Journal of Marine Science and Engineering Article Naturally Occurring Rock Type Influences the Settlement of Fucus spiralis L. zygotes William G. Ambrose Jr. 1,*, Paul E. Renaud 2,3, David C. Adler 4 and Robert L. Vadas 5 1 School of the Coastal Environment, Coastal Carolina University, Conway, SC 29528, USA 2 Akvaplan-niva, 9007 Tromsø, Norway;
[email protected] 3 University Centre in Svalbard, 9170 Longyearbyen, Norway 4 East Coast Outfitters, 2017 Lower Prospect Rd., Halifax, NS B3T 1Y8, Canada;
[email protected] 5 Department of Biological Science, University of Maine, Orono, ME 04469, USA;
[email protected] * Correspondence:
[email protected] Abstract: The settlement of spores and larvae on hard substrates has been shown to be influenced by many factors, but few studies have evaluated how underlying bedrock may influence recruitment. The characteristics of coastal rock types such as color, heat capacity, mineral size, and free energy have all been implicated in settlement success. We examined the influence of naturally occurring rock types on the initial attachment of zygotes of the brown alga Fucus spiralis Linnaeus 1753. We also assessed the dislodgment of zygotes on four bedrock types after initial attachment in laboratory experiments using wave tanks. Settling plates were prepared from limestone, basalt, schist, and granite, found in the region of Orrs Island, Maine, USA. The plate surfaces tested were either naturally rough or smooth-cut surfaces. We measured the density of attached zygotes after 1.5 h of settlement and subsequently after a wave treatment, in both winter and summer. The pattern of initial attachment was the same on natural and smooth surfaces regardless of season: highest on limestone (range 7.0–13.4 zygotes/cm2), intermediate on schist (1.8–8.5 zygotes/cm2) and Citation: Ambrose, W.G., Jr.; Renaud, basalt (3.5–14.0 zygotes/cm2), and lowest on granite (0.8–7.8 zygotes/cm2).