Role of the Sylvania Formation in Sinkhole Development, Essex County; Ontario Geological Survey, Open File Report 5861, 122P

Total Page:16

File Type:pdf, Size:1020Kb

Role of the Sylvania Formation in Sinkhole Development, Essex County; Ontario Geological Survey, Open File Report 5861, 122P ISBN 0-7778-1496-X THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner. Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen’s Printer for Ontario. It is recommended that reference to the Content be made in the following form: Russell, D.J. 1993. Role of the Sylvania Formation in sinkhole development, Essex County; Ontario Geological Survey, Open File Report 5861, 122p. Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content. Contact: FOR FURTHER PLEASE CONTACT: BY TELEPHONE: BY E-MAIL: INFORMATION ON The Reproduction of MNDM Publication Local: (705) 670-5691 Content Services Toll Free: 1-888-415-9845, ext. [email protected] 5691 (inside Canada, United States) The Purchase of MNDM Publication Local: (705) 670-5691 MNDM Publications Sales Toll Free: 1-888-415-9845, ext. [email protected] 5691 (inside Canada, United States) Crown Copyright Queen’s Printer Local: (416) 326-2678 Toll Free: 1-800-668-9938 [email protected] (inside Canada, United States) ® Ontario Ontario Geological Survey Open File Report 5861 Role of the Sylvania Formation in Sinkhole Development, Essex County 1993 Ministry of Northern Development and Mines Ontario ONTARIO GEOLOGICAL SURVEY Open File Report 5861 Role of the Sylvania Formation in Sinkhole Development, Essex County By D.J. Russell 1993 Parts of this publication may be quoted if credit is given. It is recommended that reference to this publication be made in the following form: Russell, D.J. 1993. Role of the Sylvania Formation in sinkhole development, Essex County; Ontario Geological Survey, Open File Report 5861, 122p. © Queen's Printer for Ontario, 1993 Ontario Geological Survey OPEN FILE REPORT Open File Reports are made available to the public subject to the following conditions: This report is unedited. Discrepancies may occur for which the Ontario Geological Survey does not assume liability. Recommendations and statements of opinions expressed are those of the author or authors and are not to be construed as statements of government policy. This Open File Report is available for viewing at the following locations: Mines Library Level A3, 933 Ramsey Lake Road Sudbury, Ontario P3E 6B5 Mines and Minerals Information Centre (MMIC) Rm. M2-17, Macdonald Block 900 Bay St. Toronto, Ontario M7A 1C3 The office of the Resident Geologist whose district includes the area covered by this report. Copies of this report may be obtained at the user's expense from: OGS On-Demand Publications Level B4, 933 Ramsey Lake Road Sudbury, Ontario P3E 6B5 Tel. (705)670-5691 Collect calls accepted. Handwritten notes and sketches may be made from this report. Check with MMIC, the Mines Library or the Resident Geologist's office whether there is a copy of this report that may be borrowed. A copy of this report is available for Inter-Library loan. This report is available for viewing at the following Resident Geologists' offices: London, 659 Exeter Rd., London N6A 4L6 The right to reproduce this report is reserved by the Ontario Ministry of Northern Development and Mines. Permission for other reproductions must be obtained in writing from the Director, Ontario Geological Survey - Geoscience Branch. iii Contents page ABSTRACT xi INTRODUCTION 1 Background and Purpose of Investigation 1 Acknowledgements 5 Geology of the Windsor Area 5 Salt Production in Windsor 9 ENGINEERING GEOLOGY OF SINKHOLE DEVELOPMENT 9 Previous Work 9 Review of Models 21 GEOLOGY AND ENGINEERING GEOLOGY OF SYLVANIA FORMATION 22 Stratigraphy 22 The Sylvania Formation in Essex County 27 TOPOGRAPHY OF THE SUB-SYLVANIA FORMATION DEPOSITIONAL SURFACE 30 THICKNESS OF THE SYLVANIA FORMATION SANDSTONE 30 Petrology of the Sylvania Formation 33 Drilling and Sampling 35 Lithology of Intervals Sampled 37 Wl 37 W2, W3- 37 Petrography: Purpose and Methods 40 Petrography: Results 42 Sedimentology 47 Engineering Properties 50 Test Methods 51 Results 52 UNCONFINED COMPRESSION TEST DATA 52 POINT LOAD TEST DATA 59 TRIAXIAL COMPRESSION TEST DATA 61 Summary 61 THE OPERATIONAL HISTORY OF THE SANDWICH BRINE FIELD 61 A MODEL FOR SINKHOLE FORMATION AT SANDWICH BRINE FIELD 79 SUMMARY 85 REFERENCES 90 APPENDIX 1 DRILL HOLE LOGS 95 APPENDIX 2: DESCRIPTIONS OF SYLVANIA SANDSTONE THIN SECTIONS 108 APPENDIX 3: POINT LOAD STRENGTH TEST RESULTS 118 v List of Figures page Figure 1. Location maps of study area and approximate locations of boreholes Wl, W2 and W3 2 Figure 2. Plan of Sandwich site, with contours (in inches) of total subsidence, 1948-1954, and outline of eventual sinkhole 4 Figure 3. Paleozoic geology of southwestern Ontario, southeastern Michigan 7 Figure 4. Post-Middle Ordovician stratigraphy of southwestern Ontario 8 Figure 5. Subsidence curves for various observation points on the Sandwich site for 1948-1954, showing rapid subsidence in 1952 and 1953 11 Figure 6. Subsidence profiles along line A-A' {see Figure 2) from 1949 to 1953 12 Figure 7. Sinkhole formation mechanism, according to Terzaghi (1954) 14 Figure 8. Sinkhole formation mechanism, according to R. Terzaghi (1970) 16 Figure 9. Sinkhole formation mechanism according to Nieto-Pescetto and Hendron (1977) 17 Figure 10. Sinkhole formation mechanism, according to Stump (1980) 20 Figure 11. Isopach map for Sylvania Formation, southeastern Michigan and southwestern Ontario, after Brigham (1971) 26 Figure 12. Diagrammatic view of relationships between the Bois Blanc Formation, Sylvania Formation and Detroit River Group 28 Figure 13. Structure contour of base (of the upper, main sandstone interval) of the Sylvania Formation, Essex County based on data obtained from drilling records 31 Figure 14. Isopach map of the Sylvania Formation (upper, main sandstone interval only), Essex County based on data obtained from drilling records 32 Figure 15. General lithological logs of Borehole Wl, W2 and W3 36 Figure 16. Petrography results {see Appendix 2 for descriptions) determined from thin section analysis, borehole W3 39 Figure 17. Photomicrograph showing intergrowth of quartz grains 45 Figure 18. Photomicrograph showing well defined quartz overgrowths 46 Figure 19. Paleogeographic reconstruction of the Michigan Basin during the deposition of the Bois Blanc Formation, Sylvania Formation sandstone and carbonates of the Detroit River Group during the early Middle Devonian. 49 Figure 20. Unconfined compressive strengths for samples from W2, W3 53 Figure 21. Cartoon showing control of different grain/overgrowth boundary types on strength 54 Figure 22. Young's Moduli and Poisson's ratios for samples from W2, W3 55 Figure 23. Stress-strain curves for sample W3 340-341 58 Figure 24. Point Load Index results for samples from W3 60 Figure 25. Mohr's circles for triaxial tests on samples from W3 62 Figure 26. Stratigraphy of Sandwich brine field 64 Figure 27. Well histories for Sandwich brine field, 1902-1954 66 Figure 28. Single well injection method of brine extraction and resulting "momign glory" cavity 67 Figure 29a. Plan view of Sandwich site showing development of brine field, 1920 69 Figure 29b. Plan view of Sandwich site showing development of brine field, 1925-1930 70 Figure 29c. Plan view of Sandwich site showing development of brine field, 1935-1940 71 Figure 29d. Plan view of Sandwich site showing development of brine field, 1945-1954 72 Figure 30.
Recommended publications
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Middle Devonian Formations in the Subsurface of Northwestern Ohio
    STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 SCIENTIFIC AND TECHNICAL STAFF OF THE OHIO DIVISION OF GEOLOGICAL SURVEY ADMINISTRATIVE SECTION Horace R. Collins, State Geologist and Di v ision Chief David K. Webb, Jr., Geologist and Assistant Chief Eleanor J. Hyle, Secretary Jean S. Brown, Geologist and Editor Pauline Smyth, Geologist Betty B. Baber, Geologist REGIONAL GEOLOGY SECTION SUBSURFACE GEOLOGY SECTION Richard A. Struble, Geologist and Section Head William J. Buschman, Jr., Geologist and Section Head Richard M. Delong, Geologist Michael J. Clifford, Geologist G. William Kalb, Geochemist Adriaan J anssens, Geologist Douglas L. Kohout, Geologis t Frederick B. Safford, Geologist David A. Stith, Geologist Jam es Wooten, Geologist Aide Joel D. Vormelker, Geologist Aide Barbara J. Adams, Clerk· Typist B. Margalene Crammer, Clerk PUBLICATIONS SECTION LAKE ERIE SECTION Harold J. Fl inc, Cartographer and Section Head Charles E. Herdendorf, Geologist and Sectwn Head James A. Brown, Cartographer Lawrence L. Braidech, Geologist Donald R. Camburn, Cartovapher Walter R. Lemke, Boat Captain Philip J. Celnar, Cartographer David B. Gruet, Geologist Aide Jean J. Miller, Photocopy Composer Jean R. Ludwig, Clerk- Typist STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 GEOLOGY SERVES OHIO CONTENTS Page Introduction . 1 Previous investigations .. .. .. .. .. .. .. .. .. 1 Study methods . 4 Detroit River Group . .. .. .. ... .. ... .. .. .. .. .. .. .. ... .. 6 Sylvania Sandstone ..........................
    [Show full text]
  • Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1990 Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan Brendan Ciaran Curran Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Curran, Brendan Ciaran, "Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan" (1990). Master's Theses. 1053. https://scholarworks.wmich.edu/masters_theses/1053 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RESERVOIR GEOLOGY OF THE DUNDEE LIMESTONE, WEST BRANCH FIELD, MICHIGAN by Brendan Ciaran Curran A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Geology Western Michigan University Kalamazoo, Michigan December 1990 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RESERVOIR GEOLOGY OF THE DUNDEE LIMESTONE, WEST BRANCH FIELD, MICHIGAN Brendan Ciaran Curran, M.S. W estern Michigan University, 1990 West Branch field is a low-relief, NW-SE-trending anticline near the center of the Michigan basin. Since 1934, the Dundee Limestone (Middle Devonian) has produced over 12 million barrels of oil from this field. From core studies, six depositional facies types were recognized in the Dundee. These are dominated by bioclastic carbonate sand facies deposited in normal- marine shelf settings. Although burial cements have occluded some porosity, carbonate sand facies have retained significant primary interparticle porosity and are the most important reservoir rocks.
    [Show full text]
  • Detroit River Group in the Michigan Basin
    GEOLOGICAL SURVEY CIRCULAR 133 September 1951 DETROIT RIVER GROUP IN THE MICHIGAN BASIN By Kenneth K. Landes UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Washington, D. C. Free on application to the Geological Survey, Washington 25, D. C. CONTENTS Page Page Introduction............................ ^ Amherstburg formation................. 7 Nomenclature of the Detroit River Structural geology...................... 14 group................................ i Geologic history ....................... ^4 Detroit River group..................... 3 Economic geology...................... 19 Lucas formation....................... 3 Reference cited........................ 21 ILLUSTRATIONS Figure 1. Location of wells and cross sections used in the study .......................... ii 2. Correlation chart . ..................................... 2 3. Cross sections A-«kf to 3-G1 inclusive . ......................;.............. 4 4. Facies map of basal part of Dundee formation. ................................. 5 5. Aggregate thickness of salt beds in the Lucas formation. ........................ 8 6. Thickness map of Lucas formation. ........................................... 10 7. Thickness map of Amherstburg formation (including Sylvania sandstone member. 11 8. Lime stone/dolomite facies map of Amherstburg formation ...................... 13 9. Thickness of Sylvania sandstone member of Amherstburg formation.............. 15 10. Boundary of the Bois Blanc formation in southwestern Michigan.
    [Show full text]
  • Summary of Hydrogelogic Conditions by County for the State of Michigan. Apple, B.A., and H.W. Reeves 2007. U.S. Geological Surve
    In cooperation with the State of Michigan, Department of Environmental Quality Summary of Hydrogeologic Conditions by County for the State of Michigan Open-File Report 2007-1236 U.S. Department of the Interior U.S. Geological Survey Summary of Hydrogeologic Conditions by County for the State of Michigan By Beth A. Apple and Howard W. Reeves In cooperation with the State of Michigan, Department of Environmental Quality Open-File Report 2007-1236 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation Beth, A. Apple and Howard W. Reeves, 2007, Summary of Hydrogeologic Conditions by County for the State of Michi- gan. U.S. Geological Survey Open-File Report 2007-1236, 78 p. Cover photographs Clockwise from upper left: Photograph of Pretty Lake by Gary Huffman. Photograph of a river in winter by Dan Wydra. Photographs of Lake Michigan and the Looking Glass River by Sharon Baltusis. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • ECONOMIC GEOLOGY of the SAND and SANDSTONE RESOURCES of MICHIGAN
    ECONOMIC GEOLOGY of the SAND and SANDSTONE RESOURCES of MICHIGAN Geological Survey Division Report of Investigation 21 By E. William Heinrich Copyright © 2001 by the Michigan Department of Environmental Quality (DEQ) Geological Survey Division (GSD). The DEQ GSD grants permission to publish or reproduce this document, all or in part, for non-profit purposes. The contents of this electronic document (whole or in part) can be used if, and only if, additional fees are not associated with the use or distribution of this document and credit is given to the DEQ GSD and the author(s). This copyright statement must appear in any and all electronic or print documents using this file or any part thereof. Contents of this Report PREFACE ............................................................................4 MARSHALL SANDSTONE ............................................... 20 ABSTRACT..........................................................................4 Grindstone Industry................................................... 20 INTRODUCTION..................................................................4 Napoleon Sandstone................................................. 20 MIDDLE PRECAMBRIAN QUARTZITES ...........................5 Previous Work................................................... 20 General Geology ............................................... 21 General........................................................................5 Quarries............................................................. 21 Mesnard Quartzite .......................................................5
    [Show full text]
  • Collingwood Mb., Lindsay Fm., Stratigraphy and Oil Shale Potential
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • 021-1570 Fnl Rpt 4 Feb 03 LLW Geotech Feas Study.Doc
    Golder Associates Ltd. 2390 Argentia Road Mississauga, Ontario, Canada L5N 5Z7 Telephone: (905) 567-4444 Fax: (905) 567-6561 REPORT ON LLW GEOTECHNICAL FEASIBILITY STUDY WESTERN WASTE MANAGEMENT FACILITY BRUCE SITE TIVERTON, ONTARIO Submitted to: Municipality of Kincardine and Ontario Power Generation Nuclear Waste Management Division 700 University Avenue Toronto, Ontario M5G 1X6 DISTRIBUTION: 4 Copies - Municipality of Kincardine 4 Copies - Ontario Power Generation 2 Copies - Golder Associates Ltd. January 2003 021-1570 OFFICES ACROSS NORTH AMERICA, SOUTH AMERICA, EUROPE, AFRICA, ASIA AND AUSTRALIA January 2003 -i- 021-1570 SUMMARY This report presents the results of an assessment of the geotechnical feasibility of constructing a LLW permanent repository at OPG’s Western Waste Management Facility at the former Bruce Nuclear Power Development site near Tiverton, Ontario (the Bruce Site). The assessment was undertaken as part of activities associated with a Memorandum of Understanding between OPG and the Municipality of Kincardine and considered a number of generic LLW repository concepts previously developed by OPG, specifically: • three near surface concepts involving emplacement of LLW in structural concrete vaults located on ground surface (Covered Above Grade Concrete Vault), in a shallow trench at a depth of about 10 m to 15 m below ground surface (Shallow Concrete Vault) and in a deep trench at a depth of about 25 m below ground surface (Deep Concrete Vault); and • four Rock Cavern Vault concepts involving emplacement of LLW in unlined, mined caverns in the bedrock at a depth of about 50 m to 100 m below ground surface (Shallow Rock Cavern Vault) and at depths of about 200 m to 800 m below ground surface (Deep Rock Cavern Vault) in (i) a thick salt bed, (ii) a low permeability shale sequence, and (iii) a low permeability limestone sequence which were projected to underlie the Site.
    [Show full text]
  • Geology of the Grand River Watershed an Overview of Bedrock and Quaternary Geological Interpretations in the Grand River Watershed
    Geology of the Grand River Watershed An Overview of Bedrock and Quaternary Geological Interpretations in the Grand River watershed Prepared by Bob Janzen, GIT December 2018 i Table of Contents List of Maps ..................................................................................................................... iii List of Figures .................................................................................................................. iii 1.0 Introduction ........................................................................................................... 1 2.0 Bedrock Geology .................................................................................................. 1 Algonquin Arch ......................................................................................................... 2 Bedrock Cuestas ...................................................................................................... 3 2.1 Bedrock Surface ................................................................................................. 4 2.2 Bedrock Formations of the Grand River watershed ........................................... 8 2.2.1 Queenston Formation ................................................................................ 15 2.2.2 Clinton–Cataract Group ............................................................................. 15 2.2.2.1 Whirlpool Formation ............................................................................ 16 2.2.2.2 Manitoulin Formation ..........................................................................
    [Show full text]
  • Bedrock Maps
    1987 BEDROCK GEOLOGY OF MICHIGAN BEDROCK GEOLOGY OF EASTERN UPPER PENINSULA MACKINAC BRECCIA BOIS BLANC FORMATION GARDEN ISLAND FORMATION BASS ISLAND GROUP SALINA GROUP SAINT IGNACE DOLOMITE POINT AUX CHENES SHALE ENGADINE GROUP MANISTIQUE GROUP BURNT BLUFF GROUP KEWEENAW CABOT HEAD SHALE MANITOULIN DOLOMITE QUEENSTON SHALE BIG HILL DOLOMITE HOUGHTON STONINGTON FORMATION UTICA SHALE MEMBER COLLINGWOOD SHALE MEMBER TRENTON GROUP BLACK RIVER GROUP ONTONAGON BARAGA PRAIRIE DU CHIEN GROUP TREMPEALEAU FORMATION MUNISING FORMATION GOGEBIC LU CE MARQUETTE ALGER CHIPPEWA IRON MACKINAC SCHOOLC RAF T DELT A DICKIN SON BEDROCK GEOLOGY OF WESTERN UPPER PENINSULA MACKINAC BRECCIA JACOBSVILLE SANDSTONE EMMET MENOMINEE FREDA SANDSTONE CHEBOYGAN NONESUCH FORMATION PRESQUE ISLE COPPER HARBOR CONGLOMERATE OAK BLUFF FORMATION CHAR LEVOIX PORTAGE LAKE VOLCANICS MONTMORENCY SIEMENS CREEK FORMATION ANT RIM ALPENA INTRUSIVE OTSEGO QUINNESEC FORMATION LEELANAU PAINT RIVER GROUP RIVERTON IRON FORMATION BIJIKI IRON FORMATION GRAND TR AVERSE ALCONA KALKASKA CRAW FOR D OSCOD A NEGAUNEE IRON FORMATION BENZIE IRONWOOD IRON FORMATION DUNN CREEK FORMATION BADWATER GREENSTONE MICHIGAMME FORMATION MANISTEE WEXFORD MISSAUKEE ROSCOMMON OGEMAW IOSCO GOODRICH QUARTZITE HEMLOCK FORMATION BEDROCK GEOLOGY OF ARENAC MENOMINEE & CHOCOLAY GROUPS LOWER PENINSULA EMPEROR VULCANIC COMPLEX MASON LAKE OSCEOLA CLARE GLADWIN SIAMO SLATE & AJIBIK QUARTZITE RED BEDS HURON PALMS FORMATION GRAND RIVER FORMATION CHOCOLAY GROUP SAGINAW FORMATION BAY RANDVILLE DOLOMITE BAYPORT LIMESTONE MICHIGAN
    [Show full text]
  • Report of Investigation 15 SUBSURFACE GEOLOGY of BARRY COUNTY, MICHIGAN
    Geological Survey Ordovician System .......................................................10 Report of Investigation 15 Cincinnatian Series...................................................10 Trenton Group ..........................................................10 SUBSURFACE GEOLOGY OF BARRY COUNTY, Black River Group ....................................................10 MICHIGAN St. Peter Sandstone .................................................11 by Prairie du Chien Group.............................................11 Richard T. Lilienthal Cambrian System.........................................................11 Illustrations by Author Trempealeau Formation ...........................................11 Lansing Munising Formation ..................................................12 1974 STRUCTURAL GEOLOGY .............................................12 POROUS INTERVALS....................................................12 Contents REFERENCES AND FURTHER READING ...................16 FOREWORD......................................................................2 ABSTRACT .......................................................................2 Illustrations INTRODUCTION ...............................................................3 GEOLOGIC SETTING.......................................................3 Figures MINERAL RESOURCES...................................................3 Index map ...................................................................................2 Surface Minerals ............................................................3
    [Show full text]