A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’’

Total Page:16

File Type:pdf, Size:1020Kb

A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’’ 1014 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 Reply to ‘‘Comments on ‘A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’’ STEPHEN PO-CHEDLEY AND QIANG FU Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 2 July 2012, in final form 26 November 2012) ABSTRACT The main finding by Po-Chedley and Fu was that the University of Alabama in Huntsville (UAH) mi- crowave sounding unit (MSU) product has a bias in its NOAA-9 midtropospheric channel (TMT) warm target factor, which leads to a cold bias in the TMT trend. This reply demonstrates that the central arguments by Christy and Spencer to challenge Po-Chedley and Fu do not stand. This reply establishes that 1) Christy and Spencer found a similar, but insignificant, bias in the UAH target factor because their radiosonde data lack adequate sampling and measurement errors were considered twice; 2) the UAH individual satellite TMT difference between NOAA-9 and NOAA-6 reveals a bias of 0.082 6 0.011 in the UAH NOAA-9 target factor; 3) comparing the periods before and after NOAA-9 is not an adequate method to draw conclusions about NOAA-9 because of the influence of other satellites; 4) using the Christy and Spencer trend sensitivity 2 value, UAH TMT has a cold bias of 0.035 K decade 1 given a target factor bias of 0.082; 5) similar trends from UAH and Remote Sensing Systems (RSS) for the lower tropospheric temperature product (TLT) do not indicate that the UAH TMT and TLT NOAA-9 target factor is unbiased; and 6) the NOAA-9 warm target temperature signal in UAH TMT indicates a problem with the UAH empirical algorithm to derive the target factor. 1. Background and after correction, respectively; a is the target factor; C is a constant offset; and T is the warm target temperature Po-Chedley and Fu (2012) worked toward reconciling WT of the satellite (Christy et al. 2000; Mears et al. 2003). Each a previously noted, long-standing difference between the team solves for this target factor differently, but in order to University of Alabama in Huntsville (UAH) and the achieve the same goal: to remove warm target temperature Remote Sensing Systems (RSS) Microwave Sounding contamination in the final MSU products (Christy et al. Unit (MSU) midtropospheric temperature (TMT) data- 2000; Mears et al. 2003; Zou et al. 2009). sets. This difference is also evident between the UAH Figure 1 shows the differences between the RSS and and the National Oceanic and Atmospheric Adminis- UAH TMT and lower tropospheric temperature (TLT) tration (NOAA) MSU TMT dataset. The difference is datasets over the NOAA-9 satellite time period versus related to the warm target calibration of the MSU mea- the warm target temperature on board NOAA-9. We see surements (Mears et al. 2003; Karl et al. 2006). UAH, that the differences in both TMT and TLT are signifi- RSS, and NOAA utilize a correction factor, referred to as cantly related to the warm target temperature of the a warm target factor, that is multiplied by the warm target NOAA-9 satellite, indicating that there are still large temperature of the satellite to remove the residual signal warm target temperature signals in one or both of the of the warm target temperatures in the MSU measure- UAH and RSS MSU products. The differences between ments. For each satellite, the correction has the form the UAH and the NOAA TMT products are also sig- T 5 T 2 a 3 T 1 C,whereT and T MSU,C MSU WT MSU MSU,C nificantly related to the NOAA-9 warm target temper- are the measured Earth brightness temperatures before ature (the slope is 20.053 6 0.010 and the r2 value is 0.81). The difference between the RSS and NOAA TMT products versus the NOAA-9 warm target temper- Corresponding author address: Stephen Po-Chedley, Department 2 6 2 of Atmospheric Sciences, Box 351640, University of Washington, ature has a slope of 0.010 0.007 with an r value of Seattle, WA 98195. 0.25, which is also statistically significant. NOAA does E-mail: [email protected] not yet produce a TLT dataset. DOI: 10.1175/JTECH-D-12-00131.1 Ó 2013 American Meteorological Society MAY 2013 C O R R E S P O N D E N C E 1015 FIG. 1. Scatterplots of the differences between UAH and RSS for (a) TMT and (b) TLT vs the warm target temperature of NOAA-9 for the 26-month NOAA-9 time period (January 1985–February 1987). There are large differences in the magnitudes of the this difference is actually the difference between MSU target factors from each group for the NOAA-9 satellite errors and radiosonde errors, and that the latter is (Po-Chedley and Fu 2012). The UAH NOAA-9 target unrelated to the satellite warm target temperature factor is more than 2 and 3 times larger than the target (Po-Chedley and Fu 2012). Thus, a significant relation- factors used by RSS and NOAA, respectively. We rec- ship would indicate a detectable warm target tempera- ognize that target factors may not be exactly the same ture signal in the MSU datasets. We found that we could because of different algorithms used in the satellite only detect a significant relationship using the UAH merging process, but there should be no detectable warm dataset with a mean slope of 20.051 6 0.031. This value target signal in the final MSU product. Because the represents the magnitude of the bias in the target factor NOAA-9 warm target temperature explains most of the for UAH TMT (the target factor bias and the slope have discrepancies between the datasets during the NOAA-9 the same magnitude but opposite signs) (Po-Chedley era (Fig. 1), it is not possible that all target factors are and Fu 2012). Christy and Spencer (2013) repeated our equally valid (Po-Chedley and Fu 2012). Since the warm calculation using U.S. VIZ radiosondes (see their Fig. 1, target temperature for NOAA-9 drifts over time, a target top). They obtained a statistically insignificant slope of factor that is too large or too small would leave a spurious 20.042 6 0.047. They further asserted that this calcula- signal related to the warm target temperature drift in the tion assumes no errors for the individual points. By add- final MSU TMT and TLT time series. The difference in ing an error bar as the ‘‘measurement error’’ in the VIZ the magnitude of the target factor has been well docu- radiosondes at each point, they produced a relationship mented as an important discrepancy between the UAH of 20.042 6 0.073. Below we demonstrate that their and RSS datasets, contributing to about half of the trend claim cannot be substantiated because they used a limited difference between the groups (Mears et al. 2003; Karl number of radiosonde stations and their consideration of et al. 2006). Po-Chedley and Fu (2012) sought to reconcile measurement errors is incorrect. this specific, yet important, difference and not other dif- Figure 2 shows the effect of the number of radiosonde ferences between the three groups. stations on the bias detection threshold by randomly subsampling the Radiosonde Innovation Composite Homogenization (RICH) global radiosonde dataset 2. Radiosonde comparisons (Haimberger et al. 2008). We obtain similar results from In Po-Chedley and Fu (2012), we attempted to detect other radiosonde datasets utilized in Po-Chedley and artificial residuals related to the warm target calibration Fu (2012). It shows that the uncertainty declines dra- in MSU TMT products from each group using five matically as we incorporate more radiosonde locations. global, homogenized, peer-reviewed radiosonde data- There is a large uncertainty when few radiosonde sta- sets as references. In particular, we examined whether tions are used, owing to the large error noise from there is a significant relationship between the difference individual radiosonde stations. For this reason, it is of collocated MSU and radiosonde TMT measurements important to use a large number of radiosonde sites. The and the NOAA-9 warm target temperature. Note that Christy and Spencer (2013) value is insignificant, owing to 1016 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 FIG. 2. Effects of sample size on statistics in Po-Chedley and Fu (2012). We computed the (a) p value and (b) target factor bias, Da, for the regression of UAH-RICH radiosondes vs the NOAA-9 warm target temperature for different numbers of radiosonde stations (collocated with UAH data over the NOAA-9 time period). For this calculation we randomly subsample a certain number of stations and create an average, collocated UAH minus radiosonde difference time series, which we then regress against the NOAA-9 warm target temperature. We redo this calculation 1000 times for each number of stations sampled and then present the mean p value and Da value; p values less than 0.05 indicate significant biases in the UAH target factor with 95% confidence. The shaded region around the Da value is the 95% confi- dence interval from the subsampling statistics only. The results become significant when about 35 stations are included in the global average; below this number, the signal-to-noise ratio is too low. poor radiosonde sampling; Christy and Spencer (2013) is incorrect. Note that the radiosonde measurement er- utilized 31 radiosonde stations, while Po-Chedley and Fu ror that Christy and Spencer (2013) reference is simply (2012) used between 45 and 451 stations.
Recommended publications
  • Reconciling Tropospheric Temperature Trends from the Microwave Sounding Unit
    Reconciling tropospheric temperature trends from the microwave sounding unit Stephen Po-Chedley A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2012 Program Authorized to Offer Degree: Department of Atmospheric Sciences University of Washington Abstract Reconciling tropospheric temperature trends from the microwave sounding unit Stephen Po-Chedley Chair of the Supervisory Committee: Professor Qiang Fu Department of Atmospheric Sciences The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long- term temperature records for deep atmospheric layers using satellite microwave sounding unit (MSU) and advanced microwave sounding unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the mid-tropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde prod- ucts as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by an estimated 0.042 K decade−1 for 1979 - 2009. Accounting for this bias, we estimate that the global UAH TMT trend should increase from 0.038 K decade−1 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.
    [Show full text]
  • Downloaded 10/04/21 02:53 AM UTC OCTOBER 2014 Z O U E T a L
    2206 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 31 Connecting the Time Series of Microwave Sounding Observations from AMSU to ATMS for Long-Term Monitoring of Climate XIAOLEI ZOU Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida FUZHONG WENG NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland H. YANG Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland (Manuscript received 18 October 2013, in final form 8 May 2014) ABSTRACT The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar- orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be over- lapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration.
    [Show full text]
  • CGMS-39, NOAA-WP-19 Prepared by C.-Z
    CGMS-39, NOAA-WP-19 Prepared by C.-Z. Zou and L. Wang Agenda Item: xxx Discussed in xxx NOAA's Stratospheric Temperature Climate Data Record Derived from Recalibrated Stratospheric Sounding Unit Observations In response to CGMS Recommendation 38.13 Summary of the Working Paper NOAA/NESDIS has generated a 27-year (1978-2006) stratospheric temperature data record from Stratospheric Sounding Unit (SSU) observations for climate trend and variability detection. The dataset includes gridded global layer temperatures of mid-stratosphere, upper-stratosphere, and top- stratosphere. Calibration algorithms for developing the data record include corrections of gas leaking problem in the SSU instrument CO2 cells, variation of the atmospheric CO2 concentration, incident angle effect, diurnal drift effect, and Earth-location dependent residual inter-satellite biases. The products have a grid resolution of 2.50 latitude by 2.50 longitude and both monthly and pentad data are available for seamless climate monitoring. This is the first set of well-documented and well-calibrated global gridded dataset available to the climate community for long-term stratospheric temperature monitoring and investigation and for validating climate model simulations of the stratospheric climate change. For 1979-2006, the dataset had a global mean stratospheric temperature trend around -0.93 to -1.24 K/decade. Spatial trend pattern analyses indicated that this cooling occurred globally with larger cooling over the tropical stratosphere. CGMS-39, NOAA-WP-19 NOAA's Stratospheric Temperature Climate Data Record Derived from Recalibrated Stratospheric Sounding Unit Observations 1 INTRODUCTION The stratosphere has been recognized as an important component in the global change scenario.
    [Show full text]
  • GES DISC DAAC Data Guide: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Guide Document
    GES DISC DAAC Data Guide: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Guide Document Summary: This document supports the Daily Deep Layer Temperatures and Oceanic Precipitation data sets derived from the Microwave Sounding Unit (MSU) flown aboard the NOAA polar orbiting satellites. The NOAA satellites contributing to these data sets are, in order of their launch, TIROS-N, NOAA-6, NOAA-7, NOAA- 9, NOAA-10, NOAA-11, and NOAA-12. NOAA-8 data were not used due to poor data quality. Table of Contents: 1 Data Set Overview 2 Investigator(s) 3 Theory of Measurements 4 Equipment 5 Data Acquisition Methods 6 Observations 7 Data Description 8 Data Organization 9 Data Manipulations 10 Errors 11 Notes 12 Application of the Data Set 13 Future Modifications and Plans 14 Software 15 Data Access 16 Output Products and Availability 17 References 18 Glossary of Terms 19 List of Acronyms 20 Document Information 1. Data Set Overview: Data Set Identification: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Data Set Introduction: The temperature data set contains the Limb 93 correction and is stored in a native binary format as well as in the Hierarchical Data Format (HDF). The NOAA satellites contributing to these data sets are, in order of their launch, TIROS-N, NOAA-6, NOAA-7, NOAA-9, NOAA-10, NOAA-11, and NOAA-12. NOAA-8 data were not used due to poor data quality. The data set period of record is January 1979- December 1993 for the temperatures, and 1979 thru May 1994 for oceanic precipitation.
    [Show full text]
  • Climate Data Record (CDR) Program
    CDR Program MSU_AMSU_CATBD_V1.0 Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) MSU/AMSU Radiance Fundamental Climate Data Record Calibrated Using Simultaneous Nadir Overpasses CDR Program Document Number: CDRP-0015 Originator Document Number: TBD Version 1.0 / February, 2012 CDR Program MSU/AMSU Radiance FCDR C-ATBD CDR Doc. No. CDRP-0015 RESPONSIBILITY Prepared By: Cheng-Zhi Zou Physical Scientist NOAA/NESDIS Wenhui Wang Scientist I.M. Systems Group Signature Date Reviewed By: <Name> <Title> <Organization> Signature Date Reviewed By: <Name> <Title> <Organization> Signature Date Approved By: <Name> <Title> <Organization> Signature Date Approved By: <Name> <Title> <Organization> Signature Date REVISION HISTORY Version Description Revised Date Sections 1.0 Initial submission to CDR Program New Document 02/27/2012 Page 1 CDR Program MSU/AMSU Radiance FCDR C-ATBD CDR Doc. No. CDRP-0015 TABLE of CONTENTS 1. INTRODUCTION .................................................................................................... 10 1.1 Purpose ........................................................................................................................................... 10 1.2 Definitions ........................................................................................................................................ 10 1.3 Document Maintenance .................................................................................................................. 11 2. OBSERVING SYSTEMS OVERVIEW ...................................................................
    [Show full text]
  • 30-Year Atmospheric Temperatures Derived from Satellite Microwave Sounding Instruments Using a 1D-Var Approach
    30-Year Atmospheric Temperatures Derived from Satellite Microwave Sounding Instruments Using a 1D-Var Approach Fuzhong Weng1 , Kunghwa Wang2, and Xiaolei Zou3 1. National Environmental Satellite, Data & Information Service, National Oceanic and Atmospheric Administration 2. Earth System Science Interdisciplinary Center (ESSIC) University of Maryland and 3. Department of Earth, Ocean and Atmospheric Sciences, Florida State University Submitted to J. of Climate. 1Corresponding author address: Dr. Fuzhong Weng, NOAA/NESDIS, Room 712, 5200 Auth Road, Camp Springs, MD 20746, Email: [email protected] April , 2012 1 Abstract In past 30 years, satellite observations of the microwave radiation emitted from the atmosphere have been utilized for deriving the atmospheric temperature profiles. Specifically, the radiance measurements from Microwave Sounding Unit (MSU) on board the early National Oceanic and Atmospheric Administration (NOAA)-6 to NOAA-14 and Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA-15 to -19 have been reprocessed to form a fundamental climate data record (FCDR). The FCDR were inter-calibrated and the major anomalies related to the instrument calibration were removed. In this study, a climatology temperature profile is used as an initial guess in one-dimensional variation (1D-Var) retrieval to further derive the thematic CDR (TCDR) of atmospheric temperatures that are appropriate for climate change study. The retrieval temperature profiles are collocated with Global Positioning System (GPS) radio occultation (RO) data over global oceans and compared with the GPSRO temperature profiles. It is shown that the assimilation of MSU/AMSU-A four channels into the climatology profiles can produce a reasonably accurate temperature analysis in the troposphere, and the assimilation of AMSU-A 15 channels available since 1998 allows such a TCDR to be extended to the stratosphere and higher.
    [Show full text]
  • + NOAA-N (1.42 Mb PDF)
    NOAA-N National Aeronautics and U.S. Department of Commerce Space Administration National Oceanic and Atmospheric Administration Goddard Space Flight Center National Environmental Satellite, Greenbelt, Maryland Data, and Information Service Suitland,NOAA-N/1 Maryland Table of Contents POES Program ............................................................................................................................... 4 The NOAA Polar-Orbiting Satellites................................................................................. 4 Initial Joint Polar-Orbiting Operational Satellite System ................................................. 4 NOAA-N ........................................................................................................................... 6 NOAA-N Instruments..................................................................................................................... 6 Advanced Very High Resolution Radiometer (AVHRR/3) ............................................... 7 High Resolution Infrared Radiation Sounder (HIRS/4) .................................................... 7 Advanced Microwave Sounding Unit-A (AMSU-A) ........................................................ 8 Microwave Humidity Sounder (MHS) .............................................................................. 9 Solar Backscatter Ultraviolet Radiometer (SBUV/2)........................................................ 9 Space Environment Monitor (SEM-2) ...........................................................................
    [Show full text]
  • Technical Report NESDIS 107
    Technical Report NESDIS 107 OFDRATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2O:O2 Washington, D.C. December 2002 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and lnformation Seruice t--- 5 NOAA Technical Report NESDIS 107 NOAA OPERATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2OO2 Anthony L. Reale and Michael W. Chalfant NOAAAJESDIS/ORA 5200 Auth Road, FB4 Camp Springs,MD 20746 Americo S. Allegrino Franklin H. Tilley Michael P. Ferguson and Michael E. Pettey Raytheon Technical Services Company/ITSS Lanham, Maryland Washington, DC NOAA Scicnce Center December 2002 Bctty Petcr¡en Mcmorial Library rffo¡thqBldg,, tilorld Room 103 5200 AuttrRoad CrnpSBring$MD 2011i(. U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., U.S. Navy (Ret.), Under Secretary National Environmental Satellite, Data, and lnformation Service Gregory W. Withee, Assistant Administrator I 1. INTRODUCTION ....1 ', BACKGROUND ,....2 3. ATOVSMODIFICATIONS ......4 3.1 OrbitalProcessingSystem .......4 3.2 OfflineProcessingSystem .......6 4. RE,SULTS ......7 4.1 NWP Comparison . ..... .7 4.2 Antarctica .. ..9 4.3 UpperStratosphere... ....9 4.4 CloudandRadiationProducts ......12 4.5 Upper Level Moisture . .14 5. THE GROUND TRUTH PROBLEM .......16 5.1 CollocatedRadiosondeandSatelliteObservation ... ...16 5.2 CollocationSamplingBias .....18 5.3 CollocationSamplingStrategies.... .......18 5.4 Recommendations 6. FUTURE PLANS ....23 7. SUMMARY ...23 8. ACKNOWLEDGMENTS. ......23 9. REFERENCES . .....24 APPENDIX AI ......,26 LISTOFFIGURES... .....28 IISTOFTABLES.. ....,..29 NOAA OPERATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2002 Anthony L. Reale and Michael W. Chalfant NOAA/NESDIS Washington, D.C. Americo S. Allegrino, Franklin H. Tilley, Michael P. Ferguson, and Michael E.
    [Show full text]
  • A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’
    1006 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 CORRESPONDENCE Comments on ‘‘A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’ JOHN R. CHRISTY AND ROY W. SPENCER Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 18 May 2012, in final form 18 December 2012) ABSTRACT Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by 21 10.042 K decade , which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise- reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.
    [Show full text]
  • Characterising Channel Center Frequencies in AMSU-A and MSU Microwave Sounding Instruments
    700 Characterising channel center frequencies in AMSU-A and MSU microwave sounding instruments 1 2 Qifeng Lu and William Bell Research Department 1 National Satellite Meteorological Center, China Meteorological Administration, Beijing, China 2 Met Office, Exeter, UK Submitted to Journal of Atmospheric and Oceanic Technology May 2013 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] c Copyright 2013 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director-General. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Characterising channel center frequencies in AMSU-A and MSU Abstract Passive microwave observations from the Microwave Sounding Unit (MSU) and the Advanced Mi- crowave Sounding Unit-A (AMSU-A) have been exploited widely for numerical weather prediction (NWP), atmospheric reanalyses and for climate monitoring studies. The treatment of biases in these observations, both with respect to models as well as between satellites, has been the focus of much effort in recent years. In this study we present evidence that shifts, drifts and uncertainties in pass band center frequencies are a significant contribution to these biases.
    [Show full text]
  • Climate Data Record (CDR) Program
    CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) NOAA MSU Mean Layer Temperature CDR Program Document Number: TBD by CDR Program Document Manager Originator Document Number: N/A Revision 1 / March 1, 2014 DSR Number: DSR-XXX by CDR Program Document Manager 1 CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 REVISION HISTORY Rev. Author DSR No. Description Date 1 Cheng-Zhi Zou and DSR-XXX Initial Submission to CDR Program 03/01/2014 Jian Li NOAA/NESDIS/STAR 2 CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 TABLE of CONTENTS 1. INTRODUCTION .............................................................................................................................. 7 1.1 Purpose ..................................................................................................................................................... 7 1.2 Definitions................................................................................................................................................. 7 1.3 Document Maintenance ............................................................................................................................ 8 2. OBSERVING SYSTEMS OVERVIEW .......................................................................................... 10 2.1 Products Generated ...............................................................................................................................
    [Show full text]