Development Team

Total Page:16

File Type:pdf, Size:1020Kb

Development Team Paper No. : 08 Human Population Genetics Module : 31 Evolutionary History of Life Development Team Prof. Anup Kumar Kapoor Principal Investigator Department of Anthropology, University of Delhi Paper Coordinator Prof. Gautam K. Kshatriya Department of Anthropology, University of Delhi Content Writer Dr. Rajesh Kumar Gautam Dr. H.S.G.University, Sagar, MP Prof. A.Paparao Sri Content Reviewer Venkateswara University, Tirupati, Andhra Pradesh 1 Human Population Genetics Anthropology Evolutionary History of Life Description of Module Subject Name Anthropology Paper Name 08 Human Population Genetics Module Name/Title Evolutionary History of Life Module Id 31 2 Human Population Genetics Anthropology Evolutionary History of Life CONTENTS: 1. Learning outcomes: At the end of the module the reader will know Formation of earth Origin of life Theory of Divine or special creation Theory of Spontaneous generation Theory of Cosmozoic origin Theory of eternity Theory of Catastrophism Theory of Organic evolution Synthetic theory of evolution Pre-biotic chemistry First Evidence of Early Life Prokaryote to Eukaryotes Unicellular to Multicellular Photosynthesis Sexual Reproduction Geological Time Scale 3 Human Population Genetics Anthropology Evolutionary History of Life Evolutionary History of Life Introduction The life on the earth was originated by the process of complex physical and chemical reactions. When earth came into existence it was hot. The formation of earth crust has taken billion of years. By the combination of Oxygen and Hydrogen atom water was formed which is an essential part of life. Gradually, continuous thunder, lighting, raining has created environment for emergence of super matter having consciousness from unique combination of simple matter and energy. Atoms of carbon, nitrogen, hydrogen, oxygen, phosphorus and some other elements combined and given shape to macro molecules or polymers like RNA and DNA which have the capacity of replication and reproduction. There are many speculations about how and when life was originated. Scientific theories about origin and evolution life are based on facts and evidences. There are different theories about the origin of life. Before knowing about these theories, let we understand about the origin of universe because it is prerequisite for origin of life. In a book entitled “A Brief History of Time - From the big bang to black holes” the famous astronomer Stephen Hawking states that the universe was originated from an explosion of dark matter condensed at a place. This explosion was so powerful that the matter was spread in the universe and different celestial bodies like stars, planets, satellites were formed. In this process, by some of the matter the Sun its planets and satellite were formed. Our Sun and solar system is a small part of a family of many such stars (Sun) and their solar system which is called Galaxy. There are many such Galaxies in the Universe, according to an estimate; their approximate number is 170 billion (1.7 × 1011) galaxies in the observable universe ( Gott III et al. 2005). Each of these galaxies has billions of stars (sun). Small or dwarf galaxies have just a few thousand (103) stars, whereas the giants galaxies have one hundred trillion (1014) stars (Uson et al. 1990). Our own Galaxy called Milky Way is estimated to contain as high as one trillion stars (Odenwald 2014). After billions of years of Big Bang explosion the planet earth came into existence. After 1.0 to 3.5 billion of years of emergence of the planet earth, the earliest form of life was originated in the form of prokaryotic cells viz. virus and bacteria. Gradually, unicellular and multicellular organisms were evolved. The main theories about the origin of life on the earth are as follows: 4 Human Population Genetics Anthropology Evolutionary History of Life 1. Divine or special creation Theory 2. Spontaneous generation Theory 3. Theory of cosmozoic origin 4. Theory of eternity 5. Theory of Catastrophism 6. Theory of Organic evolution 7. Synthetic theory of evolution Divine or special creation Theory Divine or special creation theory is one of the oldest theories about the origin of life on the earth. According to this theory life was created by supernatural power. In every religious scripture there is mythology about origin of the Universe, Earth and Life. According to Hindu mythology the world was created by God Brahma. He is considered the God of creation. He created the whole universe. The first man was Manu and the first woman was Shradha. According to Islam and their holy Quran the Universe was created by Allah (God). Allah begins by stating that the universe and planet Earth took six "days" to create. (7:54) According to the Bible, the world was created within six days. On the first day, God made the heaven and the earth, on the second day; He separated the sky from the water, on the third day. He made the dry land and plants, on the fourth day. He formed the sun, the moon and the stars, on the fifth day. He made the fishes and the birds and on the sixth day, He formed the land animals and human beings. The first man, Adam and the first woman, Eve were created by God. Buddhists do not believe in any such divine or special creation. They have opinion that one does not need to know the origin of life in order to achieve enlightenment. Many Buddhists do not think about these kinds of questions as meaningful for the Buddhist goal of relieving oneself and others from suffering. Special creation theory lacks scientific evidences, on account of which it cannot be accepted. Theory of Spontaneous Generation (Abiogenesis or Autogenesis) Theory spontaneous generation or Abiogenesis or Autogenesis states that the life originated from 5 Human Population Genetics Anthropology Evolutionary History of Life nonliving things in a spontaneous manner. This concept was held by early Greek philosophers like Thales, Anaximander, Xanophanes, Empedocles, Plato, Aristotle, etc. In ancient Egypt, it was believed that the mud of the Nile could give rise to frogs, toads, snakes, mice and even crocodiles when warmed by the sun. Van Helmont (1577-1644) held that human sweat and wheat grains could give rise to organisms. He placed a dirty shirt in a receptacle containing wheat bran and found that after 21 days the gases from the shirt and wheat had formed living mice. Louis Pasteur, a French scientist took broths in a long necked flask and then he bent the neck of the flask. He boiled the broths in the flask to kill any microorganisms that might be present in them. The curved neck acted as a filter. If the flask with ‘swan neck’ (curved neck) is kept for months together, no life appeared, as the germ laden dust particles in the air were trapped by the curved neck which serves as filter. If the swan neck was broken off, the broths developed colonies of moulds and bacteria. Thus, he showed that the source of the micro-organisms for fermentation or putrefaction such as for milk, sugar and wine, etc., was the air and the organisms did not arise from the nutrient media. Thus Louis Pasteur (famous for “Germ Theory of Disease and Immunology”) finally disapproved abiogenesis and proved biogenesis. 6 Human Population Genetics Anthropology Evolutionary History of Life But according to biogenesis, life originated from pre-existing life which does not explain the origin of life. So abiogenesis is also disapprovedTheory of Cosmozoic Origin: This theory was proposed by Richter (1865). According to this theory, ‘protoplasm’ reached to the earth in the form of spores or germs or other simple particles from some unknown part of the universe with the cosmic dust, and subsequently evolved into various forms of life. Helmholz (1884) speculated that ‘protoplasm’ in some form reached the earth with falling meteorites. Arrhenius (1908, Nobel Prize Winner of 1903 in Chemistry) postulated the Panspermia Theory and stated that organisms existed throughout the universe and their spores etc., could freely travel through space from one star to the others. But, experiments have proved that Living matter cannot survive in the extreme cold, dryness and ultra-violet radiation hence the theory of cosmozoic origin was also discarded. This theory also fails to explain how the life originated, inspite, it advocated that the life had travelled from one to another planet. Theory of Eternity of Life: Theory of eternity states that there is no beginning of life and it will never end. It was as it is, and it would remain as it is. Some of the Indian religion for example: Jainism and Sikhism also have similar concept about the life. They believe that life is eternal, it has no beginning, it will never end. Theory of Catastrophism: Georges Cuvier (1769-1832), Father of “Modern Palaeontology” and Orbigney (1802- 1837) were the chief advocates of this theory. According to this theory, cataclysms (great destruction) or catastrophic (concerning disastrous event) revolution occurs upon earth from time to time which completely destroys all organisms (living beings). New organisms, then, suddenly form from inorganic matter. Each creation consists of life quite different from that of the previous one. In fact, this theory is merely a modification of theory of special creation. This theory is also not accepted. Theory of Organic Evolution 7 Human Population Genetics Anthropology Evolutionary History of Life Charles Darwin (1859) in his book entitled ‘Origin of Species’ stated how new species evolved from pre-existing ancestors by the process of natural selection, which operates through struggle for existence and survival of the fittest. And, in this way, only few individuals, who are best, got chance of reproduction. This process repeated in every generation, and after many generations the progeny of distinct characteristics evolve as a ‘new species’.
Recommended publications
  • Biological Catalysis of the Hydrological Cycle: Life's Thermodynamic Function
    Hydrol. Earth Syst. Sci. Discuss., 8, C1907–C1919, Hydrology and 2011 Earth System www.hydrol-earth-syst-sci-discuss.net/8/C1907/2011/ Sciences © Author(s) 2011. This work is distributed under Discussions the Creative Commons Attribute 3.0 License. Interactive comment on “Biological catalysis of the hydrological cycle: life’s thermodynamic function” by K. Michaelian K. Michaelian karo@fisica.unam.mx Received and published: 2 June 2011 Complete response to Prof. Schymanski: General Comments In a preliminary response to Prof. Schymanski and the anonymous referee (Michaelian, 2011a), I clarified that my paper neither invokes, nor requires, the “maximum entropy production principle”. The paper simply associates Onsager’s principle (1931) of the coupling of irreversible processes, and the associated increase in entropy production, with the evidence (e.g. Zotin, 1984) for an increase in the amount of coupling of irre- versible biotic processes over the history of life on Earth. The hypothesis of my paper C1907 is that biological irreversible processes also couple with abiotic irreversible processes, in particular, that biology catalyzes the hydrological cycle. This coupling augments the global entropy production of Earth in its solar environment, in accordance with Onsager’s principle. I also suggested in my preliminary response that the particular history of Earth with regard to entropy production would depend very much on par- ticular initial conditions (even microscopic), the kinetics (dependent on the particular forces) and subsequent external perturbations (even microscopic). This dependence arises because the Earth system under the solar photon flux is non-linear and out of equilibrium (Prigogine, 1972). Prof. Schymanski asks; 1) ”What is the mechanism that selects for biota that contribute more to planetary entropy production over such that contribute less but invest more e.g.
    [Show full text]
  • The Importance of Ecological Memory for Trophic Rewilding As an Ecosystem Restoration Approach
    Biol. Rev. (2019), 94,pp.1–15. 1 doi: 10.1111/brv.12432 The importance of ecological memory for trophic rewilding as an ecosystem restoration approach 1,2,4 1,3 1,2 Andreas H. Schweiger ∗ , Isabelle Boulangeat , Timo Conradi , Matt Davis1,4 and Jens-Christian Svenning1,4 1Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark 2Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany 3University Grenoble Alpes, Irstea, UR LESSEM, 2 rue de la Papeterie-BP 76, F-38402, St-Martin-d’H`eres, France 4Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark ABSTRACT Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of ‘ecological memory’ into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem’s accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species.
    [Show full text]
  • 8.01 the Early History of Life E
    8.01 The Early History of Life E. G. Nisbet and C. M. R. Fowler Royal Holloway, University of London, Egham, UK 8.01.1 INTRODUCTION 2 8.01.1.1 Strangeness and Familiarity—The Youth of the Earth 2 8.01.1.2 Evidence in Rocks, Moon, Planets, and Meteorites—The Sources of Information 3 8.01.1.3 Reading the Palimpsests—Using Evidence from the Modern Earth and Biology to Reconstruct the Ancestors and their Home 3 8.01.1.4 Modeling—The Problem of Taking Fragments of Evidence and Rebuilding the Childhood of the Planet 3 8.01.1.5 What Does a Planet Need to be Habitable? 4 8.01.1.6 The Power of Biology: The Infinite Improbability Drive 4 8.01.2 THE HADEAN (,4.56–4.0 Ga AGO) 5 8.01.2.1 Definition of Hadean 5 8.01.2.2 Building a Habitable Planet 5 8.01.2.3 The Hadean Record 7 8.01.2.4 When and Where Did Life Start? 7 8.01.3 THE ARCHEAN (,4–2.5 Ga AGO) 8 8.01.3.1 Definition of Archean 8 8.01.3.2 The Archean Record 8 8.01.3.2.1 Greenland 8 8.01.3.2.2 Barberton 9 8.01.3.2.3 Western Australia 9 8.01.3.2.4 Steep Rock, Ontario, and Pongola, South Africa 10 8.01.3.2.5 Belingwe 11 8.01.4 THE FUNCTIONING OF THE EARTH SYSTEM IN THE ARCHEAN 11 8.01.4.1 The Physical State of the Archean Planet 11 8.01.4.2 The Surface Environment 13 8.01.5 LIFE: EARLY SETTING AND IMPACT ON THE ENVIRONMENT 14 8.01.5.1 Origin of Life 14 8.01.5.2 RNA World 15 8.01.5.3 The Last Common Ancestor 17 8.01.5.4 A Hyperthermophile Heritage? 19 8.01.5.5 Metabolic Strategies 21 8.01.6 THE EARLY BIOMES 21 8.01.6.1 Location of Early Biomes 21 8.01.6.2 Methanogenesis: Impact on the Environment 22
    [Show full text]
  • The Evolutionary Impact of Invasive Species
    Colloquium The evolutionary impact of invasive species H. A. Mooney* and E. E. Cleland Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020 Since the Age of Exploration began, there has been a drastic and biotic environments that exist now are quite different from breaching of biogeographic barriers that previously had isolated those that have existed in recent geological times. the continental biotas for millions of years. We explore the International commerce has facilitated the movement of nature of these recent biotic exchanges and their consequences species; this is true globally and across taxonomic groups. on evolutionary processes. The direct evidence of evolutionary Ironically, this has increased species richness in many places consequences of the biotic rearrangements is of variable quality, where new species are introduced. The actual numbers of but the results of trajectories are becoming clear as the number individuals and species being transported across biogeographical of studies increases. There are examples of invasive species barriers every day is presumably enormous. However, only a altering the evolutionary pathway of native species by compet- small fraction of those transported species become established, itive exclusion, niche displacement, hybridization, introgression, and of these generally only about 1% become pests (5). Over predation, and ultimately extinction. Invaders themselves time however, these additions have become substantial. There evolve in response to their interactions with natives, as well as are now as many alien established plant species in New Zealand in response to the new abiotic environment. Flexibility in be- as there are native species. Many countries have 20% or more havior, and mutualistic interactions, can aid in the success of alien species in their floras (6).
    [Show full text]
  • New RNA Research Demonstrates Prebiotic Possibility
    Cleveland State University EngagedScholarship@CSU Chemistry Faculty Publications Chemistry Department 1-2020 New RNA Research Demonstrates Prebiotic Possibility David W. Ball Cleveland State University, [email protected] Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub Part of the Chemistry Commons How does access to this work benefit ou?y Let us know! Publisher's Statement Link to publisher version: https://skepticalinquirer.org/2020/01/new-rna-research-demonstrates- prebiotic-possibility/ Recommended Citation Ball, David W., "New RNA Research Demonstrates Prebiotic Possibility" (2020). Chemistry Faculty Publications. 522. https://engagedscholarship.csuohio.edu/scichem_facpub/522 This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. New RNA Research Demonstrates Prebiotic Possibility David W. Ball Creationists and other religious fundamentalists commonly (and erroneously) bring up the issue of abiogenesis as an argument against evolution, claiming that life is too complex to have arisen naturally from simple (non-living) chemicals. Abiogenesis is the development of chemical life from non-living chemicals, and is an active area of research for scientists studying the “Origin Of Life” question. The issue is largely irrelevant as an argument against evolution because evolution deals with what happens after life is formed. It is widely accepted that modern abiogenesis research traces back to the Miller-Urey experiment, performed by Stanley Miller at the University of Chicago (with assistance from Harold Urey) and published in 1953.
    [Show full text]
  • An Evolving Astrobiology Glossary
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.
    [Show full text]
  • National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application
    United States Office of Water September 2015 Environmental Protection Agency Office of Research and Development EPA-800-R-15-002 National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application Final Report NESCS Four-Group Classification Environment End-Products of Nature Direct Use Non-Use Direct User Structure / Types of Final ES Use Water • Extractive/ Consumptive Aquatic Flora Uses Industries Fauna • In-Situ (Non-Extractive/ Flows of Non-Consumptive) Uses Other Biotic Natural Final Terrestrial Material Households Ecosystem Atmospheric Components Services Soil Atmospheric Government Other Abiotic Natural Material Non-Use Composite End-Products • Existence Other End-Products • Bequest (Supply) (Demand) ACKNOWLEDGEMENTS The authors thank Jennifer Richkus, Jennifer Phelan, Robert Truesdale, Mary Barber, David Bellard, and others from RTI International for providing feedback and research support during the development of this report. The early leadership of former EPA employee John Powers proved instrumental in launching this effort. The authors thank Amanda Nahlik, Tony Olsen, Kevin Summers, Kathryn Saterson, Randy Bruins, Christine Davis, Bryan Hubbell, Julie Hewitt, Ashley Allen, Todd Doley, Karen Milam, David Simpson, and others at EPA for their discussion and feedback on earlier versions of this document. In addition, the authors thank V. Kerry Smith, Neville D. Crossman, and Brendan Fisher for review comments. Finally, the authors would like to thank participants of the two NESCS Workshops held in 2012 and 2013, as well as participants of an ACES session in 2014. Any factual or attribution errors are the responsibility of the authors alone. ADDITIONAL INFORMATION This document was developed under U.S. EPA Contract EP-W-11-029 with RTI International (Paramita Sinha and George Van Houtven), in collaboration with the ORISE Participant Program between U.S.
    [Show full text]
  • Beach Buckets Lawrence Hall of Science
    Beach Buckets Lawrence Hall of Science This activity outline was developed for use in a variety of informal venues. By design, it provides the content, pedagogy and strategy necessary for implementation by both the novice and experienced informal educator. It is expected that this outline will be adapted and improved upon by the user. We welcome your feedback! Synopsis of the Activity Visitors explore a bucket of sand and beach drift and debris, sort the items using observable characteristics and use a model to show how sand could be composed of items found on a beach. They also infer how the beach drift might have traveled to the beach. Audience Learners of all ages with up to 3-5 visitors per beach bucket. It may be possible for a facilitator to work with several of these groups if their start is staggered. Setting Anywhere outside or inside the informal science center. Activity Goals Learners will become much more interested in looking closely at sand and other items on a beach and asking questions about their observations, such as “What is the sand composed of? How could these items have traveled to the beach? What is my evidence?” They will also be more aware of how beach debris might harm organisms. Concepts • The world’s beaches are composed of material from natural sources and from material made by people. • The natural material on a beach can be from animals, plants or seaweed, or rocks and minerals. • Material on the beach can be broken into smaller pieces called sand by the motion of the crashing waves.
    [Show full text]
  • Earth As an Alien World
    Earth as an alien world Enric Pallé Kavli Institute of Theoretical Physics Instituto de Astrofísica de Canarias Exoplanets Rising Conference – May 2010 A short history of Earth observations World Map by Eratosthenes, 194 B.C. World Map by Martin Waldseemüller, 1507 Earth curvature, V2 rocket 1946 Small rocket picture 1904 Apollo VIII, 1969 1967, First Color Picture, ATS-3, 37,000 km Nowadays we can monitor night lights, atmospheric changes, plankton blooms, forest health, etc... 10 Year advance > Planet detection 51 % rational thinking > Characterization But, how does our planet look like to ET? When observing an exoplanet, all the light will come from a single point. Different seasons, phase, geometry and weather Age Wavelength Observing the Earth as a planet (no spatial resolution) Earth–as-a-point observations with a very remote sensor A compilation of high spatial resolution data into a global spectra or photometry, and modeling Earthshine Observations: The Earthshine is the ghostly glow on the dark side of the Moon Earth observations from remote platforms The Earthshine on the moon ES/MS = albedo (+ geometry and moon properties) Leonardo da Vinci, Codex Leicester, 1510 North America Cloudy Asia Dark Pacific Dark Atlantic Global cloud data allow us a precise modeling of the earthshine- contributing area during our observations Palle et al, JGR, 2003 The Earth clouds: A unique feature in the solar system? Even with the presence of clouds, there are clear daily and yearly photometric patterns with relatively large amplitude Ocean Glint • Water • Smooth Ice • Thin clouds • Ethane Williams & Gaidos, Icarus, 2008 Earthshine observations do not get us there and remote observations are missing MESSENGER, 2005 VIRTIS @ ROSETTA, 250,000 km from Earth Variability in the IR is more muted than in the visible and strongly dependent con weather conditions.
    [Show full text]
  • Optimisation of Alkali Separation in Thermal Battery Recycling
    When carbon is not enough: Comprehensive Ecological Rucksack Indicators for Products 1 1 1 2 Eva Burger , Friedrich Hinterberger , Stefan Giljum , Christopher Manstein 1 Sustainable Europe Research Institute (SERI), Vienna, Austria 2 Factor 10 Institute, Vienna, Austria Corresponding author: Eva Burger [email protected] Paper presented at R‘09 Twin World Congress in Davos. Comments are very welcome. Abstract Consumers increasingly demand more transparent information about the sustainability performance of products and services. Thus companies aim at measuring and communicating the environmental performance of products. But which indicators enable a consistent measurement of the environmental sustainability of a product? Some major European initiatives have been launched, focusing in most cases on the indicator Carbon Footprint. But the Carbon Footprint does not take into account resource scarcity and trade- offs between different environmental categories, including the use of raw materials, water and land. In this paper, we present a pilot study assessing a more comprehensive set of indicators, which was conducted in 2008 with a number of Austrian companies. In contrast to the single indicator approach, a set of five indicators was selected and tested for the assessment of the environmental sustainability performance of products: Abiotic Material Rucksack, Biotic Material Rucksack, Water Rucksack, Actual Land Use and Carbon Footprint. In an ongoing Austrian research project, we currently explore, whether this indicator set can be further developed into an integrated and Web-based Business Resource Intensity Index (BRIX). Keywords: Carbon Footprint, MIPS, resource efficiency, sustainable production 1 Introduction Many of today‘s most urgent environmental problems arise from ever increasing volumes of worldwide production and consumption and the associated resource flows (UNEP, 2007).
    [Show full text]
  • Astronomy Meets Biology: EFOSC2 and the Chirality of Life
    Astronomical Science Astronomy Meets Biology: EFOSC2 and the Chirality of Life Michael Sterzik1 molecule are called enantiomers, and the extreme environment on Earth, and the Stefano Bagnulo 2 two forms are generally referred to as microbial colonisation of subsurface lay­ Armando Azua 3 right­handed and left­handed, or dextro­ ers in halites (rock salt) and quartz rocks Fabiola Salinas 4 rotatory and levorotatory. by specific cyanobacteria. In the most Jorge Alfaro 4 hostile environments (exceptional aridity, Rafael Vicuna 3 The term homochirality is used when a salinity, and extreme temperatures), a molecule (or a crystal) may potentially primitive type of cyanobateria, Chroococ- exist in both forms, but only one is actu­ cidiopsis, can be the sole surviving 1 ESO ally present. Homochirality character­ organism. This has interesting implications 2 Armagh Observatory, United Kingdom ises life as we know it: all living material for the potential habitability, and eventual 3 Department of Molecular Genetics and on Earth contains and synthesises sugars terraforming, of certain areas on Mars Microbiology, Pontificia Universidad and nucleic acids exclusively in their (Friedmann & Ocampo-Friedmann, 1995). Católica de Chile, Chile right­handed form, while amino acids and 4 Faculty of Physics, Pontificia Universi­ proteins occur only in their left­handed The idea of using the ESO Faint Object dad Católica de Chile, Chile representation. However, in all these Spectrograph and Camera (EFOSC2) cases, both enantiomers are chemically to investigate samples of Chroococcidi- possible and energetically equal. The opsis extracted from the underside of Homochirality, i.e., the exclusive use of reasons for homochirality in living mate­ Atacama Desert quartzes and to measure L-amino acids and D-sugar in biologi- rial are unknown, but they must be their circular polarisation in a laboratory cal material, induces circular polarisa- related to the origin of life.
    [Show full text]
  • Returned Astrobiology Sample Mission Architectures
    2003-01-2675 Global Overview: Returned Astrobiology Sample Mission Architectures Marc M. Cohen NASA-Ames Research Center ABSTRACT return missions -- while based upon some internationally agreed standards – are occurring mainly on a case-by- This paper presents a global overview of current, case basis. This basis includes two fundamental planned and proposed sample missions. At present, choices: unrestricted return or restricted return. missions are in progress to return samples from asteroids, comets and the interstellar medium. More Unrestricted return refers to missions in which the space missions are planned to Mars and the asteroids. Future agencies deem the probability of finding biotic material to sample return missions include more targets including be negligible. The constraints upon an unrestricted Europa, Mercury and Venus. This review identifies the return are relatively lenient, and concern mainly the need for developing a coordinated international system ordinary safe and secure recovery of the spacecraft for the handling and safety certification of returned without any special biohazard protection. samples. Such a system will provide added assurance to the public that all the participants in this new Restricted return refers to missions in which the space exploration arena have thought through the technical agencies deem the probability of finding biotic material to challenges and reached agreement on how to proceed. be non-negligible, although perhaps still extremely small. In contrast, any mission that may return biotic material All these future returned sample missions hold relevance by definition shall be a restricted return. A restricted to the NASA Astrobiology program because of the return would require extraordinary measures above and potential to shed light on the origins of life, or even to beyond those of an unrestricted return, including return samples of biological interest.
    [Show full text]