Give P's a Chance: Projects, Peers, Passion, Play
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Modern Learning Resources Fail Conversational Programmers April Y
Mismatch of Expectations: How Modern Learning Resources Fail Conversational Programmers April Y. Wang1, Ryan Mitts1, Philip J. Guo2, and Parmit K. Chilana1 1Computing Science 2Design Lab Simon Fraser University UC San Diego Burnaby, BC Canada La Jolla, CA USA {ayw7, rmitts, pchilana}@sfu.ca [email protected] ABSTRACT Conversational programmers represent a class of learners variety of learners, such as computer science (CS) students who are not required to write any code, yet try to learn pro- [17,28,53], end-user programmers [14,15,30,32] and profes- gramming to improve their participation in technical con- sional programmers [1,3,13]. A large focus of these projects versations. We carried out interviews with 23 conversation- has been on improving learners’ understanding of program- al programmers to better understand the challenges they ming syntax and logic and facilitating interaction with fea- face in technical conversations, what resources they choose ture-rich programming environments as these are known to to learn programming, how they perceive the learning pro- present key challenges for new learners. cess, and to what extent learning programming actually Unfortunately, most of what we know about the programming helps them. Among our key findings, we found that conver- learning process and the challenges that learners face is based sational programmers often did not know where to even on studies of students in the classroom [53] or professionals in begin the learning process and ended up using formal and industry [1]. Only recently have we started seeing studies into informal learning resources that focus largely on program- informal learning processes among non-traditional popula- ming syntax and logic. -
Microworlds: Building Powerful Ideas in the Secondary School
US-China Education Review A 9 (2012) 796-803 Earlier title: US-China Education Review, ISSN 1548-6613 D DAVID PUBLISHING Microworlds: Building Powerful Ideas in the Secondary School Craig William Jenkins University of Wales, Wales, UK In the 1960s, the MIT (Massachusetts Institute of Technology) developed a programming language called LOGO. Underpinning this invention was a profound new philosophy of how learners learn. This paper reviews research in the area and asks how one notion in particular, that of a microworld, may be used by secondary school educators to build powerful ideas in STEM (science, technology, engineering, and mathematics) subjects. Keywords: microworlds, programming, STEM (science, technology, engineering, and mathematics), constructionism, education Theories of Knowing This paper examines the microworld as a tool for acquiring powerful ideas in secondary education and explores their potential role in making relevant conceptual learning accessible through practical, constructionist approaches. In line with this aim, the paper is split into three main sections: The first section looks at the underlying educational theory behind microworlds in order to set up the rest of the paper; The second section critically examines the notion of a microworld in order to draw out the characteristics of a microworlds approach to learning; Finally, the paper ends with a real-world example of a microworld that is designed to build key, powerful ideas within a STEM (science, technology, engineering, and mathematics) domain of knowledge. To begin to understand the educational theory behind microworlds, a good starting point is to consider the ways in which learners interact with educational technology. In 1980, Robert Taylor (1980) provided a useful framework for understanding such interactions. -
The Education Column
The Education Column by Juraj Hromkovicˇ Department of Computer Science ETH Zürich Universitätstrasse 6, 8092 Zürich, Switzerland [email protected] Learn to Program?Program to Learn! Matthias Hauswirth Università della Svizzera italiana [email protected] Abstract Learning to program may make students more employable, and it may make them better thinkers. However, the most important reason for learning to program may well be that it enables an entirely new way of learning.1 1 Why Everyone Should Learn to Program We are in a gold rush in computer science education. Countless school districts, states, countries, non-profits, and startups rush to offer computer science, or cod- ing, for all. The goal—or gold?—too often is seen in empowering students to get great future-proof jobs. This first goal—programming to earn—is fine, but it is much too limited. A broader goal looks at computer science education as general education that helps students to become critical thinkers. Like the headmaster of my school, who recommended I study Latin because it would make me a better thinker. It probably did. And so did studying computer science. This second goal—programming to think—is great. However, I claim that there is a third, even greater, goal for teaching computer science to each and every person on the planet. Read on! 2 Computer Language as a Medium In “Computer Science: Reflections on the Field, Reflections from the Field” [6], Gerald Jay Sussman (MIT) writes an essay called “The Legacy of Computer Sci- ence.” There he cites from his own landmark programming textbook “Structure and Interpretation of Computer Programs” (SCIP) [1]: 1 This article is based on a blog post previously published at https://medium.com/ @mathau/learning-to-program-programming-to-learn-c2c3d71d4d1d The computer revolution is a revolution in the way we think and in the way we express what we think. -
The Computer Clubhouse: Helping Youth Develop Fluency with New Media
The Computer Clubhouse: Helping Youth Develop Fluency with New Media Mitchel Resnick The Media Laboratory Massachusetts Institute of Technology Cambridge, MA 02140 [email protected] http://www.media.rnit.edu/~mres/ Natalie Rusk Science Museum of Minnesota St. Paul, MN55101 [email protected] Abstract: The gap between the technological haves and have-nots is widening, leading to dangerous economic and cultural riftsin our society. But access to technology alone is not enough to bridge this gap. This paper describes a new model of a learning community, called the Computer Clubhouse, that breaks away from the traditional computer lab. At the Clubhouse, inner-city youth become designers and creators-not just consumers-of computer-based products. The paper describes four core principles of the Clubhouse educational approach-and discusses how the Clubhouse helps prepare today's youth for life and work in tomorrow's world. Introduction Ever since the personal computer was invented in the late 1970s, there have been concerns about inequities in access to this new technology [Piller, 1992]. Over the years, the gap between the technological haves and have nots has widened, leading to dangerous economic and cultural rifts in our society. In an effort to narrow these rifts, some groups have worked to acquire computers for inner-city schools. Other groups have opened community-access centers, recognizing that schools are not the only (or necessarily the best) place for learning to occur. At these community-access centers, members of inner-city communities (youth and adults alike) can use computers at little or no charge. -
Co-Teaching Computer Science Across Borders
Session 3 L@S ’20, August 12–14, 2020, Virtual Event, USA Co-Teaching Computer Science Across Borders: Human-Centric Learning at Scale Chris Piech Lisa Yan Lisa Einstein Stanford University Stanford University Stanford University Stanford, CA, USA Stanford, CA, USA Stanford, CA, USA [email protected] [email protected] [email protected] Ana Saavedra Baris Bozkurt Eliska Sestakova Stanford University Izmir Demokrasi Universitesi Czech Technical University Stanford, CA, USA Izmir, Turkey Prague, Czech Republic [email protected] [email protected] eliska.sestakova@fit.cvut.cz Ondrej Guth Nick McKeown Czech Technical University Stanford University Prague, Czech Republic Stanford, CA, USA ondrej.guth@fit.cvut.cz [email protected] ABSTRACT CCS Concepts Programming is fast becoming a required skill set for stu- •Social and professional topics ! Computing education; dents in every country. We present CS Bridge, a model for CS1; cross-border co-teaching of CS1, along with a correspond- ing open-source course-in-a-box curriculum made for easy INTRODUCTION localization. In the CS Bridge model, instructors and student- Computer science education has made substantial progress teachers from different countries come together to teach a towards the goal of CS for All in the United States, online, short, stand-alone CS1 course to hundreds of local high school and in some regions of the world. However, there is mounting students. The corresponding open-source curriculum has been evidence of a growing global digital divide, where access to specifically designed to be easily adapted to a wide variety of CS education is heavily dependant on which region you were local teaching practices, languages, and cultures. -
Accessible Tools and Curricula for K-12 Computer Science Education
Accessible Tools and Curricula for K-12 Computer Science Education White paper from the Accessible Computer Science Education Fall Workshop (Draft for Review) November 17-19, 2020 Earl Huff, Clemson University Varsha Koushik, University of Colorado Richard E. Ladner, University of Washington Stephanie Ludi, University of North Texas Lauren Milne, Macalester College Aboubakar Mountapmbeme, University of North Texas Margaret Perkoff, University of Colorado Andreas Stefik, University of Nevada, Las Vegas Introduction Ladner Computer science is rapidly becoming an integral part of the K-12 school curriculum in the United States (US) and other countries. This white paper will focus on the US because we understand K-12 education better than in other countries. Since 1984, computer science has been part of the curriculum in schools that offered AP Computer Science A (CSA). This introduction to programming was originally taught using Pascal, then moved to C++ in 1999, and then Java in 2003. Since 2007, there has been a concerted effort by the National Science Foundation to bring computer science education to a much broader audience and to all levels in K-12. This includes all students regardless of gender, ethnicity, race, or disability. The effort began with Exploring Computer Science (ECS) which was a gentler introduction to computer science at the high school level. Shortly thereafter, the idea of an AP Computer Science Principles (CSP) course arose that was to be a gentler introduction to computer science than AP CSA with a college level equivalent, introductory computer science for non-majors. In 2016, AP CSP became a reality with 43,780 students taking the exam in spring 2017 and two years later that number rose to 94,361. -
Polish Python: a Short Report from a Short Experiment Jakub Swacha Department of IT in Management, University of Szczecin, Poland [email protected]
Polish Python: A Short Report from a Short Experiment Jakub Swacha Department of IT in Management, University of Szczecin, Poland [email protected] Abstract Using a programming language based on English can pose an obstacle for learning programming, especially at its early stage, for students who do not understand English. In this paper, however, we report on an experiment in which higher-education students who have some knowledge of both Python and English were asked to solve programming exercises in a Polish-language-based version of Python. The results of the survey performed after the experiment indicate that even among the students who both know English and learned the original Python language, there is a group of students who appreciate the advantages of the translated version. 2012 ACM Subject Classification Social and professional topics → Computing education; Software and its engineering → General programming languages Keywords and phrases programming language education, programming language localization, pro- gramming language translation, programming language vocabulary Digital Object Identifier 10.4230/OASIcs.ICPEC.2020.25 1 Introduction As a result of the overwhelming contribution of English-speaking researchers to the conception and development of computer science, almost every popular programming language used nowadays has a vocabulary based on this language [15]. This can be seen as an obstacle for learning programming, especially at its early stage, for students whose native language is not English [11]. In their case, the difficulty of understanding programs is augmented by the fact that keywords and standard library function names mean nothing to them. Even in the case of students who speak English as learned language, they are additionally burdened with translating the words to the language in which they think. -
1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B. -
Adolescent Mothers' Meaning Making and Mindset I
MEANING MAKING AND MINDSET IN YOUNG MOTHERHOOD i “I Think Different Now”: Adolescent Mothers’ Meaning Making and Mindset in the Transition to Parenthood Dissertation submitted by Anne Bentley Waddoups, M.A. In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Child Study and Human Development Eliot-Pearson Department of Child Study and Human Development Tufts University August 2015 Dissertation Committee members: M. Ann Easterbrooks, Ph.D. (Chair) Jayanthi Mistry, Ph.D. Natalie Rusk, Ph.D. Gilda A. Morelli, Ph.D. MEANING MAKING AND MINDSET IN YOUNG MOTHERHOOD i Abstract Using a meaning making lens and a qualitative methodology, this dissertation study sought to explore transformative meaning making and implicit beliefs of parenting among a sample of 40 adolescent mothers participating in a home visiting program during their transition to parenthood. Given the high attrition rate for interventions serving adolescent moms, the study also explored the alignments between meaning making and home visiting program participation. Through iterative coding and theme analysis, this investigation revealed that participants’ beliefs about parenting evolve as they transition from pregnancy to parenting. They engage in meaning making throughout the process, which leads to scripts of change in three areas: improvements in relationships, changes in life outlook, and changes to self. Two groups emerged on either end of the spectrum of meaning making. High meaning-making transformers tended to remain actively enrolled in the intervention while the low meaning-making remainers all dropped out by the second year. An analysis of implicit beliefs about parenting, or meta-parenting mindset, identified three groups of participants: fixed theorists, incremental theorists, and mixed theorists. -
Direct Manipulation of Turtle Graphics
Master Thesis Direct Manipulation of Turtle Graphics Matthias Graf September 30, 2014 Supervisors: Dr. Veit Köppen & Prof. Dr. Gunter Saake Otto-von-Guericke University Magdeburg Prof. Dr. Marian Dörk University of Applied Sciences Potsdam Abstract This thesis is centred around the question of how dynamic pictures can be created and manipulated directly, analogous to drawing images, in an attempt to overcome traditional abstract textual program representations and interfaces (coding). To explore new ideas, Vogo1 is presented, an experimental, spatially-oriented, direct manipulation, live programming environment for Logo Turtle Graphics. It allows complex abstract shapes to be created entirely on a canvas. The interplay of several interface design principles is demonstrated to encourage exploration, curiosity and serendipitous discoveries. By reaching out to new programmers, this thesis seeks to question established programming paradigms and expand the view of what programming is. 1http://mgrf.de/vogo/ 2 Contents 1 Introduction5 1.1 Research Question.................................6 1.2 Turtle Graphics..................................6 1.3 Direct Manipulation................................8 1.4 Goal......................................... 10 1.5 Challenges..................................... 12 1.6 Outline....................................... 14 2 Related Research 15 2.1 Sketchpad..................................... 15 2.2 Constructivism................................... 16 2.3 Logo........................................ 19 2.4 -
Integrating Human and Machine Intelligence for Enhanced Curriculum Design
Integrating Human and Machine Intelligence for Enhanced Curriculum Design Shayan Doroudi CMU-CS-19-110 May 15, 2019 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Emma Brunskill, Chair Vincent Aleven Ken Koedinger Chinmay Kulkarni Eric Horvitz (Microsoft Research) Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Copyright © 2019 Shayan Doroudi This research was sponsored by the PIER Fellowship, Microsoft, Google, the Air Force Research Laboratory under grant number F87501720152, and the Department of Education under grant numbers R305A130215 and R305B150008. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Keywords: curriculum design, learnersourcing, content creation, reinforcement learning, in- structional sequencing, student modeling, model misspecification, bias-variance tradeoff If there is any good in these pages, it is for Fatima and her father and her husband and her two sons, peace and blessings be upon them. iv Abstract From the mechanical teaching machines of the early twentieth century to the wave of massive open online courses in recent years, many have been motivated by the dream of delivering a personalized adaptive curriculum to each learner. To achieve this dream, many researchers have focused on rule-based systems that rely on extensive domain expertise and psychological theories. While this approach has led to the development of successful intelligent tutoring systems with high quality content, (1) developing such systems can be very costly and (2) these systems typ- ically employ a very limited form of adaptive instructional sequencing. -
Why Design? Constructivism and Constructionism
When people think about learning and Why Design? education, they often think about one person transmitting information to an- Design projects engage kids as active participants, giving other, like this: them a greater sense of control and responsibility for the learning process. Design projects encourage creative problem-solving. Design projects are often interdisciplinary, bringing to- gether ideas from art, technology, math, and sciences. Design projects help kids learn to put themselves in the minds of others, since they need to consider how others will Increasingly, educators are recognizing use the things they create. that this “transmission approach” doesn’t work very well. Research has Design projects provide opportunities for reflection and shown that people learn best not when collaboration. they are passively receiving informa- tion, but when they are actively en- Design projects set up a positive-feedback loop of learning: gaged in exploring, experimenting, and when kids design things, they get new ideas, leading them expressing themselves (sometimes to design new things, from which they get even more ideas, known as the 3 X’s). leading them to design yet more things, and so on. More and more schools are focusing on learning-by-doing, engaging stu- dents in hands-on activities. Computer Clubhouses follow a similar strategy, Constructivism and Constructionism but go a step further: members don’t The Clubhouse learning-by-designing approach is inspired by simply get their hands on computers, two important theories of learning and education. they use computers to design, create, and invent things. It’s not just learning- The constructivist theory The constructionist approach by-doing; it’s learning-by-designing.