Functional Characterization of Eight Human Cytochrome P450 1A2 Gene Variants by Recombinant Protein Expression

Total Page:16

File Type:pdf, Size:1020Kb

Functional Characterization of Eight Human Cytochrome P450 1A2 Gene Variants by Recombinant Protein Expression The Pharmacogenomics Journal (2010) 10, 478–488 & 2010 Macmillan Publishers Limited. All rights reserved 1470-269X/10 www.nature.com/tpj ORIGINAL ARTICLE Functional characterization of eight human cytochrome P450 1A2 gene variants by recombinant protein expression B Brito Palma1,2, M Silva e Sousa1, Inter-individual variability in cytochrome P450 (CYP)-mediated xenobiotic 2 2 metabolism is extensive. CYP1A2 is involved in the metabolism of drugs CR Vosmeer , J Lastdrager , and in the bioactivation of carcinogens. The objective of this study was 1 2 JRueff,NPEVermeulen to functionally characterize eight polymorphic forms of human CYP1A2, and M Kranendonk1 namely T83M, S212C, S298R, G299S, I314V, I386F, C406Y and R456H. cDNAs of these variants were constructed and coexpressed in Escherichia coli 1Department of Genetics, Faculty of Medical with human NADPH cytochrome P450 oxidoreductase (CYPOR). All variants Sciences, Universidade Nova de Lisbon, Lisbon, showed similar levels of apoprotein and holoprotein expression, except for Portugal and 2Division of Molecular Toxicology, Department of Pharmacochemistry, LACDR, Vrije I386F and R456H, which showed only apoprotein, and both were functionally Universiteit Amsterdam, Amsterdam, The inactive. The activity of CYP1A2 variants was investigated using 8 substrates, Netherlands measuring 16 different activity parameters. The resulting heterogeneous activity data set was analyzed together with CYP1A2 wild-type (WT) form, applying Correspondence: Dr M Kranendonk, Department of Genetics, multivariate analysis. This analysis indicated that variant G299S is substantially Faculty of Medical Sciences, Universidade Nova altered in catalytic properties in comparison with WT, whereas variant T83M is de Lisbon, Rua da Junqueira 96, 1349-008 slightly but significantly different from the WT. Among CYP1A2 variants, out of Lisbon, Portugal. the heterogeneous set of eight substrates, carcinogen 4-(methylnitrosamino)-1- E-mail: [email protected] (3-pyridyl)-1-butanone (NNK) was the most discriminative compound. In addition, R456 could be identified as an important residue for proper heme binding and stabilization. The Pharmacogenomics Journal (2010) 10, 478–488; doi:10.1038/tpj.2010.2; published online 2 February 2010 Keywords: cytochrome P450; CYP1A2; pharmacogenomics; pharmacokinetics; polymorphisms Introduction Inter-individual variability in xenobiotic and drug metabolism is extensive. Plasma levels of a drug can vary more than 1000-fold between individuals upon the same drug dosage.1 These variations can be caused by induction or inhibition and genetic polymorphisms of metabolizing enzymes, or from physiological, pathophysiological or environmental factors.2 In fact, genetic factors are considered to be responsible for 20–40% of the differences between individuals in the response and susceptibility to drugs and xenobiotics.3 Variability among individuals in drug metabolism can result in reduced drug efficacies or undesirable toxic side effects, which are phenomena that may compromise drug therapy and development. Cytochrome P450s (CYPs) are responsible for the metabolism of a wide variety Received 28 July 2009; revised 16 October 4 2009; accepted 21 December 2009; of clinically, physiologically and toxicologically important compounds. CYP published online 2 February 2010 families 1, 2 and 3 are responsible for 70–80% of all phase I metabolism of Characterization of 8 human CYP 1A2 gene variants BB Palma et al 479 clinically used drugs5 and are involved in the biotransfor- NADPH cytochrome P450 oxidoreductase (CYPOR) interac- mation of a large number of xenobiotics. Biotransformation tion zone. As such, these polymorphic forms concern T83M can lead to bioactivation of pre-carcinogens and drugs, (CYP1A2*9), S212C (CYP1A2*12), S298R (no allele designa- which can result in carcinogenic or other toxic effects. The tion), G299S (CYP1A2*13), I314V (no allele designation), majority of CYP-mediated xenobiotic metabolism is carried I386F (CYP1A2*4), C406Y (CYP1A2*5) and R456H out by polymorphic enzymes.6 Human CYP polymorphisms (CYP1A2*8). For this purpose, the cDNA of the WT allele, include mutations both in non-coding regions (promoter, present in a bacterial expression vector,25 was adapted intron) and protein-coding sequences. Mutations in non- through genetic engineering to generate the eight different coding regions may lead to altered expression levels, CYP1A2 forms. CYP1A2 alleles were coexpressed with whereas those in protein-coding sequences may change human CYPOR in a bacterial cell model,26 and the activity the structure and catalytic properties of the enzyme.7 Many of the eight allelic variants and WT was investigated. The drugs that can cause adverse reactions are metabolized in enzyme activity of these variants was analyzed together with processes catalyzed by polymorphic CYP enzymes. There- WT and scrutinized through multivariate analysis. Results of fore, the understanding of the nature of CYP polymorph- this analysis were interpreted using the CYP1A2 crystal isms is fundamental for the comprehension of inter- structure.24 individual differences in chemical exposure, adverse drug 8 effects and toxicity in general. Materials and methods The human CYP1A family consists of CYP1A1 and CYP1A2. Their genes are located on chromosome 15 and Reagents 9 are oriented head-to-head, 23.3 kb apart. The spacer L-arginine, ampicillin, kanamycin sulfate, chloramphenicol, sequence may contain distinct regulatory regions of each cytochrome c, isopropyl b-D-thiogalactoside (dioxane-free), gene or, alternatively, the regulatory regions of both genes.10 thiamine, 2-aminoanthracene (2AA), glucose-6-phosphate, CYP1A1 is mainly expressed in extrahepatic tissues, whereas NADPH, ethoxyresorufin (ER), methoxyresorufin (MR), CYP1A2 is almost exclusively expressed in the liver, resorufin (R), phenylmethanesulfonyl fluoride and a-naphtho- representing B15% of its total CYP content.11 CYP1A flavone (a-NF) were obtained from Sigma Chemical (St enzymes catalyze the bioactivation of pre-carcinogens, such Louis, MO, USA). 2-Amino-3-methylimidazo(4,5-f)quinoline as polycyclic aromatic hydrocarbons (CYP1A1), as well as (IQ) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone aromatic and heterocyclic amines (CYP1A2).12 CYP1A2 is (NNK) were obtained from Toronto Research Chemicals also responsible for the metabolism of drugs, such as (North York, ON, Canada). Both 3-cyano-7-ethoxycoumarin phenacetin,13 clozapine,14,15 naproxen,16 propranolol17 (CEC) and 3-cyano-7-hydroxycoumarin (CHC) were ob- and tizanidine.18 tained from BD Biosciences (Bedford, MA, USA). Phenacetin The CYP1A2 gene consists of seven exons, including non- was obtained from Brocades-ACF (Maarssen, The Nether- coding exon 1.19 Inter-individual differences in CYP1A2 lands) and clozapine from Duchefa Farma bv. (Haarlem, The activity are well known; up to 60-fold variations have been Netherlands). Bacto agar, bacto peptone, bacto tryptone and reported.11,20 In addition, B15- and 40-fold variations in bacto yeast extract were obtained from Difco (Detroit, MI, mRNA and protein expression levels have been observed in USA). All other chemicals were of the highest quality. the human liver.19,21 To date, 36 CYP1A2 haplotypes have been published on the Human Cytochrome P450 Allele Site-directed mutagenesis Nomenclature Committee home page (http://www.cypalleles. Site-directed mutagenesis was performed using ‘Quick- ki.se/cyp1a2.htm). Of these, 21 are in the non-coding region change XL’ (Cedar Creek, TX, USA) and applied according and 15 are in the coding region, all causing amino-acid to the manufacture’s instructions. All variants, except I386F, changes of the CYP1A2 protein. Apart from studies that were constructed using plasmid pCWh1A226 as DNA characterized gene polymorphisms in the non-coding template, encoding human CYP1A2*1 (isoform 2) (NCBI region, few reports described non-synonymous protein NM_000761) with the N terminus modified as described by polymorphisms. Mostly, these concern the identification Fisher et al.25 In the case of the variant I386F, the template of genetic polymorphisms and their frequencies, but not was pUC18_h1A2. This plasmid was constructed by cloning their effects on protein level and activities. Murayama the cDNA of CYP1A2 from pCWh1A2 as an NdeI-XbaI et al.,22 Saito et al.23 and Zhou et al.7 characterized most fragment in pUC18. Forward and reverse mutagenesis of the non-synonymous polymorphisms with a limited primers for the creation of the desired mutation for each number of substrates. The primary objective of this study is variant are presented in Supplementary Table 1. to investigate polymorphic forms, representing the majority The introduced mutation for each variant was confirmed of alleles with the non-synonymous polymorphic CYP1A2 by sequencing the full extent of the CYP1A2 cDNA. The protein, and to characterize their activity with a diverse pCWh1A2 plasmid has a considerable size (6.9 kb), and it is group of substrates. known that, for a site-directed mutagenesis procedure, large On the basis of a crystal structure published by Sansen plasmids have a reduced but significant risk for incorpora- et al.24 of CYP1A2 wild-type (WT) (CYP1A2*1), we selected tion of undesired mutations. Therefore, mutated cDNAs mutants that seemed to be localized in the vicinity of were re-cloned into the pCW vector to ensure that plasmid the active center, heme, entrance/exit channel or the sequences remained unaltered. For this, the restriction
Recommended publications
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Mechanism of Inhibition of Cytochrome P450 C21 Enzyme Activity By
    European Journal of Endocrinology (2005) 152 95–101 ISSN 0804-4643 CLINICAL STUDY Mechanism of inhibition of cytochrome P450 C21 enzyme activity by autoantibodies from patients with Addison’s disease L Nikfarjam1, S Kominami1, T Yamazaki1, S Chen2, R Hewer2, C Dal Pra2,3, T Nakamatsu2,3, C Betterle4, R Zanchetta4, B Rees Smith2,3 and J Furmaniak2,3 1Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521 Japan, 2FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff CF14 5DU, UK, 3Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK and 4Department of Medical and Surgical Sciences, University of Padua, Via Ospedale Civile 105, 35128 Padua, Italy (Correspondence should be addressed to J Furmaniak, FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff CF14 5DU, UK; Email: fi[email protected]) Abstract Objective: To study possible mechanisms for the inhibition of cytochrome P450 C21 (steroid 21- hydroxylase) enzyme activity by P450 C21 autoantibodies (Abs) in vitro. Design: Two possible mechanisms for the inhibition of P450 C21 enzyme activity by P450 C21 Abs were studied: (a) conformational changes in the P450 C21 molecule induced by Ab binding and (b) the effects of Ab binding to P450 C21 on the electron transfer from the nicotinamide adenine dinu- cleotide phosphate reduced (NADPH) cytochrome P450 reductase (CPR) to P450 C21. Methods: The effect of P450 C21 Ab binding on the conformation of recombinant P450 C21 in yeast microsomes was studied using an analysis of the dithionite-reduced CO difference spectra. The effect of P450 C21 Abs on electron transfer was assessed by analysis of reduction of P450 C21 in the micro- somes in the presence of CO after addition of NADPH.
    [Show full text]
  • Regulation of Vitamin D Metabolizing Enzymes in Murine Renal and Extrarenal Tissues by Dietary Phosphate, FGF23, and 1,25(OH)2D3
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3 Kägi, Larissa ; Bettoni, Carla ; Pastor-Arroyo, Eva M ; Schnitzbauer, Udo ; Hernando, Nati ; Wagner, Carsten A Abstract: BACKGROUND: The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further acti- vated in the kidney by the 1-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levelsofac- tive 1,25(OH)2D3, other organs also express some of these enzymes. Their regulation, however, has been studied less. METHODS AND RESULTS: Here we investigated the effect of several Pi-regulating factors including dietary Pi, PTH and FGF23 on the expression of the vitamin D hydroxylases and the vitamin D receptor VDR in renal and extrarenal tissues of mice. We found that with the exception of Cyp24a1, all the other analyzed mRNAs show a wide tissue distribution. High dietary Pi mainly upregulated the hep- atic expression of Cyp27a1 and Cyp2r1 without changing plasma 1,25(OH)2D3. FGF23 failed to regulate the expression of any of the studied hydroxylases at the used dosage and treatment length.
    [Show full text]
  • TRANSLATIONALLY by AMPK a Dissertation
    CHOLESTEROL 7 ALPHA-HYDROXYLASE IS REGULATED POST- TRANSLATIONALLY BY AMPK A dissertation submitted to Kent State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy By Mauris E.C. Nnamani May 2009 Dissertation written by Mauris E. C. Nnamani B.S, Kent State University, 2006 Ph.D., Kent State University, 2009 Approved by Diane Stroup Advisor Gail Fraizer Members, Doctoral Dissertation Committee S. Vijayaraghavan Arne Gericke Jennifer Marcinkiewicz Accepted by Robert Dorman , Director, School of Biomedical Science John Stalvey , Dean, Collage of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………..vi ACKNOWLEDGMENTS……………………………………………………..viii CHAPTER I: INTRODUCTION……………………………………….…........1 a. Bile Acid Synthesis…………………………………………….……….2 i. Importance of Bile Acid Synthesis Pathway………………….….....2 ii. Bile Acid Transport..…………………………………...…...………...3 iii. Bile Acid Synthesis Pathway………………………………………...…4 iv. Classical Bile Acid Synthesis Pathway…..……………………..…..8 Cholesterol 7 -hydroxylase (CYP7A1)……..........………….....8 Transcriptional Regulation of Cholesterol 7 -hydroxylase by Bile Acid-activated FXR…………………………….....…10 CYP7A1 Transcriptional Repression by SHP-dependant Mechanism…………………………………………………...10 CYP7A1 Transcriptional Repression by SHP-independent Mechanism……………………………………..…………….…….11 CYP7A1 Transcriptional Repression by Activated Cellular Kinase…….…………………………...…………………….……12 v. Alternative/ Acidic Bile Acid Synthesis Pathway…………......…….12 Sterol 27-hydroxylase (CYP27A1)……………….…………….12
    [Show full text]
  • Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
    pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed.
    [Show full text]
  • Drug Interactions with Smoke and Smoking Cessation Medications
    Drug Interactions with Smoke and Smoking Cessation Medications Paul Oh MD MSc FRCPC FACP Medical Director, Toronto Rehab Assistant Professor, Division of Clinical Pharmacology, University of Toronto Disclosures • Advisory Boards – Amgen, AstraZeneca, BMS, Janssen, Novartis, Pfizer, Sanofi • Research Funding – Heart & Stroke, CIHR • Professional Affiliations: – CACR, CCN, CDA Objectives • review pharmacokinetic principles – what is the disposition of a medication once ingested? • highlight the role of the drug metabolism cytochrome P450 system as a particular site for many important drug interactions • Case based discussion of common interactions – drug-drug (SCT) and drug-smoke Cased Based Questions 1. What is a “CYP” and what does it do? 2. How can a sinus infection make you pass out? 3. Why is this workout so painful? 4. How do cigarettes and coffee go together? 5. Why is quitting possibly hazardous to your drug health? 6. What makes someone with heart disease and depression slow down? Ingestion First-Pass Metabolism Gut Lumen Gut Wall Liver Fraction Fraction Absorbed Metabolized Portal Circulation Metabolism Metabolism Drug Metabolism in the Liver SYSTEMIC LIVER CIRCULATION Eliminated unchanged by the kidneys To the kidneys for PORTAL VEIN elimination Drug Metabolism in the Liver SYSTEMIC LIVER CIRCULATION Eliminated unchanged by the kidneys P-450 OH Phase I metabolism Phase II metabolism Glucuronide OH Phase II metabolism Sulfate To the kidneys for PORTAL VEIN elimination Hepatocytes Cytochrome P450 Overview of Pharmacology Concepts Cytochrome P450 System • Nomenclature: e.g., CYP3A4 – "CYP" = cytochrome P450 protein abbreviation – family; subfamily; isoform • The most important isoforms are CYP3A4, CYP2D6, CYP1A2 – anticipate drug interactions if prescribing drugs using these enzymes.
    [Show full text]
  • Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway
    International Journal of Molecular Sciences Article Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway Patricia Rodríguez Castaño 1,2, Shaheena Parween 1,2 and Amit V Pandey 1,2,* 1 Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital Bern, 3010 Bern, Switzerland; [email protected] (P.R.C.); [email protected] (S.P.) 2 Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland * Correspondence: [email protected]; Tel.: +41-31-632-9637 Received: 5 September 2019; Accepted: 16 September 2019; Published: 17 September 2019 Abstract: Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2.
    [Show full text]
  • Frequency of Important CYP450 Enzyme Gene Polymorphisms in the Iranian Population in Comparison with Other Major Populations: a Comprehensive Review of the Human Data
    Journal of Personalized Medicine Review Frequency of Important CYP450 Enzyme Gene Polymorphisms in the Iranian Population in Comparison with Other Major Populations: A Comprehensive Review of the Human Data Navid Neyshaburinezhad 1 , Hengameh Ghasim 1, Mohammadreza Rouini 1, Youssef Daali 2,3,4,* and Yalda H. Ardakani 1,* 1 Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran; [email protected] (N.N.); [email protected] (H.G.); [email protected] (M.R.) 2 Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland 3 Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland 4 Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland * Correspondence: [email protected] (Y.D.); [email protected] (Y.H.A.) Abstract: Genetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized Citation: Neyshaburinezhad, N.; drug therapy and healthcare programs. To provide a meta-analysis of CYP allele polymorphisms Ghasim, H.; Rouini, M.; Daali, Y.; with clinical importance, we brought together whole-genome and exome sequencing data from Ardakani, Y.H. Frequency of 800 unrelated individuals of Iranian population (100 subjects from 8 major ethnics of Iran) and Important CYP450 Enzyme Gene 63,269 unrelated individuals of five major human populations (EUR, AMR, AFR, EAS and SAS).
    [Show full text]
  • Characterisation of Three Novel CYP11B1 Mutations in Classic and Non-Classic 11B-Hydroxylase Deficiency
    S Polat and others Three novel CYP11B1 mutations 170:5 697–706 Clinical Study Characterisation of three novel CYP11B1 mutations in classic and non-classic 11b-hydroxylase deficiency Seher Polat, Alexandra Kulle1,Zu¨ leyha Karaca2, Ilker Akkurt3, Selim Kurtoglu4, Fahrettin Kelestimur2, Joachim Gro¨ tzinger5, Paul-Martin Holterhus1 and Felix G Riepe1 Department of Medical Genetics, Erciyes University, Kayseri, Turkey, 1Division of Pediatric Endocrinology and Correspondence Diabetes, Department of Pediatrics, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, should be addressed Schwanenweg 20, D-24105 Kiel, Germany, 2Department of Endocrinology, Erciyes University, Kayseri, Turkey, to F G Riepe 3Childrens Hospital Altona, Pediatric Endocrinology, Hamburg, Germany, 4Department of Pediatric Endocrinology, Email Erciyes University, Kayseri, Turkey and 5Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany [email protected] Abstract Background: Congenital adrenal hyperplasia (CAH) is one of the most common autosomal recessive inherited endocrine diseases. Steroid 11b-hydroxylase (P450c11) deficiency (11OHD) is the second most common form of CAH. Aim: The aim of the study was to study the functional consequences of three novel CYP11B1 gene mutations (p.His125Thrfs*8, p.Leu463_Leu464dup and p.Ser150Leu) detected in patients suffering from 11OHD and to correlate this data with the clinical phenotype. Methods: Functional analyses were done by using a HEK293 cell in vitro expression system comparing WT with mutant P450c11 activity. Mutant proteins were examined in silico to study their effect on the three-dimensional structure of the protein. Results: Two mutations (p.His125Thrfs*8 and p.Leu463_Leu464dup) detected in patients with classic 11OHD showed a complete loss of P450c11 activity.
    [Show full text]
  • Recent Advances in P450 Research
    The Pharmacogenomics Journal (2001) 1, 178–186 2001 Nature Publishing Group All rights reserved 1470-269X/01 $15.00 www.nature.com/tpj REVIEW Recent advances in P450 research JL Raucy1,2 ABSTRACT SW Allen1,2 P450 enzymes comprise a superfamily of heme-containing proteins that cata- lyze oxidative metabolism of structurally diverse chemicals. Over the past few 1La Jolla Institute for Molecular Medicine, San years, there has been significant progress in P450 research on many fronts Diego, CA 92121, USA; 2Puracyp Inc, San and the information gained is currently being applied to both drug develop- Diego, CA 92121, USA ment and clinical practice. Recently, a major accomplishment occurred when the structure of a mammalian P450 was determined by crystallography. Correspondence: Results from these studies will have a major impact on understanding struc- JL Raucy,La Jolla Institute for Molecular Medicine,4570 Executive Dr,Suite 208, ture-activity relationships of P450 enzymes and promote prediction of drug San Diego,CA 92121,USA interactions. In addition, new technologies have facilitated the identification Tel: +1 858 587 8788 ext 116 of several new P450 alleles. This information will profoundly affect our under- Fax: +1 858 587 6742 E-mail: jraucyȰljimm.org standing of the causes attributed to interindividual variations in drug responses and link these differences to efficacy or toxicity of many thera- peutic agents. Finally, the recent accomplishments towards constructing P450 null animals have afforded determination of the role of these enzymes in toxicity. Moreover, advances have been made towards the construction of humanized transgenic animals and plants. Overall, the outcome of recent developments in the P450 arena will be safer and more efficient drug ther- apies.
    [Show full text]
  • Consequences of Exchanging Carbohydrates for Proteins in the Cholesterol Metabolism of Mice Fed a High-Fat Diet
    Consequences of Exchanging Carbohydrates for Proteins in the Cholesterol Metabolism of Mice Fed a High-fat Diet Fre´de´ ric Raymond1.¤a, Long Wang2., Mireille Moser1, Sylviane Metairon1¤a, Robert Mansourian1, Marie- Camille Zwahlen1, Martin Kussmann3,4,5, Andreas Fuerholz1, Katherine Mace´ 6, Chieh Jason Chou6*¤b 1 Bioanalytical Science Department, Nestle´ Research Center, Lausanne, Switzerland, 2 Department of Nutrition Science and Dietetics, Syracuse University, Syracuse, New York, United States of America, 3 Proteomics and Metabonomics Core, Nestle´ Institute of Health Sciences, Lausanne, Switzerland, 4 Faculty of Science, Aarhus University, Aarhus, Denmark, 5 Faculty of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland, 6 Nutrition and Health Department, Nestle´ Research Center, Lausanne, Switzerland Abstract Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down- regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2.
    [Show full text]
  • Glyphosate's Suppression of Cytochrome P450 Enzymes
    Entropy 2013, 15, 1416-1463; doi:10.3390/e15041416 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases Anthony Samsel 1 and Stephanie Seneff 2,* 1 Independent Scientist and Consultant, Deerfield, NH 03037, USA; E-Mail: [email protected] 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-617-253-0451; Fax: +1-617-258-8642. Received: 15 January 2013; in revised form: 10 April 2013 / Accepted: 10 April 2013 / Published: 18 April 2013 Abstract: Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease.
    [Show full text]