Downloaded 10/04/21 02:53 AM UTC OCTOBER 2014 Z O U E T a L

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/04/21 02:53 AM UTC OCTOBER 2014 Z O U E T a L 2206 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 31 Connecting the Time Series of Microwave Sounding Observations from AMSU to ATMS for Long-Term Monitoring of Climate XIAOLEI ZOU Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida FUZHONG WENG NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland H. YANG Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland (Manuscript received 18 October 2013, in final form 8 May 2014) ABSTRACT The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar- orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be over- lapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration. Thus, the MSU–AMSU time series can be extended into future decades for more climate applications. 1. Introduction were launched successively through 2009. AMSU-A contains 15 channels. Channels 3, 5, 7, and 9 have simi- Since the first launch of Television and Infrared lar frequencies to the four MSU channels. Today, the Observation Satellite (TIROS-N) in 1978, microwave Advanced Technology Microwave Sounder (ATMS) temperature sounding data have been used for both is flying on board the Suomi National Polar-orbiting weather and climate applications. From 1978 to 2004, Partnership (Suomi-NPP) satellite and will be also on the National Oceanic and Atmospheric Administration board future U.S. Joint Polar Satellite System (JPSS) (NOAA) launched eight satellites (NOAA-6–NOAA-12 satellites, which are scheduled for launch in both 2017 and NOAA-14) carrying Microwave Sounding Unit and 2022. ATMS contains 22 channels. Channels 1–3 (MSU) instruments. MSU had four channels for sounding and 5–16 have the same central frequencies as the 15 atmospheric temperatures. Beginning in 1998, the MSU AMSU-A channels. instruments were replaced by the Advanced Microwave Polar-orbiting satellites circle the earth in sun- Sounding Unit-A (AMSU-A) when NOAA-15–NOAA-19 synchronous orbits with different equator crossing times (ECTs). NOAA-6, -8, -10, -12,and-15 are the morning satellites with their ECT occurring at either 0530 or Corresponding author address: Dr. X. Zou, Department of Earth, Ocean and Atmospheric Science, Florida State University, 0730 local time (LT). The satellites with ECT after 0930 LT Mail Code 4520, P.O. Box 3064520, Tallahassee, FL 32306-4520. are referring to midmorning satellites, such as NOAA-17, E-mail: [email protected] Meteorological Operation-A (MetOp-A) and MetOp-B, DOI: 10.1175/JTECH-D-13-00232.1 Ó 2014 American Meteorological Society Unauthenticated | Downloaded 10/04/21 02:53 AM UTC OCTOBER 2014 Z O U E T A L . 2207 whereas those after 1300 LT are afternoon satellites, condition. As such, MSU, AMSU-A, and ATMS will such as TIROS-N, NOAA-7, -9, -11, -14, -16, -18, -19, provide a continuous time series for more than 35 years, and Suomi NPP. On all of these platforms, MSU, containing a wealth of information on global atmospheric AMSU-A and ATMS provide the measurements of the temperature. Although the MSU, AMSU-A, and ATMS global atmospheric temperature from the surface to the instruments are primarily designed for providing atmo- low stratosphere (MSU) and to the upper stratosphere spheric temperatures on a daily basis for predicting at- at about 1 hPa (AMSU-A and ATMS) and can also be mospheric weather systems, they are also applicable of used for climate trend studies. monitoring decadal climate changes of the atmospheric Soon after the launch of Suomi NPP, an intensive temperature because of the same channel frequencies calibration of the ATMS was carried out. The ATMS from different sensors, the sensor stability, and high cal- sensor data records have now reached a validated ma- ibration accuracy. turity level. For the JPSS program, both sensor data To derive atmospheric temperature trends from the record (SDR) and environmental data record (EDR) above-mentioned long-term MSU and AMSU-A data products are evaluated at three maturity levels. The beta series, satellite-to-satellite cross calibration must be car- maturity level is made when the initial calibration is ried out (Grody et al. 2004; Christy et al. 2000; Zou et al. applied and the product is minimally validated, and may 2006). Using a well-calibrated MSU–AMSU-A data se- still contain significant errors (Weng and Zou 2013). At ries, global warming ranging from 0.08 to 0.22 K per de- this level, the product is not appropriate for quantitative cade is detected in the lower troposphere represented by scientific publication, studies, or applications. The pro- MSU channel 2 (53.74 GHz) (Christy et al. 1998, 2000, visional maturity level is achieved when the instruments 2003; Mears et al. 2003; Mears and Wentz 2009; Vinnikov are calibrated and the products are validated but in- and Grody 2003;andZou et al. 2009). In this study, the cremental improvements are ongoing. The user com- ATMS data are first resampled into AMSU-like data and munity is encouraged to participate in the quality an intersensor calibration is then carried out for merging assurance and product validation processes. The vali- ATMS data into the AMSU-A data family. dated maturity level is reached when the on-orbit sensor The Backus–Gilbert (B-G) inversion method (Kirsch performance is characterized and calibration parameters et al. 1988; Caccin et al. 1992) is employed for the ATMS are adjusted accordingly. The data are ready for use by resampling purpose, which will be referred to as ATMS the operational center and scientific publications. Over- resample data. The B-G method solves an inverse prob- all, ATMS in-orbit performance is well characterized and lem that involves the integral equations. It can be viewed its noise equivalent differential temperature (NEDT) as an optimal linear interpolation filter in which the spatial meets the specification (Weng et al. 2013). The other resolution of the AMSU-A radiometer (i.e., the 3.38 ATMS features, such as channel specifications, bias beamwidth) and the antenna gain function of the ATMS characteristics, and impact of observation resolution on radiometer are preserved, the sensor noise can be con- capturing tropical storm structures, were described in trolled, and the data-processing artifacts are minimized. Weng et al. (2012, 2013). The scan biases related to Stogryn (1978) used the B-G method for estimating ATMS sidelobes and possible antenna emission were brightness temperatures from antenna temperatures mea- quantified by Weng et al. (2013) using the ATMS pitch- sured by a conical-scanning satellite-borne radiometer over maneuver data. A postlaunch calibration of ATMS system. Since the work by Stogryn (1978), the B-G algo- middle- and upper- tropospheric and stratospheric rithm was successfully applied to the Special Sensor Mi- channels (i.e., channels 5–15) was carried out by Zou et al. crowave Imager (SSM/I) satellite data (Poe 1990) to realize (2014) using the global positioning system (GPS) radio a spatial resolution enhancement of brightness tempera- occultation (RO) data. Preliminary assessments of the ture measurements from SSM/I (Poe 1990; Robinson et al. impact of ATMS data assimilation on hurricane track and 1992; Farrar and Smith 1992; Sethmann et al. 1994; Long intensity forecasts were reported in Zou et al. (2013). and Daum 1998). The lifetime of a given MSU or AMSU-A is limited While they all fly in sun-synchronous orbits, Suomi from a few years to more than 10 years. Fortunately, each NPP, NOAA-18, MetOp-A, and NOAA-15 satellites of these satellites overlaps other satellites. For example, have different ECTs. To collocate the data from any two during the period of 1998–2006, the last MSU on board different satellites during their overlapping period, Cao NOAA-14 operated as a backup, while the AMSU-A on et al. (2004) proposed a simultaneous nadir overpass the NOAA-15, -16,and-17 satellites became primary (SNO) method for intersatellite cross calibration. Yan ones. The Suomi NPP ATMS has been operational since and Weng (2008) used the SNO method for intersensor 2011, while AMSU-A on NOAA-15, -18,and-19 and calibration between the Special Sensor Microwave MetOp-A and MetOp-B are still operating in a healthy Imager/Sounder (SSM/IS) and SSM/I. In this study, the Unauthenticated | Downloaded 10/04/21 02:53 AM UTC 2208 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 31 FIG. 1. ATMS FOVs (circles) used for remapping into an AMSU-like FOV (light gray) for ATMS channels (a) 3–16 and (b) 1 and 2 FOVs. Magnitudes of B-G coefficients are indicated with colors. Integration time and satellite movement were taken into consideration. SNO method is used for the intersensor calibration NOAA-18, MetOp-A,andNOAA-15.
Recommended publications
  • Reconciling Tropospheric Temperature Trends from the Microwave Sounding Unit
    Reconciling tropospheric temperature trends from the microwave sounding unit Stephen Po-Chedley A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2012 Program Authorized to Offer Degree: Department of Atmospheric Sciences University of Washington Abstract Reconciling tropospheric temperature trends from the microwave sounding unit Stephen Po-Chedley Chair of the Supervisory Committee: Professor Qiang Fu Department of Atmospheric Sciences The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long- term temperature records for deep atmospheric layers using satellite microwave sounding unit (MSU) and advanced microwave sounding unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the mid-tropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde prod- ucts as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by an estimated 0.042 K decade−1 for 1979 - 2009. Accounting for this bias, we estimate that the global UAH TMT trend should increase from 0.038 K decade−1 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.
    [Show full text]
  • CGMS-39, NOAA-WP-19 Prepared by C.-Z
    CGMS-39, NOAA-WP-19 Prepared by C.-Z. Zou and L. Wang Agenda Item: xxx Discussed in xxx NOAA's Stratospheric Temperature Climate Data Record Derived from Recalibrated Stratospheric Sounding Unit Observations In response to CGMS Recommendation 38.13 Summary of the Working Paper NOAA/NESDIS has generated a 27-year (1978-2006) stratospheric temperature data record from Stratospheric Sounding Unit (SSU) observations for climate trend and variability detection. The dataset includes gridded global layer temperatures of mid-stratosphere, upper-stratosphere, and top- stratosphere. Calibration algorithms for developing the data record include corrections of gas leaking problem in the SSU instrument CO2 cells, variation of the atmospheric CO2 concentration, incident angle effect, diurnal drift effect, and Earth-location dependent residual inter-satellite biases. The products have a grid resolution of 2.50 latitude by 2.50 longitude and both monthly and pentad data are available for seamless climate monitoring. This is the first set of well-documented and well-calibrated global gridded dataset available to the climate community for long-term stratospheric temperature monitoring and investigation and for validating climate model simulations of the stratospheric climate change. For 1979-2006, the dataset had a global mean stratospheric temperature trend around -0.93 to -1.24 K/decade. Spatial trend pattern analyses indicated that this cooling occurred globally with larger cooling over the tropical stratosphere. CGMS-39, NOAA-WP-19 NOAA's Stratospheric Temperature Climate Data Record Derived from Recalibrated Stratospheric Sounding Unit Observations 1 INTRODUCTION The stratosphere has been recognized as an important component in the global change scenario.
    [Show full text]
  • GES DISC DAAC Data Guide: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Guide Document
    GES DISC DAAC Data Guide: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Guide Document Summary: This document supports the Daily Deep Layer Temperatures and Oceanic Precipitation data sets derived from the Microwave Sounding Unit (MSU) flown aboard the NOAA polar orbiting satellites. The NOAA satellites contributing to these data sets are, in order of their launch, TIROS-N, NOAA-6, NOAA-7, NOAA- 9, NOAA-10, NOAA-11, and NOAA-12. NOAA-8 data were not used due to poor data quality. Table of Contents: 1 Data Set Overview 2 Investigator(s) 3 Theory of Measurements 4 Equipment 5 Data Acquisition Methods 6 Observations 7 Data Description 8 Data Organization 9 Data Manipulations 10 Errors 11 Notes 12 Application of the Data Set 13 Future Modifications and Plans 14 Software 15 Data Access 16 Output Products and Availability 17 References 18 Glossary of Terms 19 List of Acronyms 20 Document Information 1. Data Set Overview: Data Set Identification: Microwave Sounding Unit Daily Deep Layer Temperatures and Oceanic Precipitation Data Set Data Set Introduction: The temperature data set contains the Limb 93 correction and is stored in a native binary format as well as in the Hierarchical Data Format (HDF). The NOAA satellites contributing to these data sets are, in order of their launch, TIROS-N, NOAA-6, NOAA-7, NOAA-9, NOAA-10, NOAA-11, and NOAA-12. NOAA-8 data were not used due to poor data quality. The data set period of record is January 1979- December 1993 for the temperatures, and 1979 thru May 1994 for oceanic precipitation.
    [Show full text]
  • Climate Data Record (CDR) Program
    CDR Program MSU_AMSU_CATBD_V1.0 Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) MSU/AMSU Radiance Fundamental Climate Data Record Calibrated Using Simultaneous Nadir Overpasses CDR Program Document Number: CDRP-0015 Originator Document Number: TBD Version 1.0 / February, 2012 CDR Program MSU/AMSU Radiance FCDR C-ATBD CDR Doc. No. CDRP-0015 RESPONSIBILITY Prepared By: Cheng-Zhi Zou Physical Scientist NOAA/NESDIS Wenhui Wang Scientist I.M. Systems Group Signature Date Reviewed By: <Name> <Title> <Organization> Signature Date Reviewed By: <Name> <Title> <Organization> Signature Date Approved By: <Name> <Title> <Organization> Signature Date Approved By: <Name> <Title> <Organization> Signature Date REVISION HISTORY Version Description Revised Date Sections 1.0 Initial submission to CDR Program New Document 02/27/2012 Page 1 CDR Program MSU/AMSU Radiance FCDR C-ATBD CDR Doc. No. CDRP-0015 TABLE of CONTENTS 1. INTRODUCTION .................................................................................................... 10 1.1 Purpose ........................................................................................................................................... 10 1.2 Definitions ........................................................................................................................................ 10 1.3 Document Maintenance .................................................................................................................. 11 2. OBSERVING SYSTEMS OVERVIEW ...................................................................
    [Show full text]
  • A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’’
    1014 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 Reply to ‘‘Comments on ‘A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’’ STEPHEN PO-CHEDLEY AND QIANG FU Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 2 July 2012, in final form 26 November 2012) ABSTRACT The main finding by Po-Chedley and Fu was that the University of Alabama in Huntsville (UAH) mi- crowave sounding unit (MSU) product has a bias in its NOAA-9 midtropospheric channel (TMT) warm target factor, which leads to a cold bias in the TMT trend. This reply demonstrates that the central arguments by Christy and Spencer to challenge Po-Chedley and Fu do not stand. This reply establishes that 1) Christy and Spencer found a similar, but insignificant, bias in the UAH target factor because their radiosonde data lack adequate sampling and measurement errors were considered twice; 2) the UAH individual satellite TMT difference between NOAA-9 and NOAA-6 reveals a bias of 0.082 6 0.011 in the UAH NOAA-9 target factor; 3) comparing the periods before and after NOAA-9 is not an adequate method to draw conclusions about NOAA-9 because of the influence of other satellites; 4) using the Christy and Spencer trend sensitivity 2 value, UAH TMT has a cold bias of 0.035 K decade 1 given a target factor bias of 0.082; 5) similar trends from UAH and Remote Sensing Systems (RSS) for the lower tropospheric temperature product (TLT) do not indicate that the UAH TMT and TLT NOAA-9 target factor is unbiased; and 6) the NOAA-9 warm target temperature signal in UAH TMT indicates a problem with the UAH empirical algorithm to derive the target factor.
    [Show full text]
  • 30-Year Atmospheric Temperatures Derived from Satellite Microwave Sounding Instruments Using a 1D-Var Approach
    30-Year Atmospheric Temperatures Derived from Satellite Microwave Sounding Instruments Using a 1D-Var Approach Fuzhong Weng1 , Kunghwa Wang2, and Xiaolei Zou3 1. National Environmental Satellite, Data & Information Service, National Oceanic and Atmospheric Administration 2. Earth System Science Interdisciplinary Center (ESSIC) University of Maryland and 3. Department of Earth, Ocean and Atmospheric Sciences, Florida State University Submitted to J. of Climate. 1Corresponding author address: Dr. Fuzhong Weng, NOAA/NESDIS, Room 712, 5200 Auth Road, Camp Springs, MD 20746, Email: [email protected] April , 2012 1 Abstract In past 30 years, satellite observations of the microwave radiation emitted from the atmosphere have been utilized for deriving the atmospheric temperature profiles. Specifically, the radiance measurements from Microwave Sounding Unit (MSU) on board the early National Oceanic and Atmospheric Administration (NOAA)-6 to NOAA-14 and Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA-15 to -19 have been reprocessed to form a fundamental climate data record (FCDR). The FCDR were inter-calibrated and the major anomalies related to the instrument calibration were removed. In this study, a climatology temperature profile is used as an initial guess in one-dimensional variation (1D-Var) retrieval to further derive the thematic CDR (TCDR) of atmospheric temperatures that are appropriate for climate change study. The retrieval temperature profiles are collocated with Global Positioning System (GPS) radio occultation (RO) data over global oceans and compared with the GPSRO temperature profiles. It is shown that the assimilation of MSU/AMSU-A four channels into the climatology profiles can produce a reasonably accurate temperature analysis in the troposphere, and the assimilation of AMSU-A 15 channels available since 1998 allows such a TCDR to be extended to the stratosphere and higher.
    [Show full text]
  • + NOAA-N (1.42 Mb PDF)
    NOAA-N National Aeronautics and U.S. Department of Commerce Space Administration National Oceanic and Atmospheric Administration Goddard Space Flight Center National Environmental Satellite, Greenbelt, Maryland Data, and Information Service Suitland,NOAA-N/1 Maryland Table of Contents POES Program ............................................................................................................................... 4 The NOAA Polar-Orbiting Satellites................................................................................. 4 Initial Joint Polar-Orbiting Operational Satellite System ................................................. 4 NOAA-N ........................................................................................................................... 6 NOAA-N Instruments..................................................................................................................... 6 Advanced Very High Resolution Radiometer (AVHRR/3) ............................................... 7 High Resolution Infrared Radiation Sounder (HIRS/4) .................................................... 7 Advanced Microwave Sounding Unit-A (AMSU-A) ........................................................ 8 Microwave Humidity Sounder (MHS) .............................................................................. 9 Solar Backscatter Ultraviolet Radiometer (SBUV/2)........................................................ 9 Space Environment Monitor (SEM-2) ...........................................................................
    [Show full text]
  • Technical Report NESDIS 107
    Technical Report NESDIS 107 OFDRATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2O:O2 Washington, D.C. December 2002 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and lnformation Seruice t--- 5 NOAA Technical Report NESDIS 107 NOAA OPERATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2OO2 Anthony L. Reale and Michael W. Chalfant NOAAAJESDIS/ORA 5200 Auth Road, FB4 Camp Springs,MD 20746 Americo S. Allegrino Franklin H. Tilley Michael P. Ferguson and Michael E. Pettey Raytheon Technical Services Company/ITSS Lanham, Maryland Washington, DC NOAA Scicnce Center December 2002 Bctty Petcr¡en Mcmorial Library rffo¡thqBldg,, tilorld Room 103 5200 AuttrRoad CrnpSBring$MD 2011i(. U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., U.S. Navy (Ret.), Under Secretary National Environmental Satellite, Data, and lnformation Service Gregory W. Withee, Assistant Administrator I 1. INTRODUCTION ....1 ', BACKGROUND ,....2 3. ATOVSMODIFICATIONS ......4 3.1 OrbitalProcessingSystem .......4 3.2 OfflineProcessingSystem .......6 4. RE,SULTS ......7 4.1 NWP Comparison . ..... .7 4.2 Antarctica .. ..9 4.3 UpperStratosphere... ....9 4.4 CloudandRadiationProducts ......12 4.5 Upper Level Moisture . .14 5. THE GROUND TRUTH PROBLEM .......16 5.1 CollocatedRadiosondeandSatelliteObservation ... ...16 5.2 CollocationSamplingBias .....18 5.3 CollocationSamplingStrategies.... .......18 5.4 Recommendations 6. FUTURE PLANS ....23 7. SUMMARY ...23 8. ACKNOWLEDGMENTS. ......23 9. REFERENCES . .....24 APPENDIX AI ......,26 LISTOFFIGURES... .....28 IISTOFTABLES.. ....,..29 NOAA OPERATIONAL SOUNDING PRODUCTS FOR ADVANCED-TOVS: 2002 Anthony L. Reale and Michael W. Chalfant NOAA/NESDIS Washington, D.C. Americo S. Allegrino, Franklin H. Tilley, Michael P. Ferguson, and Michael E.
    [Show full text]
  • A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’
    1006 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 CORRESPONDENCE Comments on ‘‘A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit’’ JOHN R. CHRISTY AND ROY W. SPENCER Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 18 May 2012, in final form 18 December 2012) ABSTRACT Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by 21 10.042 K decade , which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise- reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.
    [Show full text]
  • Characterising Channel Center Frequencies in AMSU-A and MSU Microwave Sounding Instruments
    700 Characterising channel center frequencies in AMSU-A and MSU microwave sounding instruments 1 2 Qifeng Lu and William Bell Research Department 1 National Satellite Meteorological Center, China Meteorological Administration, Beijing, China 2 Met Office, Exeter, UK Submitted to Journal of Atmospheric and Oceanic Technology May 2013 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] c Copyright 2013 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director-General. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Characterising channel center frequencies in AMSU-A and MSU Abstract Passive microwave observations from the Microwave Sounding Unit (MSU) and the Advanced Mi- crowave Sounding Unit-A (AMSU-A) have been exploited widely for numerical weather prediction (NWP), atmospheric reanalyses and for climate monitoring studies. The treatment of biases in these observations, both with respect to models as well as between satellites, has been the focus of much effort in recent years. In this study we present evidence that shifts, drifts and uncertainties in pass band center frequencies are a significant contribution to these biases.
    [Show full text]
  • Climate Data Record (CDR) Program
    CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) NOAA MSU Mean Layer Temperature CDR Program Document Number: TBD by CDR Program Document Manager Originator Document Number: N/A Revision 1 / March 1, 2014 DSR Number: DSR-XXX by CDR Program Document Manager 1 CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 REVISION HISTORY Rev. Author DSR No. Description Date 1 Cheng-Zhi Zou and DSR-XXX Initial Submission to CDR Program 03/01/2014 Jian Li NOAA/NESDIS/STAR 2 CDR Program NOAA MSU Mean Layer Temperature C-ATBD <TBD By CDR Program> Rev. 1 03/01/2014 TABLE of CONTENTS 1. INTRODUCTION .............................................................................................................................. 7 1.1 Purpose ..................................................................................................................................................... 7 1.2 Definitions................................................................................................................................................. 7 1.3 Document Maintenance ............................................................................................................................ 8 2. OBSERVING SYSTEMS OVERVIEW .......................................................................................... 10 2.1 Products Generated ...............................................................................................................................
    [Show full text]