
    [Show full text]
  • Wcs-Overview.Pdf
    OGC Coverages: Data & Services Peter Baumann Jacobs University | rasdaman GmbH [gamingfeeds.com] Coverages Tutorial :: © 2013 Peter Baumann Overview . Motivation: What is a “coverage”? . Coverage data: the OGC Coverage Model . Coverage services: the WCS Suite . Conformance Testing . Implementations . Summary Coverages Tutorial :: © 2013 Peter Baumann2 Facing the Coverage Tsunami sensor feeds [OGC SWE] coverage server Coverages Tutorial :: © 2013 Peter Baumann3 Taming the Coverage Tsunami sensor feeds [OGC SWE] coverage server Coverages Tutorial :: © 2013 Peter Baumann4 Serving Coverages . WCS: one generic schema for all coverage types; n-D; scalable; versatile processing → access & processing services SOS WCS coverage . SOS: server high flexibility to accommodate all sensor types → data capturing Coverages Tutorial :: © 2013 Peter Baumann (Part of) The OGC Standards Quilt data images data data feature coverage meta FE WCPS CQL WFS-T WCS-T CS-T WFS WMS WCS CS-W • WMS "portrays spatial data pictures" • WCS: "provides data + descriptions; data with original semantics, may be interpreted, extrapolated, etc.“ [09-110r3] Coverages Tutorial :: © 2013 Peter Baumann6 Overview . Motivation: What is a “coverage”? . Coverage data: the OGC Coverage Model . Coverage services: the WCS Suite . Conformance Testing . Implementations . Summary Coverages Tutorial :: © 2013 Peter Baumann7 OGC Coverages . Coverage = "space-time varying phenomenon“ - ISO 19123 (=OGC Abstract Topic 6) - Today typically raster, but more defined (curved grids, TINs, meshes, ...)
    [Show full text]
  • Open Geospatial Consortium: 2D Or Not 2D?
    ® Open Geospatial Consortium: 2D or Not 2D? Chris Little, Co-Chair Met Ocean DWG Marie-Françoise Voidrot-Martinez, Météo-France, Co-Chair EGOWS at FMI, Helsinki, Finland 2016-09-20/22 © 2010 Open Geospatial Consortium, Inc. 0. Introduction 1. What is OGC? 2. Who is OGC? 3. How does OGC work? 4. What is OGC doing? 5. Current issues, futures & possibilities? 6. Questions & (maybe) Answers? ® OGC © 2010 Open Geospatial Consortium, Inc. 1. What is OGC? • See also http://www.opengeospatial.org ® OGC © 2010 Open Geospatial Consortium, Inc. 3 What is OGC? • International, non-profit, consortium • Develops standards for geospatial OGC Membership Distribution data & services, >25 years 9 % Commercial • Funded by ~500 members 6 % Government • 38 adopted standards 43 % Academic • Consensus process 24 % • Docs freely available Research • 100s of implementations Not For Profit • Alliance partnerships with 30+ 18 % standards & professional organizations • Broad user community worldwide • Several standards fast tracked in ISO (and WMO!) OGC® What is OGC’s Vision? Vision: A world in which everyone benefits from the use of geospatial information and supporting technologies. Mission: Global forum for collaboration of developers and users of spatial data products and services and to advance the development of international standards for geospatial interoperability Strategic Goals: Goal 1 - Provide free and openly available standards to the market that are of tangible value to Members and have measurable benefits for users. Goal 2 - Lead worldwide in the creation and establishment of standards that enable global infrastructures for delivery and integration of geospatial content and services into business and civic processes. Goal 3 - Facilitate the adoption of open, spatially enabled reference architectures in enterprise environments worldwide.
    [Show full text]
  • Augmenting Hydrologic Information Systems with Streaming Water Resource Data
    AUGMENTING HYDROLOGIC INFORMATION SYSTEMS WITH STREAMING WATER RESOURCE DATA S. Esswein1, J. Hallstrom2, C. J. Post1, D. White3, G. Eidson4 AUTHORS: Forestry and Natural Resources1; School of Computing2; Computing and Information Technology3; Restoration Institute4, Clemson University, Clemson, SC USA 29634 REFERENCE: Proceedings of the 2010 South Carolina Water Resources Conference, held October 13-14, 2010, at the Columbia Metropolitan Convention Center. examined with an emphasis on design decisions regarding Abstract. Access to timely and accurate hydrological leveraging available standards and software. Insight and environmental observation data is a crucial aspect of garnered from several years of data acquisition experience an integrated approach to water resources management. is provided, along with a recent case study involving a This presentation describes an end-to-end system designed monitoring deployment supporting the Sand River to support realtime monitoring and management of water Headwaters Green Infrastructure project located in the resources. The main components of the hardware/software City of Aiken, South Carolina. infrastructure of this system are broken into four There are four components or tiers of a realtime- categories and briefly described. This organization monitoring infrastructure: (i) sensing platforms collect in provides the basis for a synthesis of several prominent situ observation data, (ii) communication and uplink standards and software solutions relevant to the technologies transmit realtime observation data, (iii) data hydrologic and environmental observing communities. streaming middleware provides highly distributed These standards are described in the context of their role publication and subscription of observation data, and (iv) in our end-to-end system. The presentation concludes with back-end repository and presentation services provide a a case study describing a green infrastructure monitoring means of viewing and utilizing data products.
    [Show full text]
  • Web Coverage Service (WCS) V1.0.0
    Open Geospatial Consortium Inc. Date: 2005-10-14 Reference number of this OGC® Project Document: OGC 05-076 Version: 1.0.0 (Corrigendum) Category: OGC® Implementation Specification Editor: John D. Evans Web Coverage Service (WCS), Version 1.0.0 (Corrigendum) Copyright © 2005 Open Geospatial Consortium. All Rights Reserved To obtain additional rights of use, visit http://www.opengeospatial.org/legal/ Document type: OpenGIS® Implementation Specification Document subtype: Corrigendum Document stage: Approved Document language: English OGC 05-076 Contents Page 1 Scope........................................................................................................................1 2 Conformance............................................................................................................1 3 Normative references...............................................................................................1 4 Terms and definitions ..............................................................................................2 5 Conventions .............................................................................................................4 5.1 Symbols (and abbreviated terms) ............................................................................4 5.2 UML notation ..........................................................................................................4 5.3 XML schema notation..............................................................................................6 6 Basic service elements.............................................................................................6
    [Show full text]