Visual Double Star Measurements with an Alt-Azimuth Telescope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M17 CEN1.Pdf
The Origin of Hard X-rays in M 17's Remarkable O4+O4 Binary M 17, the closest Giant H ii Region (d ≈ 2 kpc), is a superior laboratory for the study of young massive stars. Producing the second-brightest H ii region in the sky (after the Orion Nebula), the OB cluster NGC 6618 has nearly 10,000 members extending up to masses M ≈ 60M (spectral type O4 V) in the central binary. It is a scaled-up, edge-on version of the Orion Molecular Cloud: a blister nebula on the edge of one of the Galaxy's most massive giant molecular clouds. With an age of ∼ 0:5 Myr (Hanson et al. 1997, ApJ 489, 698) and no evolved stars, M 17 is one of the few massive star-forming regions whose massive stars are luminous enough to produce a prominent X-ray outflow (Townsley et al. 2003, ApJ 593, 874) and yet is unlikely to have hosted any supernovae. Co-I's Townsley and Garmire have amassed 320 ks of Chandra ACIS-I time on NGC 6618, through a combination of GO and ACIS GTO programs, to study M 17 and its enormous X-ray champagne flow. The ACIS data reveal that the massive O4 stars in NGC 6618 are a pair of remarkable hard, variable X-ray sources separated by 1:800 (Broos et al. 2007, ApJS 169, 353; Fig. 1A). The stars are seen through AV ≈ 10 mag and no spatially resolved near-infrared photometry or spectroscopy of the visual pair is published. The pair is known historically as Kleinmann's Anonymous Star (Kleinmann 1973, ApL, 14, 39); Chini et al. -
List of Easy Double Stars for Winter and Spring = Easy = Not Too Difficult = Difficult but Possible
List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8. -
Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al. -
Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing. -
Supernova Star Maps
Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova. -
High Energy Astrophysics Program (Heap)
HIGH ENERGY ASTROPHYSICS PROGRAM (HEAP) NASA CONTRACT NAS 5 - 32490 Final Technical Report April 1, 1998 through September 30, 1998 UNIVERSITIES SPACE RESEARCH ASSOCIATION (USRA) David V. Holdridge Project Manager TABLE OF CONTENTS Task 93-01-00 - HEASARC Corcoran, Michael ......................................................................... 03 Drake, Stephen ............................................................................... 05 McGlynn, Thomas A ..................................................................... 08 Task 93-02-00 - ROSAT-GOF Snowden, Stephen ........................................................................... 9 Task 93-03-00 - ASCA-GOF Gotthelf, Eric ................................................................................. 11 Mukai, Koji ................................................................................... 13 Task 93-04-00 - XTE-GOF Boyd, Padi ..................................................................................... 16 Cannizzo, John .............................................................................. 18 Lochner, James .............................................................................. 20 Smale, Alan ................................................................................... 21 TASK 93-09-00 - RMT/BATSE Barthelmy, Scott ............................................................................ 24 TASK 93-10-00 - TGRS/WIND Palmer, David ................................................................................ 26 Task 93-11-00- -
Research and Scientific Support Department 2003 – 2004
COVER 7/11/05 4:55 PM Page 1 SP-1288 SP-1288 Research and Scientific Research Report on the activities of the Support Department Research and Scientific Support Department 2003 – 2004 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 Sec1.qxd 7/11/05 5:09 PM Page 1 SP-1288 June 2005 Report on the activities of the Research and Scientific Support Department 2003 – 2004 Scientific Editor A. Gimenez Sec1.qxd 7/11/05 5:09 PM Page 2 2 ESA SP-1288 Report on the Activities of the Research and Scientific Support Department from 2003 to 2004 ISBN 92-9092-963-4 ISSN 0379-6566 Scientific Editor A. Gimenez Editor A. Wilson Published and distributed by ESA Publications Division Copyright © 2005 European Space Agency Price €30 Sec1.qxd 7/11/05 5:09 PM Page 3 3 CONTENTS 1. Introduction 5 4. Other Activities 95 1.1 Report Overview 5 4.1 Symposia and Workshops organised 95 by RSSD 1.2 The Role, Structure and Staffing of RSSD 5 and SCI-A 4.2 ESA Technology Programmes 101 1.3 Department Outlook 8 4.3 Coordination and Other Supporting 102 Activities 2. Research Activities 11 Annex 1: Manpower Deployment 107 2.1 Introduction 13 2.2 High-Energy Astrophysics 14 Annex 2: Publications 113 (separated into refereed and 2.3 Optical/UV Astrophysics 19 non-refereed literature) 2.4 Infrared/Sub-millimetre Astrophysics 22 2.5 Solar Physics 26 Annex 3: Seminars and Colloquia 149 2.6 Heliospheric Physics/Space Plasma Studies 31 2.7 Comparative Planetology and Astrobiology 35 Annex 4: Acronyms 153 2.8 Minor Bodies 39 2.9 Fundamental Physics 43 2.10 Research Activities in SCI-A 45 3. -
Astrophysics
Publications of the Astronomical Institute rais-mf—ii«o of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE IA U Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 1987 Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE I A U 10 Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 5 1 987 CHIEF EDITOR OF THE PROCEEDINGS: LUBOS PEREK Astronomical Institute of the Czechoslovak Academy of Sciences 251 65 Ondrejov, Czechoslovakia TABLE OF CONTENTS Preface HI Invited discourse 3.-C. Pecker: Fran Tycho Brahe to Prague 1987: The Ever Changing Universe 3 lorlishdp on rapid variability of single, binary and Multiple stars A. Baglln: Time Scales and Physical Processes Involved (Review Paper) 13 Part 1 : Early-type stars P. Koubsfty: Evidence of Rapid Variability in Early-Type Stars (Review Paper) 25 NSV. Filtertdn, D.B. Gies, C.T. Bolton: The Incidence cf Absorption Line Profile Variability Among 33 the 0 Stars (Contributed Paper) R.K. Prinja, I.D. Howarth: Variability In the Stellar Wind of 68 Cygni - Not "Shells" or "Puffs", 39 but Streams (Contributed Paper) H. Hubert, B. Dagostlnoz, A.M. Hubert, M. Floquet: Short-Time Scale Variability In Some Be Stars 45 (Contributed Paper) G. talker, S. Yang, C. McDowall, G. Fahlman: Analysis of Nonradial Oscillations of Rapidly Rotating 49 Delta Scuti Stars (Contributed Paper) C. Sterken: The Variability of the Runaway Star S3 Arietis (Contributed Paper) S3 C. Blanco, A. -
Extrasolar Planets and Their Host Stars
Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it. -
Space Photometry with BRITE-Constellation §
universe Review Space Photometry with BRITE-Constellation § Werner W. Weiss 1,* , Konstanze Zwintz 2 , Rainer Kuschnig 3 , Gerald Handler 4 , Anthony F. J. Moffat 5 , Dietrich Baade 6 , Dominic M. Bowman 7 , Thomas Granzer 8 , Thomas Kallinger 1 , Otto F. Koudelka 3, Catherine C. Lovekin 9 , Coralie Neiner 10 , Herbert Pablo 11 , Andrzej Pigulski 12 , Adam Popowicz 13 , Tahina Ramiaramanantsoa 14 , Slavek M. Rucinski 15 , Klaus G. Strassmeier 8 and Gregg A. Wade 16 1 Institute for Astrophysics, University of Vienna, A-1180 Vienna, Austria; [email protected] 2 Institute for Astro- and Particle Physics, University of Innsbruck, A-6020 Innsbruck, Austria; [email protected] 3 Institut für Kommunikationsnetze und Satellitenkommunikation, Technische Universität Graz, A-8020 Graz, Austria; [email protected] (R.K.); [email protected] (O.F.K.) 4 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716 Warsaw, Poland; [email protected] 5 Department of Physics, University of Montreal, Montreal, QC H3C 3J7, Canada; [email protected] 6 European Southern Observatory (ESO), D-85748 Garching bei München, Germany; [email protected] 7 Institute of Astronomy, KU Leuven, B-3001 Leuven, Belgium; [email protected] 8 Department Cosmic Magnetic Fields, Leibniz Institut fuer Astrophysik Potsdam, D-14482 Potsdam, Germany; [email protected] (T.G.); [email protected] (K.G.S.) 9 Physics Department, Mount Allison University, Sackville, NB E4L 1E6, Canada; [email protected] 10 LESIA, Paris Observatory, PSL University, -
Disentangling of Spectra-Theory and Practice
Disentangling of spectra – theory and practice P. Hadrava, Astronomical Institute, Academy of Sciences of the Czech Republic, Boˇcn´ıII 1401, 141 31 Praha 4, Czech Republic e-mail: [email protected] http://www.asu.cas.cz/˜had/korel.html Release September 19, 2008 modified August 31, 2009 arXiv:0909.0172v2 [astro-ph.SR] 2 Sep 2009 Abstract In this document a review of the author’s method of Fourier disentangling of spectra of binary and multiple stars is presented for the purpose of the summer school organized at Ondˇrejov observatory in September 2008. Related methods are also discussed and some practical hints for the use of the author’s code KOREL and related auxiliary codes with examples are given. keywords: Spectroscopic binaries and multiple stars – orbital elements – line profiles – spectra disentangling Contents Introduction...................................... 3 1 Theory of spectra disentangling 7 1.1 Aswiftentryintothetheory.......................... 7 1.2 Backgroundthoughts.............................. 10 1.3 Methods of radial-velocity measurements . .. 14 1.3.1 Methodofcross-correlation . 14 1.3.2 Methodofbroadeningfunction . 17 1.4 Methodsofdecompositionofspectra . 18 1.4.1 Directsubtraction ........................... 18 1.4.2 Iterativesubtraction . .. .. 19 1.4.3 Methodoftomographicseparation . 20 1.5 Method of wavelength-domain disentangling of spectra . .... 23 1.6 Fourier disentangling and its generalizations . 25 1.6.1 Principle of Fourier disentangling . 25 1.6.2 Simple Fourier disentangling . 27 1.6.3 Line-strength variations and removal of telluric lines . 29 1.6.4 Linephotometry ............................ 32 1.6.5 Disentangling with intrinsic line-profile variations . 35 1.6.6 Broadeningbypulsations. 37 1.6.7 Rotational (Schlesinger – Rossiter – McLaughlin) effect . -
Theory of Stellar Atmospheres
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. EXTENDED BIBLIOGRAPHY References [1] D. Abbott. The terminal velocities of stellar winds from early{type stars. Astrophys. J., 225, 893, 1978. [2] D. Abbott. The theory of radiatively driven stellar winds. I. A physical interpretation. Astrophys. J., 242, 1183, 1980. [3] D. Abbott. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J., 259, 282, 1982. [4] D. Abbott. The theory of radiation driven stellar winds and the Wolf{ Rayet phenomenon. In de Loore and Willis [938], page 185. Astrophys. J., 259, 282, 1982. [5] D. Abbott. Current problems of line formation in early{type stars. In Beckman and Crivellari [358], page 279. [6] D. Abbott and P. Conti. Wolf{Rayet stars. Ann. Rev. Astr. Astrophys., 25, 113, 1987. [7] D. Abbott and D. Hummer. Photospheres of hot stars. I. Wind blan- keted model atmospheres. Astrophys. J., 294, 286, 1985. [8] D. Abbott and L. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophys. J., 288, 679, 1985. [9] D. Abbott, C. Telesco, and S. Wolff. 2 to 20 micron observations of mass loss from early{type stars. Astrophys. J., 279, 225, 1984. [10] C. Abia, B. Rebolo, J. Beckman, and L. Crivellari. Abundances of light metals and N I in a sample of disc stars. Astr. Astrophys., 206, 100, 1988. [11] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Washington, DC: U.S. Government Printing Office), 1972.