National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application

Total Page:16

File Type:pdf, Size:1020Kb

National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application United States Office of Water September 2015 Environmental Protection Agency Office of Research and Development EPA-800-R-15-002 National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application Final Report NESCS Four-Group Classification Environment End-Products of Nature Direct Use Non-Use Direct User Structure / Types of Final ES Use Water • Extractive/ Consumptive Aquatic Flora Uses Industries Fauna • In-Situ (Non-Extractive/ Flows of Non-Consumptive) Uses Other Biotic Natural Final Terrestrial Material Households Ecosystem Atmospheric Components Services Soil Atmospheric Government Other Abiotic Natural Material Non-Use Composite End-Products • Existence Other End-Products • Bequest (Supply) (Demand) ACKNOWLEDGEMENTS The authors thank Jennifer Richkus, Jennifer Phelan, Robert Truesdale, Mary Barber, David Bellard, and others from RTI International for providing feedback and research support during the development of this report. The early leadership of former EPA employee John Powers proved instrumental in launching this effort. The authors thank Amanda Nahlik, Tony Olsen, Kevin Summers, Kathryn Saterson, Randy Bruins, Christine Davis, Bryan Hubbell, Julie Hewitt, Ashley Allen, Todd Doley, Karen Milam, David Simpson, and others at EPA for their discussion and feedback on earlier versions of this document. In addition, the authors thank V. Kerry Smith, Neville D. Crossman, and Brendan Fisher for review comments. Finally, the authors would like to thank participants of the two NESCS Workshops held in 2012 and 2013, as well as participants of an ACES session in 2014. Any factual or attribution errors are the responsibility of the authors alone. ADDITIONAL INFORMATION This document was developed under U.S. EPA Contract EP-W-11-029 with RTI International (Paramita Sinha and George Van Houtven), in collaboration with the ORISE Participant Program between U.S. EPA and U.S. DOE (Charles R. Rhodes), under the direction of Joel Corona and Dixon Landers, U.S. EPA, Office of Water and Office of Research and Development, respectively. Peer review for this report was conducted under U.S. EPA Contract EP-C-12-045 with Versar, Inc. (David Bottimore). This report may not necessarily reflect the views of U.S. EPA and no official endorsement should be inferred. To provide feedback on this report or any other aspect of the NESCS approach, please send comments by email to [email protected]. United States Environmental Protection Agency. 2015. National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application. EPA-800-R-15-002. United States Environmental Protection Agency, Washington, DC. EPA-800-R-15-002 September 2015 CONTENTS Section Page Executive Summary ....................................................................................................ES-1 1 Introduction .......................................................................................................................1 1.1 Overview ..................................................................................................................1 1.2 Review of Basic Concepts .......................................................................................3 1.2.1 Classification Systems .................................................................................3 1.2.2 Ecosystem Services ......................................................................................3 1.2.3 Services in the Market .................................................................................4 1.2.4 Economic Versus Ecosystem Services ........................................................5 1.3 General Approach for NESCS .................................................................................5 1.4 Summary of Requirements and Key Features of NESCS ........................................7 1.5 Overview of the Report ..........................................................................................10 2 Review of Ecosystem Services Classification Literature ...............................................11 2.1 Introduction ............................................................................................................11 2.2 Daily et al. (1997) ..................................................................................................14 2.2.1 Objective ....................................................................................................14 2.2.2 Definition and Discussion ..........................................................................14 2.2.3 Limitations .................................................................................................15 2.3 de Groot et al. (2002) .............................................................................................16 2.3.1 Objective ....................................................................................................16 2.3.2 Definition and Discussion ..........................................................................16 2.3.3 Limitations .................................................................................................17 2.4 Millennium Ecosystem Assessment (2005) ...........................................................18 2.4.1 Objective ....................................................................................................18 2.4.2 Definition and Discussion ..........................................................................18 iii 2.4.3 Limitations .................................................................................................21 2.5 Boyd and Banzhaf (2007) ......................................................................................21 2.5.1 Objective ....................................................................................................21 2.5.2 Definition and Discussion ..........................................................................22 2.5.3 Limitations .................................................................................................23 2.6 Wallace (2007) .......................................................................................................23 2.6.1 Objective ....................................................................................................23 2.6.2 Definition and Discussion ..........................................................................24 2.6.3 Limitations .................................................................................................25 2.7 Fisher and Turner (2008) .......................................................................................26 2.7.1 Objective ....................................................................................................26 2.7.2 Definition and Discussion ..........................................................................26 2.7.3 Limitations .................................................................................................28 2.8 Roy Haines-Young and Marion Potschin (2010a, 2010b, 2013): Common International Classification for Ecosystem Services (CICES) ...............................29 2.8.1 Objective ....................................................................................................29 2.8.2 Definition and Discussion ..........................................................................29 2.8.3 Limitations .................................................................................................32 2.9 Staub et al. (2011): Indicators for Ecosystem Goods and Services .......................32 2.9.1 Objective ....................................................................................................32 2.9.2 Definition and Discussion ..........................................................................32 2.9.3 Limitations .................................................................................................35 2.10 Landers and Nahlik (2013): Final Ecosystem Goods and Services Classification System (FEGS-CS) .........................................................................35 2.10.1 Objective ....................................................................................................35 2.10.2 Definition and Discussion ..........................................................................36 2.10.3 Limitations .................................................................................................40 2.11 Summary ................................................................................................................40 2.12 Key Lessons Learned .............................................................................................44 3 Review of economic classification and accounting systems ..........................................47 3.1 Introduction ............................................................................................................47 iv 3.2 What Are the Main Systems of Economic Accounts? ...........................................47 3.2.1 National Market-Sector Accounts..............................................................47 3.2.2 Non-market Accounts ................................................................................49 3.3 How Are Classification Systems Used in Economic Accounts? ...........................51 3.3.1 North American Classification Systems ....................................................51 3.3.2 UN Classification Systems ........................................................................52
Recommended publications
  • Existing Cybernetics Foundations - B
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Existing Cybernetics Foundations - B. M. Vladimirski EXISTING CYBERNETICS FOUNDATIONS B. M. Vladimirski Rostov State University, Russia Keywords: Cybernetics, system, control, black box, entropy, information theory, mathematical modeling, feedback, homeostasis, hierarchy. Contents 1. Introduction 2. Organization 2.1 Systems and Complexity 2.2 Organizability 2.3 Black Box 3. Modeling 4. Information 4.1 Notion of Information 4.2 Generalized Communication System 4.3 Information Theory 4.4 Principle of Necessary Variety 5. Control 5.1 Essence of Control 5.2 Structure and Functions of a Control System 5.3 Feedback and Homeostasis 6. Conclusions Glossary Bibliography Biographical Sketch Summary Cybernetics is a science that studies systems of any nature that are capable of perceiving, storing, and processing information, as well as of using it for control and regulation. UNESCO – EOLSS The second title of the Norbert Wiener’s book “Cybernetics” reads “Control and Communication in the Animal and the Machine”. However, it is not recognition of the external similaritySAMPLE between the functions of animalsCHAPTERS and machines that Norbert Wiener is credited with. That had been done well before and can be traced back to La Mettrie and Descartes. Nor is it his contribution that he introduced the notion of feedback; that has been known since the times of the creation of the first irrigation systems in ancient Babylon. His distinctive contribution lies in demonstrating that both animals and machines can be combined into a new, wider class of objects which is characterized by the presence of control systems; furthermore, living organisms, including humans and machines, can be talked about in the same language that is suitable for a description of any teleological (goal-directed) systems.
    [Show full text]
  • Introduction to Cybernetics and the Design of Systems
    Introduction to Cybernetics and the Design of Systems © Hugh Dubberly & Paul Pangaro 2004 Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set correction of error Steering wind or tide course set correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Cybernetic point-of-view - system has goal - system acts, aims toward the goal - environment affects aim - information returns to system — ‘feedback’ - system measures difference between state and goal — detects ‘error’ - system corrects action to aim toward goal - repeat Steering as a feedback loop compares heading with goal of reaching port adjusts rudder to correct heading ship’s heading Steering as a feedback loop detection of error compares heading with goal of reaching port adjusts rudder feedback to correct heading correction of error ship’s heading Automation of feedback thermostat heater temperature of room air Automation of feedback thermostat compares to setpoint and, if below, activates measured by heater raises temperature of room air The feedback loop ‘Cybernetics introduces for the first time — and not only by saying it, but
    [Show full text]
  • Sustainable Forest Management Policy
    SUSTAINABLE FOREST MANAGEMENT POLICY DIVISION OF FORESTRY MINISTRY OF NATURAL RESOURCES, ENVIRONMENT & TOURISM S E P T E M B E R 2 0 1 8 TABLE OF CONTENTS 01 - Introduction 02 - Definition of Forest and Sustainable Forest Management 02 - Development of Palau's Sustainable Forest Management Policy 03 - Use of Palau's Sustainable Forest Management Policy (SFM) 04 - Linkages with Other Relevant Policies, Strategies, and Plans 07 - Broad Policy Description 07 - Vision 08 - Policy Goal 08 - Guiding Principles 09 - Sustainable Forest Management Policy Objectives, Outcomes, Directives and Indicators 10 - Focal Area 1 12 - Focal Area 2 14 - Focal Area 3 18 - Implementation Arrangement for Sustainable Forest Management 18 - Monitoring and Evaluation (M&E) Strategy 19 - Sustainable Forest Management Policy Review 19 - The Nature and Extent of Palau's Forest Resources 20 - Palau Forest Types 26 - Pressure on Palau's Forest 27 - Palau Forest Situation Analysis Conceptual Model 28 - Acronyms 29 - References INTRODUCTION The Republic of Palau values the contribution of forest ecosystems to the social, economic and environmental wellbeing of its citizens. Forests contribute to the national wellbeing by controlling soil erosion, improving soil fertility and regulating water flow. It contributes to the national economy through the production of wood for artisan crafts and construction. Forest contribution to the economy also includes its recreational value to terrestrial tourism enterprises. Finally, forests enable the Palauan culture to flourish its value as a repository of culturally significant plant resources. The continued use of these forest resources as medicines, traditional building materials and crafts facilitates the maintenance and dissemination of Palauan traditional ecological knowledge.
    [Show full text]
  • Review of Areas of Outstanding Natural Beauty and National Parks 2015
    National Landscapes: Realising their Potential The Review of Designated Landscapes in Wales Final Report Professor Terry Marsden John Lloyd-Jones Dr Ruth Williams 31 July 2015 Map 1: The Statutory Designated Landscapes of Wales 2 Contents Chair’s Foreword………………………………………………………………………. 4 Executive Summary and Recommendations………………………………………. 7 Chapter 1. Introduction………………………………………………………….. 27 Chapter 2. How We Evidenced Stage Two…………………………………… 31 Chapter 3. Responses to the Call for Evidence………………………………. 35 Chapter 4. A Changing Context for the Designated Landscapes in Wales... 37 Chapter 5. The Existing Model of Designated Landscape Governance in… 55 Wales Chapter 6. The Principles and Purposes of Wales’ Designated……………. 103 Landscapes Chapter 7. A Vision for the National Landscapes of Wales…………………. 113 Chapter 8. A New Framework for the Governance of Wales’ National…….. 129 Landscapes Appendix Appendix i. The Review of Designated Landscapes in Wales………………. 166 Stage One Recommendations Appendix ii. Stage Two Call for Evidence Contributions……………………… 170 Appendix iii. Stage Two Evidence Gathering Sessions……………………….. 172 Appendix iv. Case Studies………………………………………………………… 176 Appendix v. Bibliography…………………………………………………………. 227 Appendix vi. National Park Management Plan…………………………………. 235 and State Of the Park Report Indicators Appendix vii. Finance Flow Diagram……………………………………………… 242 Appendix viii Governance of Contracts Flow Diagram…………………………. 243 Appendix ix. Planning Development Management Flow Diagram……………. 244 Appendix x. Planning Enforcement Flow Diagram…………………………….. 245 3 Chair’s Foreword Over the past year I along with panel members Dr Ruth Williams and John Lloyd Jones have been working for the Minister for Natural Resources to undertake an independent review of the Designated Landscapes of Wales. The Minister wants to “‘ensure that our designated landscapes are best equipped to meet current and future challenges while building upon their internationally recognised status”.
    [Show full text]
  • Collection System Manager
    CITY OF DALY CITY JOB SPECIFICATION EXEMPT POSITION COLLECTION SYSTEM MANAGER DEFINITION Under the general direction of the Director of Water and Wastewater Resources or authorized representative, supervises all activities of the Collection System Maintenance Division, including wastewater collection and recycled water systems, and performs other duties as assigned. EXAMPLES OF DUTIES Manage, supervise, schedule, and review the work of maintenance personnel in the maintenance, inspection and repair of wastewater collection and recycled water distribution systems in the Collection System Maintenance Division of the Department of Water and Wastewater Resources; ensure safe, efficient and effective compliance with local, state and federal laws, rules and regulations, and industrial practices. Implement City, Department and Division Rules and Regulations, policies, procedures and practices. Ensure that required records are accurately maintained. Oversee a comprehensive preventive maintenance program of facilities. Ensure that supervisors conduct regular safety training and maintain a safe work environment. Develop and maintain training programs for employees; ensure that employees maintain required certification. Formally evaluate or ensure the evaluation and satisfactory job performance of assigned employees. Manage crews in support of City departments in maintenance operations, such as the storm drain collection system maintenance and construction program. Work to complete Department and Division goals and objectives. Prepare and manage the Division budget; propose, develop and manage capital projects and manage contracts for the Division. Prepare reports, and make presentations to the City Manager, City Council or others as required. When required, maintain 24-hour availability to address Division emergencies. Develop and maintain good working relationships with supervisors, coworkers, elected officials, professional peer groups and the public.
    [Show full text]
  • Forest Management Guide for Boreal Landscapes
    Forest Management Guide for Boreal Landscapes 2014 Cette publication spécialisée n’est disponible qu’en anglais en vertu du Règlement 411/10, qui en exempte l’application de la Loi sur les services en français. Forest Management Guide for Boreal Landscapes 2014, Queen’s Printer for Ontario Printed in Ontario, Canada Publications and price lists are available from this office: ServiceOntario Publications 300 Water Street P.O. Box 7000 Peterborough, ON K9J 8M5 1-800-668-9938 www.serviceontario.ca/publications Telephone inquiries should be directed to the Service Ontario Contact Centre: General Inquiry 1-800-668-9938 Renseignements en Français 1-800-667-1840 FAX (705) 755-1677 Other government publications are available from: ServiceOntario Publications, Market level (lower), 777 Bay St., Toronto Visit the Ontario’s Forests website at: http://www.ontario.ca/forests Visit the Ontario Ministry of Natural Resources website at: http://www.ontario.ca/mnr Cover photos provided by: Ted Armstrong, Phil Elkie, Lindsay MacLean and Kevin Ride. How to cite this manual: OMNR. March 2014. Forest Management Guide for Boreal Landscapes. Toronto: Queen’s Printer for Ontario. 104 pp. MNR Number: 62826 (Print) MNR Number: 62827 (PDF) ISBN: 978-1-4606-3670-1 (Print) ISBN: 978-1-4606-3671-8 (PDF) Forest Management Guide for Boreal Landscapes Table of Contents List of Figures..................................................................................................................................v List of Tables..................................................................................................................................vii
    [Show full text]
  • Rocket D3 Database Management System
    datasheet Rocket® D3 Database Management System Delivering Proven Multidimensional Technology to the Evolving Enterprise Ecient Performance: C#, and C++. In addition, Java developers can access Delivers high performance via Proven Technology the D3 data files using its Java API. The MVS Toolkit ecient le management For over 30 years, the Pick Universal Data Model (Pick provides access to data and business processes via that requires minimal system UDM) has been synonymous with performance and and memory resources both SOAP and RESTful Web Services. reliability; providing the flexible multidimensional Scalability and Flexibility: database infrastructure to develop critical transac- Scales with your enterprise, tional and analytical business applications. Based on from one to thousands of Why Developers the Pick UDM, the Rocket® D3 Database Manage- users ment System offers enterprise-level scalability and Choose D3 D3 is the choice of more than a thousand applica- Seamless Interoperability: efficiency to support the dynamic growth of any tion developers world-wide—serving top industries Interoperates with varied organization. databases and host including manufacturing, distribution, healthcare, environments through government, retail, and other vertical markets. connectivity tools Rapid application development and application Rocket D3 database-centric development environ- customization requires an underlying data structure Data Security: ment provides software developers with all the that can respond effectively to ever-changing Provides secure, simultaneous necessary tools to quickly adapt to changes and access to the database from business requirements. Rocket D3 is simplistic in its build critical business applications in a fraction of the remote or disparate locations structure, yet allows for complex definitions of data time as compared to other databases; without worldwide structures and program logic.
    [Show full text]
  • Biodiversity and Geodiversity Supplementary Planning Guidance (May 2018)
    - Biodiversity and Geodiversity Supplementary Planning Guidance (May 2018) www.npt.gov.uk/ldp Sand Martin Bank © Barry Stewart Pipistrelle Bat © Laura Palmer Shrill Carder Bee © Mark Hipkin Contents Note to Reader 1 1 Introduction 3 2 Biodiversity and Geodiversity in Neath Port Talbot 5 2.1 What is 'Biodiversity' and 'Geodiversity'? 5 2.2 Biodiversity in Neath Port Talbot 5 2.3 Geodiversity in Neath Port Talbot 7 2.4 Green Infrastructure 8 3 Policy Context 11 3.1 National Policy Context 12 3.2 Local Policy Context 13 4 Policy Requirements 19 4.1 General Principles 19 5 Policy Implementation 21 5.1 Pre-Application Discussion 21 Supplementary Planning Guidance: Biodiversity and Geodiversity (May 2018) 5.2 Planning Application Submission 31 5.3 Decision / Determination 33 5.4 Monitoring, Management and Review 36 6 Contact Details 41 Appendices A SINC Criteria 1 B RIGS 11 C Specific Guidance on Wind Energy Schemes 15 D Compensation Scheme 21 E Glossary 27 Contents Supplementary Planning Guidance: Biodiversity and Geodiversity (May 2018) Note to Reader Note to Reader This document supplements and explains the policies in the Local Development Plan (LDP). The LDP was adopted by the Council on 27th January 2016 and forms the basis for decisions on land use planning in the County Borough up to 2026. This Supplementary Planning Guidance (SPG) has been prepared following a public consultation exercise that was undertaken in the Spring of 2018 and the guidance was adopted by the Council's Regeneration and Sustainable Development Cabinet Board on 18th May 2018. While only policies in the LDP have special status in the determination of planning applications, the SPG will be taken into account as a material consideration in the decision making process.
    [Show full text]
  • Biological Catalysis of the Hydrological Cycle: Life's Thermodynamic Function
    Hydrol. Earth Syst. Sci. Discuss., 8, C1907–C1919, Hydrology and 2011 Earth System www.hydrol-earth-syst-sci-discuss.net/8/C1907/2011/ Sciences © Author(s) 2011. This work is distributed under Discussions the Creative Commons Attribute 3.0 License. Interactive comment on “Biological catalysis of the hydrological cycle: life’s thermodynamic function” by K. Michaelian K. Michaelian karo@fisica.unam.mx Received and published: 2 June 2011 Complete response to Prof. Schymanski: General Comments In a preliminary response to Prof. Schymanski and the anonymous referee (Michaelian, 2011a), I clarified that my paper neither invokes, nor requires, the “maximum entropy production principle”. The paper simply associates Onsager’s principle (1931) of the coupling of irreversible processes, and the associated increase in entropy production, with the evidence (e.g. Zotin, 1984) for an increase in the amount of coupling of irre- versible biotic processes over the history of life on Earth. The hypothesis of my paper C1907 is that biological irreversible processes also couple with abiotic irreversible processes, in particular, that biology catalyzes the hydrological cycle. This coupling augments the global entropy production of Earth in its solar environment, in accordance with Onsager’s principle. I also suggested in my preliminary response that the particular history of Earth with regard to entropy production would depend very much on par- ticular initial conditions (even microscopic), the kinetics (dependent on the particular forces) and subsequent external perturbations (even microscopic). This dependence arises because the Earth system under the solar photon flux is non-linear and out of equilibrium (Prigogine, 1972). Prof. Schymanski asks; 1) ”What is the mechanism that selects for biota that contribute more to planetary entropy production over such that contribute less but invest more e.g.
    [Show full text]
  • On the Authenticity of De-Extinct Organisms, and the Genesis Argument Douglas Campbell University of Canterbury, New Zealand
    Animal Studies Journal Volume 6 | Number 1 Article 5 2017 On the Authenticity of De-extinct Organisms, and the Genesis Argument Douglas Campbell University of Canterbury, New Zealand Follow this and additional works at: https://ro.uow.edu.au/asj Part of the Art and Design Commons, Australian Studies Commons, Creative Writing Commons, Digital Humanities Commons, Education Commons, Feminist, Gender, and Sexuality Studies Commons, Film and Media Studies Commons, Fine Arts Commons, Philosophy Commons, Social and Behavioral Sciences Commons, and the Theatre and Performance Studies Commons Recommended Citation Campbell, Douglas, On the Authenticity of De-extinct Organisms, and the Genesis Argument, Animal Studies Journal, 6(1), 2017, 61-79. Available at:https://ro.uow.edu.au/asj/vol6/iss1/5 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] On the Authenticity of De-extinct Organisms, and the Genesis Argument Abstract Are the methods of synthetic biology capable of recreating authentic living members of an extinct species? An analogy with the restoration of destroyed natural landscapes suggests not. The er stored version of a natural landscape will typically lack much of the aesthetic value of the original landscape because of the different historical processes that created it – processes that involved human intentions and actions, rather than natural forces acting over millennia. By the same token, it would appear that synthetically recreated versions of extinct natural organisms will also be less aesthetically valuable than the originals; that they will be, in some strong sense, ‘inauthentic’, because of their peculiar history and mode of origin.
    [Show full text]
  • The Importance of Ecological Memory for Trophic Rewilding As an Ecosystem Restoration Approach
    Biol. Rev. (2019), 94,pp.1–15. 1 doi: 10.1111/brv.12432 The importance of ecological memory for trophic rewilding as an ecosystem restoration approach 1,2,4 1,3 1,2 Andreas H. Schweiger ∗ , Isabelle Boulangeat , Timo Conradi , Matt Davis1,4 and Jens-Christian Svenning1,4 1Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark 2Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany 3University Grenoble Alpes, Irstea, UR LESSEM, 2 rue de la Papeterie-BP 76, F-38402, St-Martin-d’H`eres, France 4Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark ABSTRACT Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of ‘ecological memory’ into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem’s accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species.
    [Show full text]
  • 8.01 the Early History of Life E
    8.01 The Early History of Life E. G. Nisbet and C. M. R. Fowler Royal Holloway, University of London, Egham, UK 8.01.1 INTRODUCTION 2 8.01.1.1 Strangeness and Familiarity—The Youth of the Earth 2 8.01.1.2 Evidence in Rocks, Moon, Planets, and Meteorites—The Sources of Information 3 8.01.1.3 Reading the Palimpsests—Using Evidence from the Modern Earth and Biology to Reconstruct the Ancestors and their Home 3 8.01.1.4 Modeling—The Problem of Taking Fragments of Evidence and Rebuilding the Childhood of the Planet 3 8.01.1.5 What Does a Planet Need to be Habitable? 4 8.01.1.6 The Power of Biology: The Infinite Improbability Drive 4 8.01.2 THE HADEAN (,4.56–4.0 Ga AGO) 5 8.01.2.1 Definition of Hadean 5 8.01.2.2 Building a Habitable Planet 5 8.01.2.3 The Hadean Record 7 8.01.2.4 When and Where Did Life Start? 7 8.01.3 THE ARCHEAN (,4–2.5 Ga AGO) 8 8.01.3.1 Definition of Archean 8 8.01.3.2 The Archean Record 8 8.01.3.2.1 Greenland 8 8.01.3.2.2 Barberton 9 8.01.3.2.3 Western Australia 9 8.01.3.2.4 Steep Rock, Ontario, and Pongola, South Africa 10 8.01.3.2.5 Belingwe 11 8.01.4 THE FUNCTIONING OF THE EARTH SYSTEM IN THE ARCHEAN 11 8.01.4.1 The Physical State of the Archean Planet 11 8.01.4.2 The Surface Environment 13 8.01.5 LIFE: EARLY SETTING AND IMPACT ON THE ENVIRONMENT 14 8.01.5.1 Origin of Life 14 8.01.5.2 RNA World 15 8.01.5.3 The Last Common Ancestor 17 8.01.5.4 A Hyperthermophile Heritage? 19 8.01.5.5 Metabolic Strategies 21 8.01.6 THE EARLY BIOMES 21 8.01.6.1 Location of Early Biomes 21 8.01.6.2 Methanogenesis: Impact on the Environment 22
    [Show full text]