Quick viewing(Text Mode)

Estimating Distributional Patterns of Non-Marine Ostracoda (Crustacea

Estimating Distributional Patterns of Non-Marine Ostracoda (Crustacea

Limnologica 62 (2017) 19–33

Contents lists available at ScienceDirect

Limnologica

jo urnal homepage: www.elsevier.com/locate/limno

Estimating distributional patterns of non-marine Ostracoda

(Crustacea) and habitat suitability in the Burdur province (Turkey)

Mehmet Yavuzatmaca , Okan Külköylüoglu,˘ Ozan Yılmaz

Department of Biology, Faculty of Arts and Science, Abant Izzet˙ Baysal University, 14280 Bolu, Turkey

a r t i c l e i n f o a b s t r a c t

Article history: We explored distributional patterns and habitat preferences of in the Burdur province (Turkey).

Received 1 March 2016

At 121 sites we recorded 35 taxa (22 recent, 13 sub-recent), of which 23 represent new records for the

Received in revised form

province. According to the Index of Dispersion and d-statistics, the individual species exhibited clumped

26 September 2016

distributions. Cosmopolitan species dominated (63.64%). A direct effect of regional factors (e.g., elevation)

Accepted 29 September 2016

was not observed, while local factors (e.g., water temperature) best explained species distribution among

Available online 19 October 2016

habitats. Based on alpha diversity values, natural habitats (springs, ponds, creeks) were more suitable than

artificial habitats (e.g., troughs, dams), suggesting that natural habitats define regional species diversity.

Keywords:

Bioindicator Twenty-two of the recorded species had wider ecological ranges than previously reported. Cosmopolitan

species appeared to suppress non-cosmopolitan species due to their wider ecological range.

Clump distribution

Dominant species © 2016 Elsevier GmbH. All rights reserved. Ostracods

Source habitats

1. Introduction species-specific responses to these factors (Benson, 1990; Delorme,

1991), some species are tolerant to a wide range of environmental

Ostracods are bivalved aquatic that are gener- conditions (e.g., water temperature, dissolved oxygen, etc.) (Uc¸ ak

ally small (0.3–5.0 mm, although some marine species may reach et al., 2014). Therefore, ostracods are bioindicators of aquatic con-

up to 30 mm in length) (Meisch, 2000). Their outer chitinous ditions and are commonly used in different scientific fields such

carapace has an epidermis of low magnesium calcium carbon- as geology (biostratigraphy), archeology, palaeobiology, palaeocli-

ate (calcite) that covers a calcitic shell which can be fossilized matology, palaeolimnology, palaeoecology, wetland conservation,

in sediments (Chivas et al., 1986). Fossil ostracods can be used elemental and isotopes studies and evaluations of anthropogenic

to reconstruct paleo-environmental conditions. The first (oldest) pollution (Forester, 1991; Holmes et al., 1998; Külköylüoglu,˘

undoubted fossil dates back to the Silurian period about 1998; Alvarez Zarikian et al., 2000; Mourguiart and Montenegro,

425 mya. These fossils represent the oldest known microfauna 2002; Padmanabha and Belagali, 2008; Jiang et al., 2008; Sarı

(Delorme, 1991; Siveter, 2008; Williams et al., 2008). Desicca- and Külköylüoglu,˘ 2010; Rodriguez-Lazaro and Ruiz-Munoz,˜ 2012;

tion and freezing resistant eggs, and active and passive dispersal Ruiz et al., 2013). Ostracods are particularly valuable as indica-

mechanisms contribute to their wide distribution throughout tor species for estimating the past and present environmental

the world (McKenzie and Moroni, 1986; Horne and Martens, changes. However, this requires an understanding and sophisti-

1998; Rossi et al., 2003; Rodriguez-Lazaro and Ruiz-Munoz,˜ 2012; cated knowledge of species-specific ecological requirements and

Külköylüoglu,˘ 2013) and in a variety of marine and non-marine tolerance ranges (limits) across habitats. Additionally, one may also

aquatic habitats (Delorme, 1991; Meisch, 2000; Horne, 2003; question the type(s) of suitable habitats for ostracods and how

Külköylüoglu,˘ 2013; Escrivà et al., 2014). The distributions of ostracods respond to changes in such conditions (Külköylüoglu,˘

ostracods are effected by multiple factors such as temperature, 2003a, 2004). The present study attempts to provide this under-

sediment type, depth, vegetation, elevation, pH, dissolved oxy- standing through a regional evaluation of ecology, distribution and

gen, transparency of water and salinity (Malmqvist et al., 1997; habitat preferences of non-marine ostracods.

Mezquita et al., 2001; Külköylüoglu,˘ 2005a; Martín-Rubio et al., Species may exhibit random, clumped (aggregation) and uni-

2005; Pérez et al., 2010; Szlauer-Łukaszewska, 2012). Although form distributional patterns in response to biotic and abiotic

factors. Of which, random distribution describes all individuals

have equal probability of occurring in habitats. This distribution

is also named as “Poisson distribution model” when population

∗ 2

Corresponding author. variance (s ) equals the mean () (Ludwig and Reynolds, 1988

E-mail address: yavuzatmaca [email protected] (M. Yavuzatmaca).

http://dx.doi.org/10.1016/j.limno.2016.09.006

0075-9511/© 2016 Elsevier GmbH. All rights reserved.

20 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33

Fig. 1. 121 ramdomly selected sampling sites from 11 counties (Merkez, Aglasun,˘ C¸ eltikc¸ i, Bucak, Kemer, Yes¸ ilova, Karamanlı, Tefenni, C¸ avdır, Gölhisar, and Altınyayla) of Burdur.

◦  ◦  ◦  ◦ 

Zar, 1999). On the other hand, uniform and clumped distribu- lia between 36 53’ –37 50 north latitude and 29 24’ –30 53 east

tional patterns show equal spacing and accumulation of species in longitude. The province is surrounded by some extentions of the

an area and/or habitat, respectively (Ludwig and Reynolds, 1988). West Toros Mountains in the south, Lake Burdur and the Karakus¸

Determining the modes of these patterns can provide evidence Mountain in the north and Lake Acıgöl and Es¸ eler Mountain in the

to the effect of regional and local factors on species occurrence. west. Also, the province has 2.7% upland, 19% lowland, 60.6% moun-

While local factors (e.g., elevation) can influence the distribution tains and 17.6% hilly lands (Burdur valiligi,˘ 2014). High mountains

of species residing in a particular habitat (e.g., lake, spring, etc.), seperate the district from the Mediterranean region, and summer

regional factors can exert substantial influence on colonization is hot but winter is very cold (Burdur, 2014).

and immigration of the species among the regions (Paradise et al.,

2008). Determining type of such distributional patterns with those

2.2. Sampling and measurements

effective environmental variables on species distribution can help

to protect species from extinction in particular areas. Despite this,

Total of 121 sampling sites with six different aquatic habitats

there are no other extensive regional-scale geographical and eco-

(spring, lake, dam, pond, creek and trough) were randomly visited

logical studies evaluating the distributional patterns of ostracod

and sampled between August 30 and September 02, 2012 (Fig. 1).

species (but see Yavuzatmaca et al., 2015).

Sampling sites were 5 to 10 km apart to prevent bias on simi-

Like most regions around the world, our knowledge about ostra-

larities in species diversity and distribution. Eight environmental

cod ecology and distribution in Turkey contains large gaps. For

−1

variables (dissolved oxygen (DO, mg L ), percent oxygen satura-

example, Burdur province (Fig. 1) has received no systematic sur-

tion (% sat.), water temperature (Tw, C), electrical conductivity

vey and habitat characterization for its ostracod fauna. Here, we

−1 −1

(EC, ␮S cm ), total dissolved solids (TDS, mg L ), salinity (Sal,

present the results of the first extensive study on Burdur province

ppt), pH, atmospheric pressure (mmHg)) were recorded with a

ostracods. Accordingly, the main objectives of the present study

YSI-Professional Plus before sampling to prevent possible results

are i) to determine distributional patterns (clumped, uniform, ran-

of “Pseudoreplication” (Hurlbert, 1984). In situ water phsyico-

dom) of ostracod species in Burdur, ii) to discuss the relationship

chemical measurements should be taken without any disturbance

between habitat suitability and ostracod species diversity, iii) to

of the sampling site that can result from ostracod collection and

elucidate the most important environmental factors (local and/or

subsequent increased turbidity and water column mixing. Air tem-

regional) affecting species distribution among habitats along, and

◦ −1

perature (Ta, C), wind speed (km h ) and air moisture (%) were

iv) to estimate species’ ecological optimum and tolerance levels.

obtained by a Testo 410-2 model anemometer, and basic geographi-

cal data (elevation, coordinates) were recorded with a geographical

2. Material and methods

positioning system (GARMIN etrex Vista H GPS) (Appendix A).

Ostracod samples were collected from each site with a stan-

2.1. Site description

dard sized hand net (200 ␮m mesh size). We preserved samples in

2

The province of Burdur with 6887 km of surface area (also 250 ml plastic bottles and fixed with 70% of ethanol. In the labo-

known as the ‘Lake District Area’) is located in the South Anato- ratory, each sample was filtered through four standardized sieves

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 21

Additionally, departure from Poisson distribution was tested

2

by application of the Index of dispersion (variance (s )/mean ())

2

(Ludwig and Reynolds, 1988) where s / = 1 random distribution,

2 2

s / < 1 = uniform distribution, and s / > 1 = clumped distribution.

To test whether data conformed to the Poisson distribution

when the sample size is N ≥ 30, we calculated d-statistics (Eq. (4)).

2

To find d-statistics value, we need Chi-square (X ) (it is different

2

from X calculated using Eq. (2)) calculated using Eq. (3) (Ludwig

and Reynolds, 1988).   N  

2 2 2

= − = − X Xi X¯ /XorX ID (N 1) (3) i=1

2

where X : Chi-square, Xi: the number of individuals in the ith sam-

pling unit; N: total sample size; X: the mean number of successes

that occur in a specified region  

2

d = 2X − 2 (N − 1) − 1 (4)

2

where X is derived from Eq. (3)

The d-statistics (Elliott, 1973 sensu Ludwig and Reynolds, 1988)

Fig. 2. Numbers of sites carrying 0–4 or more (4+) species of ostracods.

are interpreted as follows:

(0.5, 1.0, 1.5 and 2.0 mm mesh size) under tap water and than i) if IdI < 1.96, accept a random dispersion

kept in 70% ethanol for further studies following standard proto- ii) if d < 1.96, suspect a regular dispersion

col (Danielopol et al., 2002). Subsequently, ostracods were sorted iii) ifd > 1.96, a clump dispersion

from sediments under a stereomicroscope (Olympus ACH 1X) and

their soft body parts were dissected in lactophenol solution for The relationships between species and environmental variables

taxonomic identification. Species identification was done using a (electrical conductivity (EC), water (Tw) and air (Ta) temperatures,

light microscope (Olympus BX-51). The taxonomic key provided dissolved oxygen (DO), elevation (Elev) and pH) were examined

in Meisch (2000) was primarily used for taxonomic classification by Canonical Correspondence Analysis (CCA). The data were log-

and species identification, although additional taxonomic keys (e.g., transformed (ter Braak, 1987; Birks et al., 1990) and tested with

Bronhstein, 1947; Karanovic, 2012) were also used when neces- Monte Carlo Permutation tests (499 permutation) where rare

sary. All of the ostracod samples were curated at the Limnology species were removed before analyses. Before performing CCA,

˙

Laboratory of Abant Izzet Baysal University, Bolu/TURKEY and are suitability of data for CCA was tested with Detrended Correspon-

available upon request. dence Analysis (DCA) (software package CANOCO for windows 4.5).

C2 software was used to estimate species tolerance (tk) and

optimum ( ) levels for different ecological variables after using a

2.3. Statistical analyses k

transfer function of weighted averaging regression (Juggins, 2003).

The accuracy of optimum estimates is proportional to species’

Distributional patterns of species among sampling sites were

prevalence in samples (ter Braak and Barendregt, 1986). Therefore,

tested by the application of Poisson probabilities along with a Chi-

the optimum and tolerance levels of a species to ecological variables

square test (Ludwig and Reynolds, 1988). The observed number of

can show differences according to their occurrence frequencies in

sites (f) with 0, 1, 2, 3, 4 or more (4+) (0–4 or more (4+)) species

different geographical areas as this is the case in Burdur and in

was computed (Fig. 2). Then, the mean (␮) was then calculated by

many other regions in and out of Turkey (see Discussion below).

multiplying the number of species (i.e., 0, 1,. . .,4 +) by f, then divid-

This situation may be considered for further evaluation of the ideas

ing by the total number of sampling sites. The Poisson probability

about ecological preferences of individual species and using them

of finding of x individuals in sampling units (P(x)) was calculated

as indicators of environmental conditions.

using Eq. (1).

The software Species Diversity & Richness 4 (Seaby and

= −x x

P (x) e . /x! (1) Henderson, 2006) was used to calculate the Shannon-Wiener index

value for different habitat types. The range of 1.5 and 3.5 was used

where e, represents Euler’s number and approximately equals

to consider low to high index values as suggested by Magurran

2.71828; , the mean number of successes that occur in a specified (1988).

region; x, the actual number of successes that occur in a speci-

Species were classified as eudominant (32–100%), dominant

fied region; P(x; ␮) the Poisson Probability that exactly x successes

(10–31%), subdominant (0.32–9%), recedent (1–3.1%), subrecedent

occur in a Poisson experiment, when the mean number of successes

(0.32–0.99%) and sporadic (<0.31%) based on their dominance coef-

is ␮.

ficient (Rombach, 1999)

2

A Chi-square (X ) test was then applied to compare observed (O)

and expected (E) frequencies of random distribution at 0.05 critical

␣ 3. Results

( ) level. The value of calculated Chi-square was computed using

Eq. (2).

A total of 35 taxa (22 recent and 13 sub-recent) were encoun-

n

tered from 110 of 121 sampling sites in Burdur province. Of these,

2 2

X = (O − E) /E (2)

23 (10 living and 13 sub-recent) taxa represents new records for

=

n 0 Burdur (Appendix A).

22 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33

Table 1

for dissolved oxygen concentration. These results suggest species-

Poisson probabilities of 0–4(+) occurrence of ostracod species calculated using Eq.

specific tolerance (tk) and optimum (k) levels of individual species

(1) in Burdur.

for different environmental variables.



P(x = 0) probability of no occurrence 0.29

Shannon-Wiener index values of ponds (H = 2.25), springs

P(x = 1) probability of one occurrence 0.41  

(H = 1.79) and creeks (H = 1.71) were higher than other sampled

P(x = 2) probability of two occurrences 0.29

habitats (Table 5). Although troughs were sampled more frequently

P(x = 3) probability of three occurrences 0.14

P(x = 4 + ) probability of four(+) occurrences 0.05 (58 sites with 10 spp.) than the other types of habitats, species rich-

ness are higher in ponds (17 sites with 15 spp.). In other words, a

clear habitat effect was observed despite differences in sampling

Table 2

effort. Four cosmopolitan species (H. incongruens, H. salina, I. bradyi

Calculated Chi-square values of 0–4 or more (4+) occurrences of species in Burdur.

and P. olivaceus) were dominant over the sub-dominant species (C.

Expected (E) probability = N x Poisson Probability; five classes (n) with two constants

neglecta, Cypria ophtalmica, Herpetocypris chevreuxi, H. intermedia,

(habitat and species) so degrees of freedom, df = n-2 = > 5–2 = 3.

I. monstrifica, L. inopinata, P. variegata and P. zenkeri) while another

2 2

Class x f(obs.freq.) Exp. Prob. O-E (O-E) (O-E) /E

10 species were defined as sporadic (Table 5).

1 0 41 35.32 5.68 32.29 0.91

Although species abundance (number of individuals) was much

2 1 35 49.74 −14.74 217.24 4.37

higher in troughs than other habitat types (Table 6), species rich-

3 2 26 35.02 −9.02 81.44 2.33

ness per site were high in the other five habitats. Among the

4 3 14 16.44 −2.44 5.96 0.36

5 4 5 5.79 −0.79 0.62 0.11 habitats, spring and creeks exhibited equal species richness (7) with

2

N = 121 (X ) 8.08 almost similar numbers of individuals.

The occurrence probabilities of [P (x = 0), P (x = 1), P (x = 2), P 4. Discussion

(x = 3) and P (x = 4(+))] of species in Burdur were calculated using

Eq. (1) and given in Table 1. Until now, 24 living species (Gülen, 1985; Altınsac¸ lı, 2004;

2

Chi-square (X ) values of each occurrence (0–4 or more Rasouli et al., 2014) have been recorded from Burdur, Turkey. 12

(4+)) are presented in Table 2. Ostracod occurrence did not of these were encountered during the present study. Addition-

conform to a random distribution or “Poisson distribution” ally, 23 (10 living and 13 sub-recent) taxa herein are new reports

2 2

(X calculated = 8.08 > X table(3121,0.05) = 7.81), Index of Dispersion and for the region (Appendix A). Thus, 47 ostracod species have been

d-statistics (1.09 and 2.51, respectively) suggested a clump disper- recorded from Burder, to date. Consequently, ostracod diversity in

sion of ostracod species among sampling sites in Burdur. Burdur represents an important region for ostracod diversity in

The first two axes of the CCA explained 78.80% of relationships Turkey, comparable to other regions around the world in which

between 13 species and six environmental variables with a mod- systematic surveys have been conducted. For example, 37 taxa

erately low variance (9.50) (Table 3). have been reported from 114 sites in C¸ ankırı (Külköylüog˘ l u˘e t al.,

Among the variables, water temperature (Tw) (F = 3.746, 2016), 41 taxa have been reported from 111 sites in Adıyaman

P = 0.002) was the only one with strong effect on species fol- (Yavuzatmaca et al., 2015), 25 taxa have been reported from 50

lowed by non-significant pH (F = 1.753, P = 0.074), dissolved oxygen sites in Diyarbakır (Akdemir and Külköylüoglu,˘ 2011), 34 taxa have

(DO) (F = 1.494, P = 0.144), air temperature (Ta) (F = 1.170, P = 0.306), been reported from 133 sites in Ordu (Külköylüoglu˘ et al., 2012c),

elevation (Elev) (F = 1.021, P = 0.406) and electrical conductivity 14 species have been reported from 38 sites in northern Finland

(EC) (F = 0.4920, P = 0.610) (Fig. 3). Six species (Candona neglecta, (Iglikowska and Namiotko, 2010), 74 taxa have been reported from

Psychrodromus olivaceus, P. fontinalis, Cypria ophtalmica, Ilyocypris 320 sites in north east Italy (Pieri et al., 2009), and 54 species

bradyi and Prionocypris zenkeri) were located at the left site of first have been reported from 132 sites in upper Paraná River, Brazil

axis where there is only elevation but three species (Limnocythere (Higuti et al., 2009). Accordingly, numbers of species or taxa do

inopinata, Ilyocypris monstrifica and Physocypria kraepelini) were not correspond to increasing sampling effort (the Sampling Effect

located at the site of pH, EC and Ta. The other species (Heterocypris Hypothesis) (Williamson, 1988; Hill et al., 1994). Rather, ostracod

incongruens, H. salina, Potamocypris variegate and Herpetocypris diversity patterns in Burdur may be better explained by the “Habitat

intermedia) were placed at the site of Tw and DO. Two well known Diversity Hypothesis” (Williams, 1943) which predicts that species

cosmoecious species (see Discussion for definition) (H. incongruens richness increases with the availability and diversity of suitable

and I. bradyi) were relatively closer to the center of diagram (Fig. 3). habitats (see Külköylüoglu˘ et al., 2012a). Consequently, the num-

There was no apparent relationship between species richness bers of ostracod species or taxa in an area may be related to variety

and elevation (Fig. 4). The number of sampling sites did not of habitat types and habitat quality as is the case in our study.

affect species richness at different elevational ranges (e.g., see The clumped distribution patterns exhibited by Burdur ostra-

886–1036 m and 1339–1489 m of ranges) where species richness cods mirrors the distributional patterns of several other taxonomic

(8) were the same despite differences in the numbers of sites (23 groups. For example, benthic populations (Heip, 1976), marine ben-

and 11, respectively). Accordingly, there was no clear correlation thic (Heip, 1975) and some sessile invertebrates (Schmidt, 1982)

between numbers of sites and numbers of species encountered also exhibited clumped distributions. For ostracods, Heip (1976)

within the elevational ranges. Sexually reproducing species were observed a clumped distributional pattern of Cyrideis torosa in

encountered more frequently than asexually reproducing species a brackish pool in northern Belgium. Conversely, Yavuzatmaca

when elevation increased (Fig. 4). et al. (2015) identified random distributional patterns of ostra-

Cosmopolitan species generally displayed relatively higher tol- cods among sampling sites in Adıyaman (Turkey). These opposing

erance and optimum values for environmental variables than other findings may be explained by differences in the types of habitats

species (Table 4). For example, H. incongruens, H. salina and I. sampled and the prevalence of non-cosmopolitan species. Specif-

bradyi had the highest tolerance levels for water temperature and L. ically, Yavuzatmaca et al. (2015) mostly sampled natural springs

inopinata had higher tolerance level for pH and electrical conductiv- (n = 44), where non-cosmopolitan species were mostly prevalent

ity but I. monstrifica had highest tolerance level for pH. In contrast, (ca 51.85% of all species). In Burdur, habitat destruction was clearly

C. neglecta shows higher than mean optimum values for dissolved observed where natural spring have been transformed into troughs.

oxygen concentration when P. variegata had highest optimum value This habitat degradation may result in the aggregation of ostracod

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 23

Fig. 3. Graph of CCA showing the ordination of 13 species and the six environmental variables (arrows) (Tw, pH, DO, EC, Elev and Ta) from Burdur by first and second axes.

Triangles show species code. For abreviations see Appendix A.

50 Sta.Type Sta. Tax a 40 Sp. Sex Asex 30

20 Value

10

0

32 83 34 85 36 87 38 89 40 2-4 3-5 4-7 5-8 -10 -11 -13 -14 -16 28 43 58 73 86 37 88 39 90

8 10 11 13 14

Elevational range

Fig. 4. The number of taxa, species, site type, sampled site and species with sexual and asexual reproduction at the nine different 150 m a.s.l. elevational ranges in Burdur.

Abbreviations: Sta. (number of sites), Sta. Type (site type), Sp. (species number), Sex (species sexually reproduce) and Asex (species asexually reproduce).

24 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33

Table 3

Summary table of the CCA for 13 species (with two or more occurrences) from 79 sites and six environmental variables in Burdur (* shows the results of DCA).

Axes 1 2 3 4 Total inertia

*Lengths of gradient 0.00 5.75 3.98 2.25

Eigenvalues 0.35 0.24 0.10 0.04 6.19

Species-environment correlations 0.65 0.60 0.30 0.32

Cumulative percentage variance

of species data 5.60 9.50 11.10 11.80

of species-environment relation 46.90 78.80 92.60 98.50

Sum of all eigenvalues 6.19

Sum of all canonical eigenvalues 0.74

Table 4

Optimum (uk) and tolerance (tk) levels of 13 species to four different ecological variables in Burdur. N2 represents Hill’s coefficient value as the measure of effective number

−1 −1 ◦

of occurrences. Abbreviations: DO (dissolved oxygen concentration, mg L ), EC (electrical conductivity, ␮S cm ), Tw (water temperature, C), Max (maximum) and Min

(minimum).

Species Count Max N2 pH DO EC Tw

uk tk uk tk uk tk uk tk

H. incongruens 38 171 11.61 7.95 0.29 7.83 2.39 610.90 120.46 19.25 3.98

P. olivaceus 26 121 11.12 7.89 0.44 6.68 2.19 771.07 202.11 17.21 3.53

I. bradyi 26 143 7.60 7.80 0.27 7.35 1.69 632.91 120.67 17.91 4.32

L. inopinata 8 14 5.30 8.50 0.44 5.88 2.16 2619.36 4492.43 24.45 2.13

C. neglecta 12 41 4.53 7.76 0.31 7.54 1.97 633.33 175.75 14.69 3.18

H. salina 6 121 4.25 7.94 0.43 8.39 2.01 741.77 203.18 22.01 6.01

C. ophtalmica 3 19 2.07 7.56 0.37 4.58 3.70 541.34 56.85 13.56 3.42

P. kraepelini 2 2 1.80 8.31 0.16 7.12 4.42 368.57 34.51 25.57 3.25

I. monstrifica 4 18 1.78 8.85 0.51 9.19 3.91 421.50 127.03 25.57 3.54

P. variegata 5 135 1.75 8.12 0.23 11.21 1.01 491.36 6.04 24.75 1.42

P. zenkeri 4 25 1.57 7.92 0.37 8.25 2.48 651.93 96.09 18.89 4.41

P. fontinalis 2 9 1.42 7.25 0.37 5.38 3.22 686.35 91.44 12.79 1.20

H. intermedia 2 74 1.05 8.10 0.36 7.08 0.83 701.61 5.57 23.03 1.77

Mean 8.00 0.35 7.42 2.46 759.38 440.93 19.97 3.24

Max 8.85 0.51 11.21 4.42 2619.36 4492.43 25.57 6.01

Min 7.25 0.16 4.58 0.83 368.57 5.57 12.79 1.20

Table 5



Dominance percentage (%) of 22 ostracod species among 3516 individual, their occurrence frequencies in six different aquatic habitat, and Shannon-Wiener index (H ) value

of each habitat. Abbreviations: ASI (All Sample Index) and JSE (Jackknife Standard Error).

Species % Spring (n = 10) Lake (n = 9) Dam (n = 10) Pond (n = 17) Creek (n = 17) Trough (n = 58)

C. neglecta 3.01 4 2 5 1

C. ophtalmica 0.97 1 2

D. stevensoni 0.03 1

H. chevreuxi 0.77 1

H. intermedia 2.16 2

H. incongruens 30.55 1 4 2 31

H. salina 10.41 1 5

I. bradyi 18.15 2 3 7 14

I. gibba 0.11 1

I. monstrifica 0.71 1 1 2

I. beauchampi 0.06 1

L. inopinata 1.17 2 4 2

P. kraepelini 0.09 1 1

P. arcuata 0.20 1

P. fallax 0.14 1

P. similis 0.06 1

P. variegata 5.23 1 1 3

P. zenkeri 0.91 2 2

P. albicans 0.28 1

P. fontinalis 0.31 1 1

P. olivaceus 24.49 2 3 1 6 14

T. clavata 0.20 1 ASI JSE

H 1.79 1.32 1.42 2.25 1.71 1.68 2.33 0.25

Shannon-Wiener Variance H 0.05 0.04 0.09 0.03 0.02 0.01

Exp. H 6.00 3.75 4.14 9.44 5.54 5.35

species in the troughs that we sampled (n = 58). Species inhabiting ent. Dominance of cosmopolitan species in degraded habitats is

troughs have decreased opportunities for free distribution. These well documented in the literature (Külköylüoglu˘ et al., 2013). This

habitats are generally constructed to store water for , for is probably the case in Burdur where the majority of sampling sites

irrigation, and for cleaning and drinking purposes (Külköylüoglu˘ were troughs with a higher prevalence of cosmopolitan species. If

et al., 2013). In such habitats, a direct anthropogenic effect that we consider troughs as a source of point diversity (or diversity at a

alters physico-chemical characteristics of water sources is appar- single point or microenvironment (Meffe and Carroll, 1997)), this

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 25

Table 6

Number of species (or species richness, N. spp.), individuals (N. ind.), individual per species (ind./spp.) and species per site (spp./site) with minimum and maximum values

−1 −1 ◦

of pH, dissolved oxygen (DO, mg L ), electrical conductivity (EC, ␮S cm ), salinity (Sal, ppt), water (Tw) and air (Ta, C) temperatures and elevation (Elev., m a.s.l.) in six

different habitat types.

Habitats N. spp. N. ind. ind./spp. spp./site pH DO EC Sal Tw Ta Elev.

Pond 15 156 10.40 0.88 7.82–9.26 2.65–11.29 198.10–1824 0.11–1.12 12.90–28.90 16.40–33.00 785–1341

Trough 10 2582 258.20 0.17 7.05–8.64 2.31–11.57 77.50–1387 0.02–0.68 11.00–27.60 12.40–37.20 348–1538

Spring 7 382 54.57 0.70 7.15–8.23 4.55–9.30 272.10–978 0.15–0.59 11.70–27.20 23.60–34.50 637–1428

Creek 7 322 46.00 0.41 7.13–8.78 3.20–9.93 266.10–896 0.15–0.54 10.30–27.80 17.40–36.60 815–1391

Lake 4 50 12.50 0.44 7.44–9.44 2.27–12.05 395.20–389056 0.17–23.33 14.20–28.20 18.20–36.60 848–1216

Dam 3 24 8.00 0.30 8.13–8.76 5.04–7.52 311.30–580 0.15–0.30 20.10–27.10 25.60–34.40 282–1515

may explain the way of aggregated distribution of the ostracods in rence and distribution where elevation may have indirect effect on

Burdur. species distribution.

Canonical correspondence analysis showed that only water The optimum and tolerance levels reported here for Burdur

temperature significanlty affected ostracod dispersion (Fig. 3). Sev- ostracod species differ from those reported for ostracods from dif-

eral previous studies similarly identified water temperature as an ferent geographical areas (Karakas¸ -Sarı and Külköylüoglu,˘ 2008;

important factor affecting ostracod assemblages (e.g., Malmqvist Külköylüoglu˘ et al., 2013; Rasouli et al., 2014; Uc¸ ak et al., 2014),

et al., 1997; Viehberg, 2006; Kiss, 2007; Külköylüoglu˘ et al., 2014; probably because of differences in occurrence frequencies and

Uc¸ ak et al., 2014). Since many (if not all) aquatic physico-chemical abundances among ostracods assessed in analyses. Sampling ade-

variables (e.g., electrical conductivity, dissolved oxygen concen- quacy should be evaluated before drawing conclusions about the

tration) are affected by changes in temperature (Wetzel, 2001), ecological preferences of individual species. Knowledge about

such changes may in/directly alter the species occurrences. Unlike species-specific tolerance and optimum levels is important for

our current study, Külköylüoglu˘ and Sarı (2012) identified pH as understanding the life history of ostracods, using them in palaeo-

the most important predictor of ostracod assemblage structure in reconstruction studies, understanding the environmental changes

a variety of aquatic bodies in Bolu, Turkey. Like water tempera- and also important for using ostracod species as bioindicators.

ture (Roca and Wansard, 1997; Xia et al., 1997; Palacios-Fest and Because of the increased sampling effort conducted in this study,

Dettman, 2001; Elmore et al., 2012), pH exerts an important control the ecological preferences to eight different environmental vari-

on the calcification of ostracod valves because solubulity of car- ables for 22 ostracod species were all wider than previously

bonate and calcium in water is dependent on pH (Wetzel, 2001). reported (Appendix B). Hence, use of living species as bioindicators

In this case, fluctuations in water physico-chemical variables (e.g., should be done carefully.

temperature) can have severe impacts on species with low toler- As mentioned above, numbers of species (15 spp.) was higher in

ance ranges (stenophiles). However, species with a high tolerance ponds than the other habitat types. However, dominancy of indi-

to different variables within a large geographical distribution or viduals per species (abundance) was clearly on the side of troughs

“cosmoecious” (Külköylüoglu,˘ 2013)” (I. bradyi, H. incongruens and where the conditions favor cosmopolitan species with higher tol-

P. zenkeri) are relatively closer to the center of diagram (Fig. 3), erance and optimum levels over non-cosmopolitans (Table 6). This

implying that such environmental variables may not have critical is indeed the case in our samples where we found H. incongruens, a

influence on the distribution of these species. well-known cosmopolitan (also see cosmoecious species concept),

There is still debate about the effect of elevation on ostracod in 31 of 58 troughs (Table 5). It appears that H. incongruens increases

species richness and distribution. Stevens (1992) stated that species advantages over other species by means of increasing its abun-

richness and elavations are negatively correlated. Mezquita et al. dance in such artificial habitats (i.e., troughs). Aquatic conditions

(1999a) argued that elevation was a limiting factor for ostracod are changeable in troughs where cosmopolitan species can tolerate.

distribution in different water bodies of Spain. Likewise, Pieri et al. Accordingly, they show dominancy in numbers (Table 6).

(2009) noted the importance of altitudinal range as a critical fac- According to alpha diversity index values, natural habitats

tor for the distribution of freshwater ostracods in regional scale in (springs, ponds and creeks) were apparently more suitable than

Italy. Also, Poquet and Mesquita-Joanes (2011) stated that eleva- those of artificial (e.g., troughs, dams, etc.) habitats (Table 5).

tional range may increase regional diversity in warm or temperate Another study done in Kahramanmaras¸ (Turkey) by Külköylüoglu˘

climates because water temperature, alkalinity and conductivity et al. (2012a) showed partially similar results with our find-

 

values of aquatic bodies are high at low elevation. Other studies, ings as limnocrene springs (H = 2.89), ponds (H = 2.2) and creeks



however, did not support (Malmqvist et al., 1997; Külköylüoglu˘ (H = 1.95). In addition, the high values of Shannon-Wiener Index

 

et al., 2012a,b; Guo et al., 2013) these previous statements. In the were also found for ponds (H = 1.25), springs (H = 1.00) and creeks



present study elevation did not appear to influence species richness (H = 0.71) in Zonguldak and Bartın (Turkey) (Külköylüoglu,˘ O. pers.

although the effect was not statistically examined. For example, comment). However, species diversity of lakes (3.0 species per

we found the same numbers of species (8 spp.) at 886–1036 m sample (sps)), springs (2.8 sps) and ponds (2.1 sps) noted by

and 1339–1489 m a.s.l. ranges (Fig. 4). Similarly, elevation was not Van der Meeren et al. (2010) in western Mongolia are higher

identified as a significant variable in CCA. This does not mean that than the present study (ponds (0.88 sps), springs (0.70 sps) and

elevation does not have potential to affect ostracod distribution, lakes (0.44 sps) (Table 6)). Such differences may be exlained by

particularly through its’ influence on water temperature and other several factors such as sampling time, number of sampling sites

aquatic physico-chemical variables (Brown and Gibson, 1983; Van and geographical differences. In our case, we collected samples

der Meeren et al., 2010; Reeves et al., 2007; Rogora et al., 2008). in a short time in one season which may cause for such differ-

Such kind of changes in waters may affect the occurrence and dis- ences. Among the habitats, springs are known as natural biological

tribution of species. Species with wide tolerance levels to different laboratories with stable ecological conditions (Forester, 1991) if

environmental variables may have better adaptive values to these there is no disturbance. Having relatively stable ecological condi-

changes. This is probably the case in the present study (see Fig. 4). It tions, springs provide different opportunities for organism. Hence,

seems that local factors (e.g., water temperature) are more effective springs have good conditions for ostracod diversity especially for

than the regional factors (see CCA diagram, Fig. 3) on species occur- noncosmopolitans. Unlike springs, creeks have spatial and tem-

26 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33

poral heterogeneity in physico-chemical and biological features. tats, such as ponds, springs and creeks may be called as suitable

This is possibly because of different water sources merging into the (or source) habitats for ostracods but this view should be tested in

creeks by means of precipitation and dissolved and/or particulate different geographical areas in future.

matters produced from drainage basin of flowing waters (Wetzel,

2001). As stated by Lansac-Tôha et al. (2004), lotic habitats are the 5. Conclusion

connection between the lentic habitats (e.g., especially open lakes)

and so their fauna comes from all types of lentic habitats. Therefore, The number of taxa in Burdur were increased up to 47.

this eventually increases heterogeneity of creeks where microhab- Dominant species were generally cosmopolitans when they have

itats will provide alternative places for organism. Thus, this will higher abundance values than non-cosmopolitans in the present

make important changes in species richness and biodiversity. Con- study. In other words, they seem to suppress the occurrence of

versely, there can be some negative effects of flowing waters on non-cosmopolitans. Accordingly, they show aggregational pattern

species diversity. For example, large flood events negatively effect among the habitats where they occurred. As a result, frequent

the flowing water environments because they disturb all substrate occurrences of cosmopolitans in aquatic bodies may be related the

types and the species as well. All this information may allow us quality of these habitats, usually showing tendency for decrease.

to express the high diversity index value of creeks in the present These conditions should be carefully monitored and should be

study. taken under consideration for the protection of biodiversity. The

Last habitat that we can consider as suitable for ostracods is sampling of natural habitats (for non-cosmopolitans), frequent

“ponds”. Céréghino et al. (2012) pinpointed that biogeographic presence of cosmopolitans and dispersal ability of ostracods may

turnover is higher in ponds than in other freshwater bodies for contribute to and be used as a way of explaining spatial patterns

freshwater species. Similarly, Martín-Rubio et al. (2005) stated of ostracods among sampling sites. In spite that some of ponds,

most continental ostracods inhabit the stable water of lakes and springs and creeks are under human impact, they may be showed

ponds. In addition, the expression of Marmonier et al. (1994) may be as source habitats for ostracods. This should be tested in the future.

used to elucidate high diversity of ostracods in ponds in the present As seen in the present study, the local factors (e.g., water temper-

study as they stated that temporary ponds have species with short ature) are more effective than regional factors (e.g., elevation) on

life spans, desiccation resistance and tolerance, high migratory abil- distribution of ostracods. Finally, ecological information was gath-

ity and have spherical or cylindrical body shape. The life spans of ered from literature and from the present study of each species in

ostracods (e.g., Cypridopsis vidua reach to maturity in 45 days) that Appendices A and B and are very important for using ostracods as

change species to species (Delorme, 1991) and the body shape of bioindicators and for palaeoenvironmental reconstruction studies.

them (e.g., kidney, bean, elliptical, etc., (for more see Karanovic,

2012) imply why species diversity of ostracods are high in ponds. Acknowledgements

The well known dispersion abilty of ostracods by birds is another

important event for explanation of ponds that are suitable or may We would like to thank Daniel Hering (Germany) for his con-

be called as source habitats for ostracods. This is because ponds are structive review and comments on the earlier version of this

the stepping stones for migration, dispersion and genetic exchange manuscript and two anonymous reviewers. We also thank to Dr.

especially for wild species (e.g., birds) (Céréghino et al., 2014) and Randy Gibson (USFWS, Texas) and Dr. Benjamin T. Hutchins (TPWD,

so the eggs and ostracods attached to their feathers disperse large Texas) for their comments and suggestions on English of the first

distances in different geographical areas and habitats on the path of draft of this study. Special thanks go to Mrs. Sinem YILMAZ for

migratory birds. If suitable conditions and source habitats for ostra- her help during field studies. This study is funded by the Scientific

cods are known, we may have a chance to prevent their extinction. Project Research Agency of Abant Izzet˙ Baysal University (Project

Also, the number of similar studies should be increase in the world no: 2012.03.01.534). This is a part of Ph.D. dissertation of M.Y.

and in Turkey for ostracods and for other taxonomic groups since

they are important for the protection of biodiversity. Over all habi-

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 27 Pysp)

Psp;

Psp)

Pos;

Isp) Pysp)

(Hsp;

Psp)

Tc; Po (Isp) Isp) (Hsp;

(Pzi)

Hsp; Psp;

Pzi) Isp;

Psp) Pysp) Tsp) Ib

(Isp)

Po; Pf; Im; Pk; (Pzi) Pzi; Pv

Isp; Pos) Isp) Pzi) Isp; Im) Hsp; Hts;

Hi Hi; (Isp)

Li;

Pzi; Ib; (Hsp; Ib; Po (Isp) (Hsp) (Isp; Ib Pv Ib; Ib; Pv; Po Ib (Isp; (Isp;

Po;

Taxa Po; (Hsp; Cn; Hi (Csp; Hi; (Esp; Pfo; Cn; Po Po; (Isp) Hi; Hin; Hi; Hi; (Hsp; Hi; (Csp; Cn; Ib; Cn Po (Hsp; Hi; Im; Hin; (Hsp; Hi; Cn; Pfo Hs Hs; Hi; Hi; (Cps; Pk;

Date 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012

383” 594” 921” 551” 190” 253” 127” 708” 277” 687” 090” 278” 876” 626” 747” 863” 902” 430” 441” 817” 167” 906” 393” 493” 080” 196” 308” 235” 003” 110” 693” 463” 286” 237” 447” 957” 556” 878” 920” 682” 593” 668” 767”                                            02 41 35 35 33 30 30 30 31 31 26 28 26 32 46 48 49 47 29 23 24 23 20 14 08 42 31 31 28 28 27 25 24 32 33 48 29 26 25 14 05 05 48 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E036 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030 E030

837”, 791”, 107”, 569”, 551”, 919”, 926”, 581”, 388”, 626”, 555”, 509”, 680”, 564”, 227”, 825”, 623”, 918”, 051”, 519”, 239”, 364”, 745”, 310”, 078”, 205”, 859”, 448”, 132”, 527”, 242”, 290”, 205”, 908”, 728”, 638”, 694”, 531”, 527”, 453”, 715”, 156”, 007”,                                            31 38 38 38 39 38 38 38 38 40 40 37 32 34 33 34 31 30 29 30 30 30 30 28 18 19 20 22 22 23 26 26 25 25 25 23 22 22 21 23 26 27 29 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Coordinate N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37

Elev. 855 921 907 1050 1181 1083 1139 1124 1123 1538 1521 1083 882 1061 946 1027 898 906 878 904 905 843 907 813 637 460 287 348 282 443 792 792 808 785 815 815 810 884 1033 1310 1032 1033 1171

s.

W. 2.2 2.7 5.5 4.3 6.5 2.5 5.1 3.5 1.6 4.5 4.9 3.2 5.5 2.5 3.2 8.2 3.9 2.7 2.4 3.6 0 0 5.5 3.3 0 0 0 1.5 2.4 2.2 1.5 0 0 0 2 4.6 0 0 1.6 7 5 1.6 6.1

Burdur.

in Moist. 26.7 26.3 27.2 20.9 21 19.2 19.5 20.2 23.5 25.2 22.9 19.4 13.7 16.9 12.6 14.4 28.7 13 12.8 13.6 14 22.2 14.3 17.5 23.7 26.5 24.8 21.8 21.7 21.2 54.2 51.7 42.3 43.3 50.5 33.4 28.5 28.7 24.7 21.9 23.5 35.4 20.5

bodies

Atm. 685.7 680.5 683 671.5 661.7 669.2 664.2 665.5 665.1 635.4 635 671.2 684.3 672.5 681.2 675.1 685.1 684.3 683.9 682.4 681.9 686.5 684.8 688.4 707.5 721.4 737.8 728.8 732.2 769.9 692.8 692.5 691.2 693 690.2 690.6 691.3 684.8 672.3 651 674.2 674.6 663.5

aquatic

TDS 0.429 0.4355 0.403 0.3452 0.2944 0.494 0.2132 0.4875 0.5005 0.1489 0.1592 0.2509 0.3172 0.455 0.8385 0.39 0.3315 0.494 0.3211 0.2412 0.2379 0.2119 0.767 0.377 0.2392 0.2373 0.2522 0.39 0.2152 0.4225 0.4225 0.442 0.5655 0.2522 0.2542 0.7345 0.4875 0.676 0.2821 0.2704 1477 0.3308 0.2867

Ta 25.6 23.6 22.8 23.6 27.2 28.4 30.8 26.7 28 26.7 28.3 30.5 33.3 31.3 31.7 33.2 31.8 32.9 35.7 33.6 32.9 34.4 32.8 33.4 32.1 31.4 30.3 30.5 30.7 30.1 12.4 13.8 17.1 16.4 17.4 18.9 21.4 24 25.6 25.6 26 27 27.9 different

Tw 12.1 12.6 13.2 17.3 13.9 18.9 17.1 13.1 13.9 14.1 11 19.8 24.6 23.1 28.6 19.8 26.3 27.8 24.2 15.8 13.9 25.2 16.2 15.3 14.2 15.9 20.1 26.6 27.1 22.3 20.6 17.7 12.9 16.4 11.4 22 14.5 14.8 18 12.5 16.5 20.6 22.5 from

Sal 0.32 0.33 0.3 0.26 0.22 0.37 0.16 0.37 0.38 0.11 0.12 0.19 0.23 0.34 0.64 0.29 0.25 0.37 0.24 0.18 0.18 0.15 0.59 0.28 0.18 0.18 0.19 0.29 0.16 0.32 0.32 0.34 0.43 0.19 0.19 0.56 0.38 0.52 0.21 0.02 1.12 0.25 0.21 reported

EC

Sp. 659.7 670 620 530.2 450.5 760 328 752 766 228.8 245 386.5 486.7 703 1296 598 513 762 493.7 370 364.8 326.6 1176 579.4 367 365.2 388 603 331.4 649 650 685 874 387.8 390.9 1130 767 1036 429.7 435.7 2181 509.1 442.9 were

taxa

EC 496.7 512 480.8 451.7 355.3 665 279 581 603 181.3 179.4 347.2 483 677 1390 536 525 800 487 303.8 288 327.7 978 472.2 290.6 301.6 351.4 623 344.7 615 597 590 672 324.1 289.5 1068 612 832 372.5 338.6 1824 466.4 420.9 and

DO

% 79.5 87.3 55.1 88.6 84.6 122.3 91.9 43.3 71.5 81.5 89.5 96.7 135.6 83.5 34.4 98.9 133.3 40.4 138.5 92.1 85.7 67.9 48.2 76.5 73.3 89.4 72.4 103.1 62 71.2 66.7 59.8 66.8 41.6 83.7 92.3 92.6 74.4 100 67.6 64.7 84.5 130.4

variables

DO 8.7 9.3 5.77 8.53 8.66 11.55 8.94 4.55 7.39 8.41 9.85 8.78 11.33 7.11 2.65 9.04 10.9 3.2 11.57 9.35 8.86 5.6 4.77 7.63 7.95 8.94 6.6 8.26 5.04 6.09 5.94 5.71 7.08 4.07 9.1 7.95 9.53 7.6 9.3 7.42 6.35 7.58 11.29

pH 7.24 7.25 7.13 7.86 7.83 7.62 7.96 7.15 7.93 8.51 8.23 8.62 8.19 8.11 7.89 7.99 7.76 8.01 8.06 8.06 7.98 8.76 7.36 7.74 7.82 7.84 8.13 7.35 8.38 7.39 7.6 7.33 8.08 7.82 7.68 7.41 8.16 7.42 7.94 8.1 8.03 8.31 8.16 Ecological

A. Ty

St. 6 1 5 6 4 6 6 1 4 6 6 4 6 6 4 6 6 5 6 6 6 3 1 6 1 6 3 6 3 6 6 6 4 4 5 6 4 6 6 6 4 5 4

no

Appendix St. 1 19 28 33 16 21 22 31 38 42 6 17 20 25 24 43 7 14 29 34 3 39 8 2 12 4 5 11 13 26 27 36 37 32 40 41 9 15 23 35 10 18 30

28 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 Lis)

Pysp) Hsp;

Psp)

Psp; Cps; Pos)

Lis; Lis)

(Psp)

(Cps)

Pysp)

Psp)

Pzi; Psp)

Isp) Hsp) Im)

Psp)

(Hsp)

(Csp; (Hsp; Isp; Po; Po

Pv;

Pysp)

Isbp;

Pysp)

Isp;

Isp)

Im) Pzi; Esp; Pysp) Po;

Li; Pzi Ib; Ib Po Po; Li; (Esp;

Pv; (Hts; (Hsp;

(Csp;

(Csp; (Po)

Isp; Hsp; Isp; Hsp)

Lis) Psp;

Hi; Hi; Hi; (Esp; Ib; Hi; Ib; Par Ib; Im; Pos; (Ig) Ib; Pa Ib; Po; (Isp; (Hts;

Po; Pzi; Isb; (Cps; (Isp) (Cps; (Cps;

Cn; Li; Hi; (Csp) Ib; Ds; Hi Hi; Ib; Li; Ig; Hi; Co; Cn; (Pzi) (Cps; Co; Hs; (Hsp) (Cps; Hi Li; Hc; Hi (Hsp; Cn; (Isp; Hi; Hi; Hi (Csp; Co; (Isp) Cn; Cn; Hs; (Pysp) Hi Li; Hi; (Isp;

31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012

996” 061” 084” 093” 737” 673” 708” 692” 691” 186” 594” 134” 759” 906” 046” 313” 500” 683” 053” 417” 596” 010” 077” 365” 296” 481” 511” 711” 458” 475” 076” 124” 521” 191” 891” 103” 510” 243” 821” 476” 228” 570” 182”                                            59 59 59 59 50 45 45 57 56 56 52 48 51 10 10 03 03 02 00 59 56 54 54 50 50 48 46 45 46 46 46 46 09 06 04 04 04 57 45 46 46 49 03 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E030 E030 E030 E030 E030 E029 E029 E030 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E030 E030 E029 E029 E029 E029 E029 E029 E030 E030 E030 E029 E029 E029 E029 E029 E029 E029 E030 E029 E029 E029 E029 E029

535”, 261”, 210”, 505”, 640”, 177”, 500”, 135”, 289”, 747”, 436”, 829”, 607”, 158”, 593”, 720”, 076”, 091”, 920”, 921”, 217”, 347”, 685”, 363”, 363”, 513”, 095”, 345”, 069”, 365”, 154”, 443”, 620”, 954”, 496”, 460”, 438”, 890”, 883”, 643”, 750”, 454”, 046”,                                            28 28 29 29 28 27 23 21 20 20 21 18 16 17 20 21 23 24 24 26 23 23 23 21 21 11 13 13 14 14 12 10 10 11 08 08 07 06 05 00 59 01 01 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37

1172 1194 1129 1038 990 988 1042 1159 1239 1224 1104 1145 1428 1375 1059 1042 1042 1058 1101 1191 1110 1183 1187 1236 1235 1391 1340 1201 1204 1229 1313 1367 1277 1216 1380 1356 1398 1341 1289 1464 1515 1357 1300

1.6 12 1.6 2.5 17.5 1.8 2.7 0 1.6 2.5 1.6 0 2 0 1.9 6 6 11 2.6 5.7 12.7 3.8 2 1.6 0 0 0 1.8 0 0 4 0 5 3 12 1.5 7.4 0 3 3.5 2.3 4 0

29 26 22.3 20.1 18.9 17.8 15.8 16.3 22.2 10.4 19.9 14.2 12.6 15.5 25.8 26 14.8 13.2 13 14.4 14.4 23 43.7 43.7 38.2 32.6 34.1 28.9 36.5 32.2 30.3 27.9 26.5 27.5 20 30.7 22.7 22.9 25 15.5 14.8 14.8 16.9

663.9 660.7 665.8 672.3 676.1 676.1 671.1 661.8 655.5 657.5 666.4 662.7 640.3 644.9 669.6 670.1 670 668.8 665.2 659.1 665.4 660.2 660 657.2 656.3 646.1 651.3 662.3 661.4 659.2 652.7 648.2 655.6 660.6 648 649.7 646.1 650.8 654 641.9 638 649.8 654.6

0.3835 0.2412 0.754 0.2477 0.455 0.3445 0.2743 0.1534 0.2516 0.2197 0.3204 0.3952 0.2912 0.3367 0.6435 0.3835 0.2478 0.3075 0.2567 0.2418 0.3048 0.403 0.637 0.3464 0.3698 0.3536 0.232 0.2189 0.366 0.4225 0.338 0.2203 0.2405 0.4017 0.1976 0.4095 0.2028 0.2646 0.3549 0.1911 0.2152 0.2366 0.442

31.2 27.1 31.7 32.5 29.7 32.3 33.1 30.5 31.5 30.5 33 33.8 34.5 33.3 32.3 29.8 34.5 31.4 29.5 30.5 30.5 28.3 14.7 16.8 17.4 20.9 23 25.6 24.6 25.9 25.7 27 26.7 25.8 26.4 29.1 28.7 30.1 30.4 31.5 31.4 32.6 33.6

19.6 22.4 18.3 20.3 21.5 27.2 23.1 16.7 26.2 23.7 24.9 15.5 11.8 22.3 28.9 28 26 27.6 23.1 22.9 24.9 21.5 14 17.6 17.6 10.3 12.1 20.5 13.5 15.9 15.3 13.1 14.2 14.2 18.4 15.4 18.2 19.6 15.3 12.8 21.8 19.7 18.1

0.29 0.18 0.58 0.18 0.34 0.26 0.2 0.11 0.18 0.16 0.24 0.3 0.22 0.25 0.48 0.29 0.17 0.22 0.17 0.18 0.23 0.3 0.49 0.26 0.28 0.26 0.17 0.18 0.27 0.32 0.25 0.16 0.18 0.3 0.15 0.31 0.15 0.2 0.27 0.14 0.16 0.17 0.33

586 371.2 1158 381.3 705 532 421.7 235.4 386.6 338.2 492.1 608.3 447.8 518.7 989 594 396.2 471.2 343.2 373.4 470.1 621 981 532 568.9 543.9 356.9 383.6 563 653 518 339 369.9 617.9 304.9 510 312.8 407.3 546.4 290.6 330.8 364 678

525 352.8 1010 346.9 658 556 407.1 198.1 395.6 329.6 491.4 497.7 335.1 992 1064 628 395.2 500 329.5 358.3 469.7 580 77.5 459.1 488.2 391 269.1 351.1 438.7 540 421.4 261.6 293.4 490.3 266.1 625 272.1 365.3 449 223.6 311.3 327 588

76.3 81.5 48.7 66.2 110.7 59 110.4 96.3 72.9 49.7 69.1 73.2 67.2 94.4 69 154.1 135.2 131.2 84 83.6 67.6 84.6 51 65.3 93.9 88.4 88.5 79.7 63.1 77.7 81.4 67.3 84.2 22.4 78.1 73.4 67.4 89.2 86.3 70.7 67.4 84.6 68.2

6.96 7.02 4.54 5.95 9.74 4.7 9.5 9.5 5.88 4.16 5.77 7.18 7.26 8.25 5.34 12.05 10.79 10.59 7.26 7.04 5.6 7.52 5.28 6.21 8.01 9.93 9.5 7.17 6.57 7.71 8.16 7.08 8.65 2.27 7.34 7.33 6.36 8.4 8.58 7.52 5.91 7.75 6.37

8.13 8.38 7.05 8.21 8.51 7.82 8.15 8.65 8.51 8.2 8.45 7.63 7.63 7.85 8.79 8.96 9.02 8.26 7.89 8.61 8.02 8.73 7.61 8.29 7.94 8.41 8.25 8.5 8.01 8.42 8.39 8.16 7.77 7.44 8.49 8.02 8.23 8.29 7.87 8.23 8.3 8.31 7.75

5 3 6 4 5 1 6 4 5 4 4 6 1 6 4 2 2 6 6 3 6 3 6 6 6 5 5 3 4 5 5 6 6 2 5 5 1 4 6 6 3 6 6

44 45 70 56 60 64 54 69 75 82 58 81 52 67 62 50 78 47 48 51 59 63 65 68 76 79 83 84 61 74 49 73 86 46 55 66 85 72 57 71 77 80 53

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 29 P. H. * *

km

Pysp, Ps,

pool);

Psp) ;

; Hin,

Isocypris ; * (or

Pzi; speed,

Pysp) Pas)

Isp) Lis)

fallax Pysp)

Psp)

Isb, conductivity;

Hts;

Isp; Lis; P. (Hts)

Lis)

Psp) pond Pysp)

Isp; olivaceus *

Hts;

wind

Hsp;

(Ig) (Isp) (Hsp) sp.; (Psp) Po 4, (Hsp; Po; (Cn; Po (Hts)

P.

chevreuxi Isp; Isp) s.,

Pf, Isp; Hsp; Isp;

Hsp;

; Ib; Ib; (Isp) (Pysp) (Isp) (Csp; Ib; Ib; (Csp; Po; Ib; Ps Po; Po; Im Ib;

(Hsp) Po; (Cn;

(Isp)

Po, W.

; electrical (Hsp; (Hsp; Hi; (Cps; Hi; Cn; Hi; Hi; Ib; (Isp) (Csp; (Pysp) Hi; Hs; Hi; (Esp) Hi; Hi; Po; Po Po; Hs; Hi Cn; (Psp) Hi; (Esp; Ib; (Hts; Hi; Li; Ib; dam;

%;

3,

Ilyocypris arcuata

*

specific lake;

Isp, fontinalis Herpetocypris

; 2,

Moisture, EC,

Hc, 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012

Sp.

;

sp.; 1

Potamocypris spring; −

Moist.,

1, 499” 133” 031” 107” 720” 509” 988” 858” 959” 931” 149” 489” 705” 491” 713” 351” 537” 172” 727” 726” 051” 474” 855” 495” 590” 243” 836” 179” 858” 922” 130” 609” 849” 855” 448”

                                   monstrifica cm

Par,

I. 27 29 29 43 35 38 40 45 44 58 58 44 42 39 36 36 35 33 32 29 29 51 00 04 22 23 28 45 31 32 31 31 32 02 30 S

; ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Psychrodromus ␮

* Eucypris

Im, * mmHg;

types;

E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E030 E030 E029 E030 E030 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E029 E030 E029 E029 E029 E029 E029 E029 ;

Pfo,

Esp,

959”, 770”, 158”, 334”, 175”, 774”, 781”, 255”, 909”, 823”, 861”, 174”, 829”, 883”, 077”, 143”, 565”, 645”, 445”, 485”, 647”, 497”, 422”, 412”, 691”, 560”, 434”, 203”, 805”, 657”, 655”, 544”, 084”, 659”, 939”, ;                                    gibba kraepelini

sp.;

I. 04 04 05 06 06 05 06 05 01 59 58 59 59 00 00 00 04 05 09 09 31 32 33 35 33 37 39 40 43 42 41 39 35 39 45 Aquatic ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ *

pressure,

conductivity, Ig,

N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N36 N36 N36 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37 N37

; stevensoni

Physocypria bradyi *

1143 1121 1119 955 973 960 965 990 1266 1073 1079 1079 1106 1161 1209 1259 1038 995 1164 1208 1116 1204 1134 1153 1180 1119 1009 1064 1156 1060 848 890 917 1183 1120 1538 282

electrical parenthesis.

atmospheric Pseudocandona Pk,

in *

EC,

Darwinula sp.;

6 1.9 9.5 0 0 0 0 4 0 6 4.2 2 1.7 2.3 2.4 2.2 0 2.2 9.4 0 1.7 4 0 1.3 2.8 2.8 0 2.7 5.5 1.5 3.7 3 2.7 0 16.3 17.5 0

Psp, Atm., Ilyocypris

; ; Ds,

1 shown

Ib, −

L

sp.; 16.8 18.9 15.3 15.2 14.4 24 19 16.2 29.1 21.1 17.2 16.6 17.7 15.9 17 16.5 17.7 18.5 21.3 29.9 48.7 39.5 49.4 41.8 28.6 32.4 34.4 26.9 27.5 31.7 28.1 21.1 26.5 39 21.3 54.2 10.4

sp.; saturation;

were mg

albicans

Cypria taxa *

667 667.4 666.4 679.7 678.1 667.5 678.7 676.3 654.9 670.4 668.4 668.1 667.6 663.5 659.5 655.8 673.3 676.6 662.5 658.9 668.7 663.1 668.7 666.8 664.4 669 678.6 674.4 667.5 676.2 691.3 687.4 684.9 663.2 669 769.9 635 solid,

of percent

Paralimnocythere

*

Cps,

;

DO,

Heterocypris

form * Pas,

%

; 0.2652 0.637 0.572 0.468 0.416 0.3484 0.5655 0.65 0.3965 0.2815 0.4101 0.3893 0.468 0.5135 0.52 0.4225 0.767 0.663 0.442 0.3581 1774 0.481 1729 0.884 0.217 0.624 0.585 0.884 0.572 0.702 23.037 0.533 15.288 0.352 0.3425 1774 0.1489 1 dissolved

Pseudocandona − sp.; * Hsp,

L

;

Pa, total mg

ophtalmica

34.1 32.6 33.2 36.6 37.2 36.6 35.8 36.2 35.7 31 34.1 30.8 30.6 31.5 28.8 28.7 30 29.6 25.5 15.9 18.2 21.4 22.9 23.8 24.7 25.9 26.5 26.7 27.8 27.8 29.2 31.1 29.4 29 27.1 37.2 12.4 ; sub-recent

salina

TDS,

H.

The Cypria

C;

zenkeri 23.3 19.1 22 25.8 16.4 11.9 14.8 18.1 21.3 25.8 11.8 11.7 20.9 24.6 24.5 22.9 20.1 16.4 19.3 16.7 20.1 13.4 21 25.8 23 15 14.5 19.4 16.6 16.1 28.2 21.6 26.8 14.2 21 28.9 10.3 oxygen, ◦

Hs, Limnocythere

sp. * ;

Co,

Lis,

sp.; ;

0.2 0.49 0.43 0.35 0.31 0.26 0.43 0.5 0.3 0.21 0.31 0.29 0.36 0.39 0.39 0.32 0.59 0.51 0.33 0.27 1.42 0.36 1.35 0.68 0.16 0.48 0.45 0.68 0.43 0.54 23.33 0.4 14.22 0.26 0.25 23.33 0.02 dissolved

Prionocypris

temperature, DO, incongruens

Trajancypris

* Candona

inopinata * Pzi,

air

Burdur.

407.8 982 882 724 643 535.9 870 998 611 432.7 628.2 599.3 729 793 803 655 1185 1021 681 550.9 2735 729 2617 1360 334.2 958 903 1361 880 1080 380.74 816 23430 557 526.9 23430 228.8

type; Tsp,

Ta,

for

sp.;

; Csp,

;

C;

site

Heterocypris

394.7 870 831 750 535 401.9 700 866 568 438.9 470.9 446.1 672 784 801 628 1072 852 606 463.2 2478 568 2411 1387 321.7 774 720 1216 739 896 389056 762 24265 435.7 486.5 389056 77.5 Ty.,

clavata reports

Limnocythere Hi, St. neglecta

C. Li, new

sp.;

Potamocypris 68.7 54.9 71.9 72.6 85.6 86.1 30.9 26.7 66.7 71.1 68 66.1 61.8 73.1 90.1 80.3 45 23.5 92 63.8 82 85.8 79.3 67.8 85.9 55.8 62.7 67 57.7 74.2 81.1 88.5 90 79.2 89.1 154.1 22.4 *

Cn, sp.;

temperature,

number;

Pos,

Trajancypris

a.s.l; * ;

site 5.87 5.12 6.27 5.65 8.41 9.3 3.1 2.54 5.94 5.76 7.3 7.16 5.56 6.08 7.6 6.95 4.09 2.31 8.42 6.21 7.34 8.98 6.94 5.21 7.34 5.67 6.59 6.18 5.64 7.3 5.61 7.82 6.55 8.13 7.94 12.05 2.27 water

m represents

Tc,

Isocypris *

* no,

Herpetocypris Tw,

sp.; *

St.

variegata 8.47 7.65 7.79 8.01 7.67 7.65 7.56 7.63 7.77 8.22 7.57 7.41 7.49 7.93 7.49 7.53 7.59 7.55 8.59 7.78 9.1 8.78 9.13 8.08 8.44 8.03 8.64 9.26 7.85 8.14 8.95 7.91 9.44 9.05 8.27 9.44 7.05

Isbp,

ppt; P.

; Hts, trough.

*

Elevation, ;

6,

Pv,

3 6 6 2 6 5 6 6 6 3 1 1 6 6 6 6 6 6 6 6 2 5 2 6 6 1 6 4 6 5 2 6 2 2 5 Min Max ; Elev.,

salinity, ;

1 creek;

− Psychrodromus beauchampi Sal, similis h intermedia 5, * 87 Abbreviations: 89 91 106 107 121 88 90 93 113 118 100 119 116 94 120 95 104 105 98 96 108 102 115 97 99 103 109 112 114 101 111 92 110 117

30 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 ; ; ; der ) and Sarı Van

g/L) 28 49 15 15 (1 Yılmaz ; ; (2007) (2015) (2013) Ramulu Van

18

28 18 63 23 dissolved

62 ; al. 15 47 33 22 al. al. Horne

14 22 63 18 63 (0–39

; 14 12 24 14 43 43 et 35 –4 –0.36 14 4 18 et et

–5.5 –3.30 –1.3 –0.4 –50 –0.24 –1.10 –0.5 (2000) (2000) ;

28 22 total

-15 –40 –2.4 –0.83 –2.1 –0.37 –0.39 18 18 33 33 22 18 12 22 –25 –3.6 –4.5 –50 –25 ˘ 13 14 4 39 4 4 32 33 17 7 33 4 (2001) glu Guo

Sal. 1 0 0.1 0 0 0 0.1 0 0 0.1 0.04 0.1 0 0 0 0.1 0.1 0.1 0 0.06 0.1 0 (2006)

55 Narasimha TDS, al.

; (2008) al. 42

Meisch

et

Vinyard ;

et 14 al.

; a.s.l); 49 9 28

41 41 41 et 23 33 33 and

Yavuzatmaca 41 41 41 23 Külköylüo (1993)

33

12 41 33 41 12 6 (m Pieri

21 (2010) ;

; ˘ 61 glu 12 23 (1976) 63

; Mezquita –580.5 –450.5 –702 –0.3003 –1776 –615 –122 –958.75 –494 –565.5 –20034 –20034 –1776 –1631 –23973 –186.03 –1691 –418 al. Dügel

–575.3 63 63 63 63 28 22 63 21 22 63 22 22 21 22 63 63 22 22 27 43 34 et –342 ;

Baltanás ; (2004) –1774 –414.7 11

33 33 (2005c) elevation Keyser (1993)

TDS 4.6 0.0520 0.1534 0.2478 0.2152 0.099 0.2152 0.1482 0.2145 0.2522 0.1352 0.1475 0 0.2542 0.1313 0.1748 0.3204 0.1339 0 0.0890 0.1313 0.2152

al.

and 13

Külköylüo ; ˘ (2012) et glu

48 Meeren Elev.,

(2012a)

;

Roca ) )

) al. C); der 55 55 54

◦ 55 (2013)

( ;

et

Marmonier Rossetti al. (2014)

5

32 23 10 23 12 23 Van Külköylüo (4570 (4570 Namiotko

41 32 46 (4570 2 14 ; ˘ et glu 18 41 2 2 23 2 41 2 41 14

41 al. 20 2

and ;

(2006) ;

and et ˘ –1420 –2235 –1789 –1954 –1684 –1560

glu

–2290 –2980 –2426 –1663 –1700 al. 17 18 28 17 18 56

–1398 –2018 –2376 –1440 –3194 –2500 –3194 –1921 –3194 –2079 2 2 31 45 45 –3199 (2013) 10 2 45 61 45 17 36 45 45 17 45

et

Elev. 5 0 61 0 0.5 1 7 0 10 10 0 125 0.5 285 0 0 300 605 114 110 5 5 temperature (2009) Valls (2014)

al.

Külköylüo 47 al. air al. et Burdur.

;

33

Châtelliers

; Külköylüo et Iglikowska et in

Ta,

Boomer 42 21 12 26 des 21 22 21 22 21 63 22 ); Ruiz ;

Yu ; 53 21 21 21 22 1 4 63 21 21 21 38 38 (2012) 9 ; − 63

40 ; –42.9 L 63

; –38.7 –42 –31.1 –42.9 –39.1 –42.3 –35.7 –39.5 –42.35 –34 –34 (2012b) al. 49 –42.3 –36.3 –42.8 –33.3

–34.5 –40.5 –42.8 30 63 63 22 63 28 23 59 22 30 30 Mazzini –30.2 –33 –34.5 (2012) 20 30 20 30

8 35 28 9 35 Creuzé (2013) et

al. (mg recorded

19

35

(2001) Ta 12 6.6 9.3 6 4.10 11.2 15 8.4 2.2 16.4 10 12.4 18 15.9 12.4 18.5 17 24.2 19.60 12.5 27.2 4.10 60 al. ;

(1999b) et

(2006) ;

et al.

al.

˘ glu Aygen ˘ glu et Brunke et oxygen

species

(2014) 46

7

21 28 39 37 63 58 (2004) ; 2

49 29 57 22 2 32 10 al. and

5 27 2 12

2 29 Mischke 22 et

for –19.23 –17 –17.1 –10.30 –13.54 –12 –13.26 –15.8 –14 –10.79 –20 –10.8 –19.12 11 2

–20 –16.478 –15.4 –20.7 –20.70 –12.1 –14 Dügel ; Gandolfi 21 51 2 23 21 23 22 23 6 2 28 30 42 63 2 2 28 23 Külköylüo (2004)

Külköylüo

Mezquita 3 10 60 dissolved

–20 –1884 Scharf lı 32 ; 2 4

¸ 52 DO 0.32 0.32 0.75 0 1.07 2.03 4.07 0.28 2.01 1.84 2.11 1.4 1.74 2.55 0.28 0 5.05 1.47 3.27 0.9 7.11 2.91 ; 25 and ;

and ; DO, Rasouli

); (1999c) ˘ 18 glu

1 variables

; (2013) −

al. Altınsac

(2008) 37

(1999a) (2014)

45 2 63 61 17 et Yılmaz cm ˘ glu

22

63 2 17 22 41 ; 5 62 S 22 34 ˘ al. glu 39 2 12 22 12 17

2 25 ␮ ; ( –9.36 –8.45 –9.95 –10.44 –9.9 –9.73 (2012c) et

–9.89

–9 –13 –9.26 –8.8 –12.8 –8.84 –9.15 –9.3 Külköylüo Hailei 40 2 33 18 61 28 23 –9.67 –9.8 –10.4

–11.8 –9.18 –11.4 –9.92 4 26 14 4 44 52 50 33 33 58 4

ecological al. 59

(2007)

19 33 53 19

; pH 5.5 6 6.4 4.7 6.59 5.8 6.8 5.43 6.29 7.2 6.3 6 5 6 5.3 6.05 7.34 5.04 6.5 6.5 6.32 6.4 and et Mezquita (2011)

Külköylüo

2 ˘ 10 g Külköylüo

; ; ˘ glu Gao Mezquita Petrov

(2012) 24

and 31 different

27 18 18 conductivity ˘ g ;

Özulu ; 22 27 63 52 12 27 56 18 37 49 22 27 and 27 18 2

38 18 ˇ c 3 ; 63 22 -Sarı

al.(2003) ¸ ˇ si

eight –799 –13810 –1393 –3529 –3320 –10050 –1074 –4085 –10050 Özulu

–5290 –1234 Külköylüo ˘ (2014) –5063 –1475 –3866 –24265 glu(2005b)

–1279 –5260 39 17 2 22 33 22 22 9 21 22 22 (2014) et –5260 –5290 58

of 26 28 17 32 2 17 10 18

–9600 –2478 –3866 ; 12 electrical

3

; ˘ al. glu (2007) 33 33

ˇ Znidar EC 86 4.5 92.9 40.8 64.29 122.2 300 15.64 15.94 187.4 74.7 221.2 0 84.9 11.04 15.94 254.1 178.4 0 137.4 163 28.2 Karakas et EC,

51 Kiss values ;

C); Doninck ˘ glu Külköylüo ◦

(2003b) 37 (2005a)

( 9

Karan- ; ; 17 21 22 23 44 28 Külköylüo 44 12 49 23 21 38 47 ˘ study. glu 18 21 44 Van

˘

glu ; 2 2 21 14 38 1 (2010) 22

–28.9 –33.8 –33 –31.7 –35 ––35 –26.9 2 ); –36.7 and al. –29.2 –33 –42 –30.6 –33.9 –29.8 –33.9 –34 –29 –31.4

(2009)

–25.9 –28 16 34 30 2 28 30 44 41 (2007)

–28.3 ‰

25 34 27 27 48 54 27 27 59 37 Külköylüo maximum 27 27 –35 ( et

1 52 al. (1981) 30 4 2.9 0.9 7.14 10.5 Tw 2.13 1.1 3.7 1.68 3.7 5.7 1.68 7.4 3.7 3.7 15 10.6 9.9 13 5 12.9 4.75

present

; temperature et Külköylüo

and

Külköylüo

Horne the 57 8 16 Akdemir ; ; 63 ;

salinity

Martins 23

; Pieri

(1991) ; water Deckker

36

;

Sal.,

De

(2014) Tw, (2009)

(2002)

); albicans

Minimum olivaceus fontinalis

43 (2011)

1

chevreuxi intermedia (2014)

inopinata fallax similis variegata arcuata al.

;

− incongruens salina

al. zenkeri clavata ˘ glu

kraepelini

L al. B.

stevensoni (2008) Delorme

Fernandes al. et

gibba monstrifica bradyi

et

neglecta beauchampi

et 29 50

et ophtalmica

; ;

(mg

(2011)

¸ak al. Uc Escrivà

Species Darwinula Pseudocandona Cypria Physocypria Ilyocypris Ilyocypris Ilyocypris Prionocypris Trajancypris Herpetocypris Herpetocypris Psychrodromus Psychrodromus Heterocypris Heterocypris Isocypris Potamocypris Potamocypris Potamocypris Limnocythere Potamocypris Candona Külköylüo et solids Doninck Meeren (2014) Mezquita (2007) Appendix Abbreviations: 7 22 56

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 31

References Guo, Y., Frenzel, P., Börner, N., Akita, L.G., Zhu, L., 2013. Recent Ostracoda of Taro Co

(Western Tibetan Plateau). I. Nat. Sicil. In: 17th International Symposium on

Ostracoda, Roma, Italy. July 23rd–26th, 2013, pp. 161–162, XXXVII/1.

Akdemir, D., Külköylüoglu,˘ O., 2011. Freshwater Ostracoda (Crustacea) of

Heip, C., 1975. On the significance of aggregation in some benthic marine

Diyarbakır Province, including a new report for Turkey. Turk. J. Zool. 35 (5),

671–675. invertebrates. Proceeding of 9th European Marine Biology Symposium,

527–538.

Akdemir, D., Külköylüoglu,˘ O., 2014. Preliminary study on distribution, diversity,

Heip, C., 1976. The spatial pattern of cyprideis torosa (Jones, 1850) (Crustacea:

and ecological characteristics of non-marine Ostracoda (Crustacea) from the

Ostracoda). J. Mar. Biol. Assoc. UK 56, 179–189.

Erzincan region (Turkey). Turk. J. Zool. 38, 421–431.

Higuti, J., Lansac-Tôha, F.A., Velho, L.F.M., Pinto, R.L., Vieira, L.C.G., Martens, K., 2009.

Altınsac¸ lı, S., 2004. Investigation on Oostracoda (Crustacea) fauna of some

Composition and distribution of Darwinulidae (Crustacea, Ostracoda) in the

important wetlands of Turkey. Pak. J. Biol. Sci. 7 (12), 2130–2134.

alluvial valley of the upper Paraná River, Brazil. Braz. J. Biol. 69 (2), 253–262.

Alvarez Zarikian, C.A., Blackwelder, P.L., Hood, T., Nelsen, T.A., Featherstone, C.,

Hill, J.L., Curran, P.J., Foody, G.M., 1994. The effect of sampling on the species-area

2000. Ostracods as indicators of natural and anthropogenically-induced

curve. Global. Ecol. Biogeogr. Let. 4, 97–106.

changes in coastal marine environments. In: Coast at the Millenium

Holmes, J.A., Fothergill, P.A., Street-Perrott, F.A., Perrott, R.A., 1998. A high

(Proceedings of the 17th International Conferences of The Coastal Society),

resolution Holocene ostracod record from the Sahel zone of Northeastern

Portland, OR USA, 9–12 July 2000.

Nigeria. J. Paleolimnol. 20, 369–380.

Aygen, C., Özdemir Mis, D., Ustaoglu,˘ M.R., 2012. Discovering the hidden

Horne, D.J., Martens, K., 1998. An assessment of the importance of resting eggs for

biodiversity of Crustacea (Branchiopoda, Maxillopoda and Ostracoda)

the evolutionary success of Mesozoic non-marine Cypridoidean Ostracoda

assemblages in the high mountain lakes of Kac¸ kar mountains (Turkey). J. Anim.

(Crustacea). Arc. Hydrobiol. Special Issues Adv. Limnol. 52, 549–561.

Vet. Adv. 11 (1), 67–73.

Horne, D.J., Mezquita, F., 2008. Palaeoclimatic applications of large databases:

Benson, R.H., 1990. Ostracoda and the discovery of global Cainozoic

developing and testing methods of palaeotemperature reconstruction using

palaeoceanographical events. In: Whatley, R., Maybury, C. (Eds.), Ostracoda

non-marine ostracods. Senck. Lethaea 88, 93–112.

and Global Events. , pp. 41–59.

Horne, D.J., 2003. Key events in the ecological radiation of the Ostracoda. Paleontol.

Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F., 1990. Diatoms

Soc. 9, 181–201.

and pH reconstruction. Philos. T. R. Soc. Lon. B 327, 263–278.

Horne, D.J., 2007. A mutual temperature range method for quaternary

Boomer, I., Horne, J.D., Smith, R.J., 2006. Freshwater Ostracoda (Crustacea) from the

palaeoclimatic analysis using european non-marine Ostracoda. Quat. Sci. Rev.

Assynt region, NW Scotland: new Scottish records and a checklist of Scottish

26, 1398–1415.

freshwater specie. Bull. Inst. R. Sc. Nat. Belg.: Entomolo. Biol. 76, 111–123.

Hurlbert, S.T., 1984. Pseudoreplication and the design of ecological field

Bronhstein, Z.S., 1947. Fresh-water Ostracoda, Fauna of the USSR, Crustaceans, V.2.

experiments. Ecol. Monogr. 54 (2), 187–211.

No.1. Russian Translation Series, 64. Academy of Sciences of the USSR

Iglikowska, A., Namiotko, T., 2010. Freshwater Ostracoda (Crustacea) of Inari

Publisghers, Amerind Publishing Company Moscow, Russia, New Delhi, English

Lapland in northern Finland. Ann. Limnol-Int. J. Lim. 46, 199–206.

translation 1988.

Iglikowska, A., Namiotko, T., 2012. The impact of environmental factors on

Brown, J.H., Gibson, A.C., 1983. Biogeography. The C. V Mosby Company, USA.

diversity of Ostracoda in freshwater habitats of subarctic and temperate

Burdur, 2014. http://www.cografya.gen.tr/tr/burdur/iklim.html (accessed

08.01.2014). Europe. Ann. Zool. Fenn. 49, 193–218.

Jiang, Q.F., Shen, J., Liu, X.Q., Zhang, E.L., 2008. Holocene climate reconstruction of

ter Braak, C.J.F., Barendregt, L.G., 1986. Weighted averaging of species indicator

Ulungur Lake (Xinjiang: China) inferred from ostracod species assemblages

values: its efficiency in environmental calibration. Math. Biosci. 78, 57–72.

and stable isotopes. Front. Earth Sci. China 2, 31–40.

ter Braak, C.J.F., 1987. The analysis of vegetation-Environment relationships by

Juggins, S., 2003. Software for Ecological and Palaeoecological Data Analysis and

canonical correspondence analysis. Vegetatio 69, 69–77.

Visualization, − C2 User Guide. University of Newcastle,

Céréghino, R., Oertli, B., Bazzanti, M., Coccia, C., Compin, A., Biggs, J., Bressi, N.,

Newcastle-upon-Tyne, UK.

Grillas, P., Hull, A., Kaletta, T., Scher, O., 2012. Biological traits of european pond

Külköylüoglu,˘ O., Dügel, M., 2004. Ecology and spatiotemporal patterns of

macroinvertebrates. Hydrobiologia 689, 51–61.

Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Arch. Hydrobiol. 160

Céréghino, R., Boix, D., Cauchie, H.M., Martens, K., Oertli, B., 2014. The ecological

(1), 67–83.

role of ponds in a changing world. Hydrobiologia 723, 1–6.

Külköylüoglu,˘ O., Sarı, N., 2012. Ecological characteristics of the freshwater

Chivas, A.R., De Deckker, P., Shelley, J.M.G., 1986. Magnesium and strontium in

Ostracoda in Bolu region (Turkey). Hydrobiologia 688, 37–46.

non-marine ostracod shells as indicators of palaeosalinity and

Külköylüoglu,˘ O., Vinyard, G.L., 2000. Distribution and ecology of freshwater

palaeotemperature. Hydrobiologia 143 (1), 135–142.

Ostracoda (Crustacea) collected from springs of Nevada, Utah, and Oregon: a

Creuzé des Châtelliers, M., Marmonier, P., 1993. Ecology of benthic and interstitial

preliminary study. West. N. Am. Nat. 60, 291–303.

ostracods of the Rhone river, France. J. Biol. 13 (2), 268–279.

Külköylüoglu,˘ O., Dügel, M., Kılıc¸ , M., 2007. Ecological requirements of Ostracoda

Dügel, M., Külköylüoglu,˘ O., Kılıc¸ , M., 2008. Species assemblages and habitat

(Crustacea) in a heavily polluted shallow lake, Lake Yenic¸ aga˘ (Bolu, Turkey).

preferences of Ostracoda (Crustacea) in Lake Abant (Bolu, Turkey). Belg. J. Zool.

Hydrobiologia 585, 119–133.

138 (1), 50–59.

Külköylüoglu,˘ O., Yavuzatmaca, M., Akdemir, D., Sarı, N., 2012a. Distribution and

Danielopol, D.L., Ito, E., Wansard, G., Kamiya, T., Cronin, T.C., Baltanás, A., 2002.

local species diversity of freshwater Ostracoda in relation to habitat in the

Techniques for collecting and study of Ostracoda. In: Holmes, J.A., Chivas, A.R.

Kahramanmaras¸ province of Turkey. Int. Rev. Hydrobiol. 97 (4), 247–261.

(Eds.), The Ostracoda: Application in Quaternary Research, vol. 131. Geophys.

Külköylüoglu,˘ O., Sarı, N., Akdemir, D., 2012b. Distribution and ecological

Monogr., pp. 65–96.

requirements of ostracods (Crustacea) at high altitudinal ranges in

De Deckker, P., 1981. Ostracods of athalassic saline lakes. Hydrobiologia 81,

131–144. Northeastern Van (Turkey). Ann. Limnol-Int. J. Lim. 48, 39–51.

Külköylüoglu,˘ O., Sarı, N., Akdemir, D., Yavuzatmaca, M., Altınbag,˘ C., 2012c.

Delorme, L.D., 1991. Ostracoda. In: Thorpe, J.H., Covich, A.P. (Eds.), Ecology and

Distribution of sexual and asexual Ostracoda (Crustacea) from different

Classification of North American Invertebrates. Academic Press, New York.

altitudinal ranges in the Ordu region of Turkey: testing the rapoport rule. High

Elliott, J.M., 1973. Some methods for the statistical analysis of samples of benthic

Alt. Med. Biol. 13 (2), 126–137.

invertebrates. scientific publication No. 25, freshwater biological association,

Külköylüoglu,˘ O., Akdemir, D., Sarı, N., Yavuzatmaca, M., Oral, C., Bas¸ ak, E., 2013.

Ambleside, Westmorland, Great Britain. In: Ludwig, J.A., Reynolds, J.F. (Eds.),

Distribution and ecology of Ostracoda (Crustacea) from troughs in Turkey.

Statistical Ecology – A Primer on Methods and Computing. John Wiley and

Turk. J. Zool. 37, 277–287.

Sons, New York, 1988.

Külköylüoglu,˘ O., Sarı, N., Dügel, M., Dere, S¸ ., Dalkıran, N., Aygen, C., C¸ apar Dinc¸ er,

Elmore, A.C., Sosdian, S., Rosenthal, Y., Wright, J.D., 2012. A global evaluation of

S., 2014. Effects of limnoecological changes on the Ostracoda (Crustacea)

temperature and carbonate ion control on Mg/Ca ratios of ostracoda genus

community in a shallow lake (Lake C¸ ubuk, Turkey). Limnologica 46, 99–108.

Krithe. Geochem. Geophy. Geosy. 13, 1–20.

Külköylüoglu,˘ O., 1998. Freshwater Ostracoda and their quarterly occurance in

Escrivà, A., Rueda, J., Armengol, X., Mesquita-Joanes, F., 2014. Artificial dam lakes as

S¸ amlar lake (Istanbul,Turkey). Limnologica 28, 229–235.

suitable habitats for exotic invertebrates: Ostracoda ecology and distribution

Külköylüoglu,˘ O., 2003a. A new report on and the loss of Scottia pseudobrowniana

in reservoirs of the Eastern Iberian Peninsula. Knowl. Manag. Aquat. Ecocyst.

Kempf, 1971 (Ostracoda) from a limnocrene spring in Bolu, Turkey.

412, 09, http://dx.doi.org/10.1051/kmae/2013091.

Crustaceana 76 (3), 257–268.

Fernandes Martins, M.J., Namiotko, T., Cabral, M.C., Fatela, F., Boavida, M.J., 2010.

Külköylüoglu,˘ O., 2003b. First report of the genus Isocypris (Ostracoda) from

Contribution to the knowledge of the freshwater Ostracoda fauna in

Turkey: , ecology, and general distribution. Crustaceana 75,

continental Portugal, with an updated checklist of Recent and Quaternary

1083–1093.

species. J. Limnol. 69, 160–173.

Külköylüoglu,˘ O., 2004. On the usage of ostracods (Crustacea) as bioindicator

Forester, R.M., 1991. Ostracode assemblages from springs in the western United

species in different aquatic habitats in the Bolu region, Turkey. Ecol. Indic. 4,

States: implications for paleohydrology. Mem. Entomol. Soc. Can. 155,

181–201. 139–147.

Külköylüoglu,˘ O., 2005a. Factors effecting Ostracoda (Crustacea) occurrence in

Gülen, D., 1985. The species and distribution of the group of Podocopa

Yumrukaya Reedbeds (Bolu, Turkey). Wetlands 25, 224–227.

(Ostracoda-Crustacea) in freshwaters of western anatolia. Istanbul˙ Üniversitesi

Külköylüoglu,˘ O., 2005b. Ecology and phenology of freshwater ostracods in Lake

Fen Fakültesi Mecmuası Seri B 50, 65–80.

Gölköy (Bolu, Turkey). Aquat. Ecol. 39, 295–304.

Gandolfi, A., Todeschi, E.B.A., Van Doninck, K., Rossi, V., Menozzi, P., 2001. Salinity

Külköylüoglu,˘ O., 2005c. Ecological requirements of freshwater Ostracoda

tolerance of Darwinula stevensoni (Crustacea, Ostracoda). Ital. J. Zool. 68, 61–67.

(Crustacea) in two limnocrene springs (Bolu, Turkey). Ann. Limnol-Int. J. Lim.

Gao, S., Hailei, W., 2014. Ostracodes from recent surface deposits in tibet, response

41, 237–246.

to environmental changes. Acta Geol. Sin. 88, 24–26.

32 M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33

Külköylüoglu,˘ O., 2009. Ecological succession of freshwater Ostracoda (Crustacea) Pieri, V., Martens, K., Naselli-Flores, L., Marrone, F., Rossetti, G., 2006. Distribution

in a newly developed rheocrene spring (Bolu, Turkey). Turk. J. Zool. 33, of recent Ostracods in inland waters of Sicily (Southern Italy). J. Limnol. 65, 1–8.

115–123. Pieri, V., Martens, K., Stoch, F., Rossetti, G., 2009. Distribution and ecology of

Külköylüoglu,˘ O., 2013. Diversity, distribution and ecology of non-marine non-marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (Ne

Ostracoda (Crustacea) in Turkey: application of pseudorichness and Italy). J. Limnol. 68 (1), 1–15.

cosmoecious species concepts. Recent Res. Devel. Ecol. 4, 1–18. Poquet, J.M., Mesquita-Joanes, F., 2011. Combined effects of local environment and

Külköylüog˘lu, O., Yavuzatmaca, M., Sarı, N., Akdemir, D., 2016. Elevational continental biogeography on the distribution of Ostracoda. Freshw. Biol. 56,

distribution and species diversity of freshwater Ostracoda (Crustacea) in 448–469.

üankörö region (Turkey). J. Freshwater Ecol. 31 (2), 219–230. Rasouli, H., Aygen, C., Külköylüoglu,˘ O., 2014. Contribution to the freshwater

Karakas¸ -Sarı, P., Külköylüoglu,˘ O., 2008. Comparative ecology of Ostracoda Ostracoda (Crustacea) fauna of Turkey: distribution and ecological notes. Turk.

(Crustacea) in two rheocrene springs (Bolu, Turkey). Ecol. Res. 23, 821–830. J. Fish. Aquat. Sci. 20, 11–20.

Karan-Znidarˇ siˇ c,ˇ T., Petrov, B., 2007. Non-marine Ostracoda (Crustacea) of Banat Reeves, J.M., De Deckker, P., Halse, S.A., 2007. Groundwater ostracods from the arid

district in Serbia. Hydrobiologia 585, 57–66. Pilbara region of northwestern Australia: distribution and water chemistry.

Karanovic, I., 2012. Recent Freshwater Ostracods of the World. Springer-Verlag, Hydrobiologia 585, 99–118.

Berlin Heidelberg. Roca, J., Baltanás, A., 1993. Ecology and distribution of Ostracoda in Pyrenean

Keyser, D., 1976. Zur Kenntnis der brackigen mangrovebewachsenen Weichböden springs. J. Crustacean Biol. 13 (1), 165–174.

Südwest-Floridas unter besonderer Berücksitchtigung ihrer Ostracodenfauna. Roca, J.R., Wansard, G., 1997. Temperature influence on development and

Ph.D. Thesis. Universität Hamburg, Hamburg, Germany. calcification of Herpetocypris brevicaudata Kaufmann, 1900 (Crustacea:

Kiss, A., 2007. Factors affecting spatial and temporal distribution of Ostracoda Ostracoda) under experimental conditions. Hydrobiologia 347, 91–95.

assemblages in different macrophyte habitats of a shallow lake (Lake Fehér, Rodriguez-Lazaro, J., Ruiz-Munoz,˜ F., 2012. A general introduction to Ostracods:

Hungary). Hydrobiologia 585, 89–98. morphology, distribution, fossil record and applications. In: Horne, D.J.,

Lansac-Tôha, F.A., Bonecker, C.C., Velho, L.F.M., 2004. Composition, speies richness Holmes, J.A., Rodriguez-Lazaro, J., Viehberg, F.A. (Eds.), Development in

and abundance of the zooplankton community. In: Thomaz, S.M., Agostinho, Quaternary Science, Ostracoda as Proxies for Quaternary Climate Change.

A.A., Hahn, N.S. (Eds.), The Upper Paraná River and Its Floodplain: Physical Elsevier, pp. 1–14.

Aspects, Ecology and Conservation. Backhuys Publishers, Leiden, pp. 145–190. Rogora, M., Massaferro, J., Marchetto, A., Tartari, G., Mosello, R., 2008. The water

Ludwig, J.A., Reynolds, J.F., 1988. Statistical Ecology − A Primer on Methods and chemistry of some shallow lakes in Northern Patagonia and their nitrogen

Computing. John Wiley & Sons, New York, pp. 337. status in comparison with remote lakes in different regions of the globe. J.

Magurran, A.E., 1988. Ecological Diversity and Its Measurement. Princeton Limnol. 67 (2), 75–86.

University Press, Princeton, New Jersey. Rombach R., 1999. Auswirkungen verschiedener Formen der Bewirtschaftung von

Malmqvist, B., Meisch, C., Nilsson, A.N., 1997. Distribution patterns of freshwater Halbtrockenrasen auf die Zikaden am Beispiel der Enzian-Schillergras-Rasen

Ostracoda (Crustacea) in the Canary island with regards to habitat use and (Gentiano-Koelerietum) der Nordeifel. −Dissertation. Math. Naturwiss.

biogeography. Hydrobiologia 347, 159–170. Fakultaet, Rheinische Friedrich-Wilhelms-Universitaet Bonn: URL; http://

Marmonier, P., Bodergat, A.M., Doledec, S., 1994. Theoretical habitat templets, www.punct.de/science/Diss11c.pdf.

species traits and species richness: ostracods (Crustacea) in the upper Rhône Rossetti, G., Bartoli, M., Martens, K., 2004. Limnological characteristics and recent

river and its floodplain. Freshwater Biol. 31, 341–355. ostracods (Crustacea, Ostracoda) of freshwater wetlands in the Parco Oglio Sud

Martín-Rubio, M., Rodriguez-Lazaro, J., Anadon,´ P., Robles, F., Utrilla, R., Vázquez, (Northern Italy). Ann. Limnol-Int. J. Lim. 40, 329–341.

A., 2005. Factors affecting the distribution of recent lacustrine Ostracoda from Rossi, V., Benassi, G., Veneri, M., Bellavere, C., Menozzi, P., Moroni, A., 2003.

the Caicedo de Yuso-Arreo Lake (Western Ebro Basin, Spain). Palaeogeogr. Ostracoda of the Italian ricefields thirty years on: new synthesis and

Palaeocl. 225, 118–133. hypothesis. J. Limnol. 62, 1–8.

Mazzini, I., Ceschin, S., Abati, S., Gliozzi, E., Piccari, F., Rossi, A., 2014. Ostracod Ruiz, F., Abad, M., Bodergat, A.M., Carbonel, P., Rodríguez-Lázaro, J.,

communities associated to aquatic macrophytes in an urban park in Rome, González-Regalado, M.L., Toscano, A., García, E.X., Prenda, J., 2013. Freshwater

Italy. Int. Rev. Hydrobiol. 99, 1–10. Ostracods as environmental tracers. Int. J. Environ. Sci. Technol. 10, 1115–1128.

McKenzie, K.G., Moroni, A., 1986. Man as an agent of crustacean passive dispersal Sarı, N., Külköylüoglu,˘ O., 2010. Ostracods (Crustacea) and habitat similarities in

via useful plants: exemplified by Ostracoda ospiti esteri of the Italian Ricefields the Bolu region (Turkey). Turk. J. Zool. 34, 225–230.

ecosystem: and implications arising therefrom. J. Crustacean Biol. 6 (2), Sarı, N., 2007. Determination of Ecological Features of the Freshwater Ostracoda

181–198. (Crustacea) in Bolu Region (Turkey) MSc Thesis. Abant Izzet˙ Baysal University,

Meffe, G.K., Carroll, C.R., 1997. Principles of Conservation Biology, second ed. Bolu.

Sinauer Associates, U.S. Scharf, B., Brunke, M., 2013. The recolonization of the river Elbe with benthic and

Meisch, C., 2000. Freshwater Ostracoda of western and central europe Heidelberg: hyporheic Ostracoda (Crustacea) after the reunion of Germany in 1989. Int.

spektrum akademischer verlag. Süßwasserfauna von Mittele 8, I–xii. Rev. Hydrobiol. 98, 305–312.

Mezquita, F., Griffiths, H.I., Sanz, S.J., Soria, M., Pinon, A., 1999a. Ecology and Schmidt, G.H., 1982. Random and aggregative settlement in some sessile marine

distribution of ostracods associated with flowing waters in the eastern Iberian invertebrates. Mar. Ecol. Prog. Ser. 9, 97–100.

peninsula. J. Crustacean Biol. 19, 344–354. Seaby, R.M., Henderson, P.A., 2006. Species Diversity and Richness, Version 4.

Mezquita, F., Hernández, R., Rueda, J., 1999b. Ecology and distribution of ostracods Pisces Conservation Ltd., Lymington, UK.

in a polluted Mediterranean river. Palaeogeogr. Palaeocl. 148, 87–103. Siveter, D.J., 2008. Ostracods in the Palaeozoic? Senck. Leth. 88 (1), 1–9.

Mezquita, F., Tapia, G., Roca, J.R., 1999c. Ostracoda from springs on the eastern Stevens, G.C., 1992. The elevational gradient in altitudinal range: an extension of

Iberian Peninsula: ecology, biogeography and palaeolimnological implications. Rapoport’s latitudinal rule to elevation. Am. Nat. 140, 893–911.

Palaeogeogr. Palaeocl. 148, 65–85. Szlauer-Łukaszewska, A., 2012. Ostracod assemblages in relation to littoral plant

Mezquita, F., Griffiths, H.I., Domínguez, M.I., Lazano-Quilis, M.A., 2001. Ostracoda communities of a shallow lake (Lake Swidwie, Poland). Int. Rev. Hydrobiol. 97

(Crustacea) as ecological indicators: a case study from Iberian Mediterranean (4), 262–275.

brooks. Arch. Hydrobiol. 150, 545–560. Uc¸ ak, S., Külköylüoglu,˘ O., Akdemir, D., Bas¸ ak, E., 2014. Distribution, diversity and

Mischke, S., Schudack, U., Bertrand, S., Leroy, S.A.G., 2012. Ostracods from a ecological characteristics of freshwater Ostracoda (Crustacea) in shallow

Marmara Sea lagoon (Turkey) as tsunami indicators. Quat. Int. 261, 156–161. aquatic bodies of the Ankara region, Turkey. Wetlands 34, 309–324.

Mourguiart, P., Montenegro, M.E., 2002. Climate changes in the lake Titicaca area: Valls, L., Rueda, J., Mesquita-Joanes, F., 2014. Rice fields as facilitators of freshwater

evidence from ostracod ecology. Geoph. Monog. 131, 151–165. invasions in protected wetlands: the case of Ostracoda (Crustacea) in the

Narasimha Ramulu, N., Benerjee, G., Srikanth, K., Ravindar, B., Gowri, P., 2011. Albufera Natural Park (E Spain). Zool. Stud. 53, 68–77.

Seasonal Changes in the ostracod population in relation to the Van Doninck, K., Schön, I., Debruyn, L., Martens, K., 2002. A general purpose

physico–chemical changes of a perennial tank in Warangal district. Int. J. Adv. genotype in an ancient asexual. Oecologia 132, 205–212.

Biotech. Res. 2 (2), 286–290. Van Doninck, K., Schön, I., Martens, K., Goddeeris, B., 2003. The life-cycle of the

Özulug,˘ O., 2011. A preliminary study on Ostracoda (Crustacea) fauna of the asexual ostracod Darwinula stevensoni (Brady and Robertson, 1870)

Istranca Streams-Turkey. J. Fish. Sci. 5 (2), 93–98. (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia 500, 331–340.

Özulug,˘ O., 2012. The effect of dam construction on the Ostracoda (Crustacea) Van der Meeren, T., Almendinger, J.E., Ito, E., Martens, K., 2010. The ecology of

assemblages in Kazandere stream Thracea, Turkey. Pak. J. Zool. 44, 635–639. ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641,

Pérez, L., Lorenschat, J., Bugja, R., Brenner, M., Scharf, B., Schwalb, A., 2010. 253–273.

Distribution, diversity and ecology of modern freshwater ostracodes Van der Meeren, T., Ito, E., Verschuren, D., Almendinger, J.E., Martens, K., 2011.

(Crustacea) and hydrochemical characteristics of Lago Petén Itzá, Guatemala. J. Valve chemistry of Limnocythere inopinata (Ostracoda) in a cold arid

Limnol. 69, 146–159. environment—implications for paleolimnological interpretation. Palaeogeogr.

Padmanabha, B., Belagali, S.L., 2008. Ostracods as indicators of pollution in the Palaeocl. 306, 116–126.

lakes of Mysore. J. Environ. Biol. 29 (3), 415–418. Viehberg, F.A., 2006. Freshwater ostracod assemblages and their relationship to

Palacios-Fest, M.R., Dettman, D., 2001. Temperature controls monthly variation in environmental variables in waters from northeast Germany. Hydrobiologia

Ostracode valve Mg/Ca Cypridopsis vidua from a small lake in Sonora, Mexico. 571, 213–224.

Geochim. Cosmochim. Acta 65, 2499–2507. Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems. Academic Press,

Paradise, C.J., Blue, J.D., Burkhart, J.Q., Goldberg, J., Harshaw, L., Hawkins, K.D., Elsevier Science, USA.

Kegan, B., Krentz, T., Smith, L., Villalpando, S., 2008. Local and regional facors Williams, M., Siveter, D.J., Salas, M.J., Vannier, J., Popov, L.E., Pour, M.G., 2008. The

influence the structure of treehole metacommunities. BMC Ecol. 8, 22, http:// earliest Ostracods: the geological evidence. Senck. Let. 88 (1), 11–21.

dx.doi.org/10.1186/1472-6785-8-22. Williams, C.B., 1943. Area and number of species. Nature 152, 264–267.

M. Yavuzatmaca et al. / Limnologica 62 (2017) 19–33 33

Williamson, M., 1988. Relationship of species number to area, distance and other Yavuzatmaca, M., Külköylüoglu,˘ O., Yılmaz, O., 2015. Distributional patterns of

variables. In: Myers, A.A., Giller, P.S. (Eds.), Analytical Biogeography: an non-marine Ostracoda (Crustacea) in Adiyaman province (Turkey). Ann.

Integrated Approach to the Study of and Plant Distributions. Chapman Limnol-Int. J. Lim. 51, 101–113.

and Hall, London. Yu, N., Chen, S., Li, E., Chen, J., Chen, L., 2009. Tolerance of Physocypria

Xia, J., Engstrom, D.R., Ito, E., 1997. Geochemistry of ostracode calcite: part 2. The kraepelini(Crustacean, Ostracoda) to water-borne ammonia, phosphate and pH

effects of water chemistry and seasonal temperetaure variation on Candona value. J. Env. Sci. 21, 1575–1580.

rawsoni. Geochim. Cosmochim. 61 (2), 383–391. Zar, J.A., 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle River, New

Yılmaz, F., Külköylüoglu,˘ O., 2006. Tolerance, optimum ranges, and ecological Jersey.

requirements of freshwater Ostracoda (Crustacea) in Lake Aladag˘ (Bolu, Burdur valiligi,˘ 2014. http://www.burdur.gov.tr/ilin-konumu.asp (accessed

Turkey). Ecol. Res. 21, 165–173. 08.01.2014).

Yılmaz, S., 2014. Comparative Analyses of Ostracoda (Crustacea) Diversity and

Determination of Their Ecological Characteristics in Düzce and Karabük

(Turkey) Regions MSc Thesis. Abant Izzet˙ Baysal University, Bolu.