The Analysis of Retinyl Acetate and Retinyl Palmitate in Foods And

Total Page:16

File Type:pdf, Size:1020Kb

The Analysis of Retinyl Acetate and Retinyl Palmitate in Foods And The Analysis of Retinyl Acetate and Retinyl Palmitate in Foods and Supplements Using Coupled Supercritical Fluid Extraction and Chromatography with Tandem Mass Spectrometry Detection Daniel Hengst, Andres Vasquez, Tyler Gatz and Chad Scheurell Eurofins Food Integrity and Innovation, Madison, WI Abstract Internal procedures were followed to complete a method validation exercise. Calibration curves were established in the range of 0.18-36 mcg, method precision was determined by analyzing several replicates of internal control Retinyl Acetate and Retinyl Palmitate are esters of Retinol, also known as Vitamin A. Vitamin A is a critical samples over multiple days and accuracy was established by fortifying blank material across the assay analysis component of the mammalian dietary intake, having metabolic roles associated with vision, gene transcription and range and determining the percent recovery. All method performance criteria met AOAC guidelines, with overall immune function. Due to the nutritional importance of this compound, many foods and supplements are fortified with results comparable to AOAC and USP routine methods. these ester forms of retinol. The quick and accurate analysis of these compounds is crucial, since dietary deficiency or overabundance may lead to adverse physiological effects. Traditional methodology for the analysis of these compounds can be time-consuming and tedious, with lengthy techniques such as saponification and liquid-liquid Results partitions commonly employed. A method for the analysis of Retinyl Acetate and Retinyl Palmitate has been developed and validated utilizing coupled Supercritical Fluid Extraction and Chromatography with Tandem Mass Table 1. Precision Spectrometry detection. This technique produces equivalent results to reference methods, with only four minutes of Average Legacy % difference chemist time required per sample for the extraction procedure. Average result legacy method SFE-SFC- by SFE-SFC- RSD Legacy method result RSD MSMS vs. Analyte Matrix MSMS (mcg/g) (%) HorRat method (mcg/g) (%) legacy method Introduction USP 38- Vitamin A is fortified in foods and supplements on a wide scale. Bailey et al. estimated that 28-37% of the general NF 33, Figure 2. Calibration Standard, 18 mcg population consume supplements containing Vitamin A in a study published in The Journal of Nutrition (2011). Retinyl Vitamin Methods Sources of Vitamin A activity commonly added to supplements include Beta Carotene, Retinyl Acetate and Retinyl Acetate Tablet 883 2.7 0.940 1 and 2 845 5.7 4.5 Palmitate. Retinyl Infant AOAC Retinyl Acetate and Retinyl Palmitate are esters of retinol, containing the substituted β-ionone ring and side chain Acetate Formula 12.2 4.0 0.733 2012.09 11.3 0.9 8.0 common to the retinoids. These compounds are routinely used as the source of Vitamin A supplementation, since Retinyl Infant AOAC the esterification reduces the capacity of the compound to oxidize, without reducing the biological activity of the Palmitate formula 17.2 3.9 0.752 2012.09 17.4 1.5 -1.1 vitamin. Biological retinol activity is most commonly associated with vision, but other metabolic functions have been Fortified identified: for example, immune function and embryonic development are linked to retinol activity. Retinyl Breakfast AOAC Palmitate Cereal 14.6 5.4 1.02 2001.13 14.8 4.8 -1.4 Methods The analysis of the A vitamins can be challenging due to the rapid oxidization and isomerization of these compounds. Since the retinoids are typically unstable in the presence of acids, metals, selected enzymes, heat and non-filtered light, careful control of testing conditions is critical. Many regulatory methods have been established for the retinol esters by the USP, AOAC and other governing bodies. For detection of pure material, spectrophotometric detection at a 325 nm is commonly used. Normal and reverse phase liquid chromatography with UV wavelength Figure 3. Infant Formula Chromatogram detection is the common instrument of choice for the analysis of foods and supplements. Typical extraction procedures include saponification and direct extraction. Saponification mandates the addition of a strong base to the extraction procedure, which will cleave the ester linkage of Retinyl Palmitate and Acetate; the analyte will then be Conclusion analyzed as retinol. The saponification process is lengthy, including an initial suspension of sample in antioxidant, water, alcohol and base. After an incubation period, often lasting several hours, the sample suspension is A method for the analysis of Vitamin A Acetate and Vitamin A Palmitate using SFE-SFC-MSMS has been repeatedly partitioned into a nonpolar solvent, which is concentrated and exchanged before analysis. Direct successfully developed and validated at Eurofins Food Integrity and Innovation. This method is advantageous over extractions are simplified, without the use of the lengthy incubation. However, the process can still be labor legacy methods in several ways. Analyst labor is dramatically reduced, with manual sample preparation steps intensive with multiple solvent additions, liquid-liquid partitions, and solvent exchanges as well as careful attention to complete in a manner of minutes rather than hours. Inert conditions are maintained throughout the breadth of the preventing the isomerization and oxidization of the analyte. extraction procedure which minimizes the need for degassing and antioxidant addition steps. The use of hazardous solvents is radically reduced with the bulk of the extraction solution and mobile phase being carbon dioxide; the Coupled Supercritical Fluid Extraction and Chromatography with Tandem Mass Spectrometry detection remaining components are the relatively benign alcohols. Solvent disposal is vastly reduced, with spent carbon (SFE-SFC-MSMS) is an attractive alternative for the analysis of the retinol esters. With this technique, the analytes dioxide simply released into a laboratory hood system. Finally, the instrument throughput is relatively rapid, with a are simultaneously extracted, chromatographed and analyzed using supercritical carbon dioxide as the major cycle time of 16 minutes per sample. In future research, this instrumentation will be applied to other nonpolar component of the extraction solution and mobile phase. A method has been developed and validated for the analytes, such as other fat soluble vitamins, contaminants and lipids. analysis of Retinyl Acetate and Retinyl Palmitate in foods and supplements using SFE-SFC-MSMS in the range of 0.6-20,000 mcg/g. Manual sample preparation steps only require 4 minutes of analyst time, and the extraction-analysis cycle time is 16 minutes per sample. Figure 1. Retinyl Palmitate Calibration Method Details, SFE-SFC-MSMS Before sampling, the test sample is milled using a variety of techniques, including cryogenic milling, ball milling and wet milling. A suitable portion is weighed, and then mixed with aliquots of water, stable isotope internal standard and Fortification level Acceptable recovery alcohol. This sample slurry is combined with a water absorbent material and transferred to an extraction cell. The Analyte (mcg/g) N Average recovery (%) range (%)1 cell is loaded on the SFE-SFC (Shimadzu Nexera UC), where the sample is extracted with supercritical carbon 0.6 9 105 75-120 dioxide and alcohol, with a fraction of the extract focused on a Cosmosil Cholester column (250 x 4.6 mm, 5um). Retinyl 1000 9 102 90-108 After the extraction portion is complete, the analytes are eluted with a linear gradient of methanol in supercritical Acetate carbon dioxide. Detection and quantitation is performed with a Tandem Mass Spectrometer (Agilent 6490, APCI 25000 9 95.8 92-105 source), with Retinyl Palmitate and Retinyl Acetate quantitated with an ion transition of 269.2/92.9 da. Ionization effects and extraction efficiency are compensated for with stable isotope internal standards, 13C4 Vitamin A Acetate 0.6 9 104 75-120 Retinyl and D4 Retinyl Palmitate at ion transitions of 273.2/97.1 and 273.1/94.1 da respectively. Since the target matrices 1000 9 99.5 90-108 Palmitate may contain quite high levels of the retinol esters, a 1 -5 split is installed before the MSMS, with a makeup pump 20000 9 94.2 92-105 delivering a high flow rate of methanol to perform an in line dilution. High level samples are quantitated using ion transitions of 270.1/93.1 da with the concentration quantitated against the monoisotopic species calibration curve, 1Taken from Official Methods of Analysis of AOAC International, “Guidelines for Dietary Supplements and Botanicals,” Appendix K, p. 8. and a determined multiplication factor is applied. Presented at the AOAC Annual Meeting and Exposition 2019.
Recommended publications
  • Vitamin A: History, Current Uses, and Controversies M
    Vitamin A: History, Current Uses, and Controversies M. Shane Chapman, MD Vitamin A is required for the proper functioning of many important metabolic and physio- logic activities, including vision, gene transcription, the immune system and skin cell differentiation. Both excessive and deficient levels of vitamin A lead to poor functioning of many human systems. The biologically active form, retinoic acid, binds to nuclear receptors that facilitate transcription that ultimately leads to it’s physiological effects. Retinoids are derivatives of vitamin A that are medications used to treat acne vulgaris, psoriasis, ichthyosis (and other disorders of keratinization), skin cancer prevention as well as several bone marrow derived neoplasias. Systemic retinoids are teratogenic and have to be prescribed with caution and close oversight. Other potential adverse events are contro- versial. These include the relationship of retinoid derivatives in sunscreens, their effects on bone mineral density, depression and suicidal ideation and inflammatory bowel disease. These controversies will be discussed in detail. Semin Cutan Med Surg 31:11-16 © 2012 Published by Elsevier Inc. KEYWORDS vitamin A, retinoids, carotenoids, sunscreens, bone metabolism, teratogenicity, depression, suicidal ideation, istotretinoin, inflammatory bowel disease. itamin A is a fat-soluble vitamin that is required for the molecules, retinal, for both low-light- and color vision. Ret- Vproper functioning of a diverse array of metabolic and inol is also converted to retinoic acid, which is a hormone- physiologic activities. Vision, hematopoiesis, embryonic de- like growth factor important for epithelial cell growth and velopment, skin cell differentiation, immune system func- differentiation. It is required for skin and bone health, but in tion, and gene transcription all require vitamin A.
    [Show full text]
  • Manual for Sugar Fortification with Vitamin a Part 3
    Manual for Sugar Fortification with Vitamin A Part 3 Analytical Methods for the Control and Evaluation of Sugar Fortification with Vitamin A Omar Dary, Ph.D. Guillermo Arroyave, Ph.D. with Hernando Flores, Ph.D., Florisbela A. C. S. Campos, and Maria Helena C. B. Lins Dr. Omar Dary is a research biochemist at the Institute of Nutrition of Central America and Panama (INCAP), Guatemala. Dr. Guillermo Arroyave is an international consultant in micronutrients residing in San Diego, California. Dr. Hernando Flores, Ms. Campos, and Ms. Lins are biochemists at the Universidad de Pernambuco, Brazil. MANUAL FOR SUGAR FORTIFICATION PART 3 TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................... v FOREWORD ...................................................................vii I. INTRODUCTION .......................................................... 1 II. PROPERTIES OF RETINOL AND RETINOL COMPOUNDS USED IN SUGAR FORTIFICATION .......................................................... 3 III. PRINCIPLES FOR DETERMINING RETINOL IN VITAMIN A PREMIX AND FORTIFIED SUGAR .................................................................. 5 A. Spectrophotometric method ............................................. 5 B. Colorimetric method .................................................. 6 IV. SPECTROPHOTOMETRIC DETERMINATION OF RETINOL IN PREMIX ........... 7 A. References .......................................................... 7 B. Principle ............................................................ 7 C. Critical
    [Show full text]
  • LC-MS-MS Quantitative Analysis of 12 Retinoids, Derivatives And
    LC-MS-MS quantitative analysis of 12 Retinoids, derivatives and metabolites in serum for clinical research use Rory M Doyle, Joshua Kline, Thermo Scientific Inc., 265 Davidson Avenue, Somerset, NJ 08873 ABSTRACT Reagents Table 1- Scan Parameters- SRM table Figure 1: Chromatograms and Retention time The following Fisher Scientific™ acids, reagents and solvents were used- Compound Rt Polarity Precursor Product Collision Rf Introduction: Liquid chromatography triple quadrupole mass spectrometry is suited for rapid analysis (min) (m/z) (m/z) Energies Lens F:\ASMS-STD\100ngml-STD 05/25/17 19:11:02 100ngml-STD of multiple analytes of similar and different structures and physicochemical properties. Retinoids are HPLC grade Water Formic Acid (V) (V) a diverse group of three different generations of biologically active compounds that physiologically RT: 0.00 - 5.29 RT: 0.00 - 5.29 Methanol Acetonitile RT: 0.86 RT: 3.16 impact the bodies’ functions and include- retinol, retinal, tretinoin, isotretinoin, etretinate, acitretin, Tazarotenic Acid 0.86 Positive 324.2 294/308 34.3/36.4 191 AA: 17396997 AA: 116868 Methyl-Tert-Butyl-Ether (MTBE) 100 Tazarotenic Acid 100 Bexarotene adapalene, bexarotene, tazarotene and metabolites. A sensitive and specific LC-MS/MS analytical Tazarotene 1.67 Positive 352.2 324.01294 26.4/40.1 206 research method was developed and optimized for the quantitation of retinoids and metabolites in 0 0 RT: 1.67 RT: 3.27 serum. Simple sample preparation techniques were used that included a protein crash and liquid- The standards and internal standards were made up in Methanol. Acitretin 2.51 Positive 327.2 176.9/159 10.3/17.4 101 AA: 88457528 AA: 527912 100 Tazarotene 100 Retinoic Acid liquid extraction.
    [Show full text]
  • Biological Activity and Metabolism of the Retinoid Axerophthene (Vitamin a Hydrocarbon)
    [CANCER RESEARCH 38, 1734-1738, June 1978] Biological Activity and Metabolism of the Retinoid Axerophthene (Vitamin A Hydrocarbon) Dianne L. Newton, Charles A. Frolik, Anita B. Roberts, Joseph M. Smith, Michael B. Sporn, Axel NUrrenbach, and Joachim Paust National Cancer Institute, Bethesda, Maryland 20014 [D. L. N., C. A. F., A. B. R., J. M. S., M. B. S.], and BASF Aktiengesellschaft, 6700 Ludwigshafen am Rhein, Germany ¡A.N., J. P] ABSTRACT ity and properties of this molecule. In this study we report a detailed investigation of the biological activity and metabo Biological properties of axerophthene, the hydrocarbon lism of axerophthene. Subsequent studies will deal with the analog of retino!, have been studied both in vitro and in possible effectiveness of this compound for prevention of vivo. In trachea! organ culture axerophthene reversed experimental breast cancer. keratinization caused by deficiency of retinoid in the culture medium; its potency was of the same order of magnitude as that of retinyl acetate. Axerophthene sup MATERIALS AND METHODS ported growth in hamsters fed vitamin A-deficient diets although less effectively than did retinyl acetate. Axer Axerophthene was synthesized as follows: 1100 g (1.75 ophthene was considerably less toxic than was retinyl mol) of crystalline all-E-retinyltriphenylphosphonium bisul acetate when administered repeatedly in high doses to fate (16) were dissolved in 1500 ml of dimethylformamide at rats. Administration of an equivalent p.o. dose of axer about 25°.A solution of 140 g (3.5 mol) of sodium hydroxide ophthene caused much less deposition of retinyl palmi- in 1100 ml of water was added while the temperature of the tate in the liver than did the same dose of retinyl acetate, mixture was kept at about 25°.After being stirred for 3 hr at while a greater level of total retinoid was found in the about 25°,the mixture was extracted with n-hexane (3 x mammary gland after administration of axerophthene.
    [Show full text]
  • Disturbed Vitamin a Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD)
    nutrients Review Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD) Ali Saeed 1,2, Robin P. F. Dullaart 3, Tim C. M. A. Schreuder 1, Hans Blokzijl 1 and Klaas Nico Faber 1,4,* 1 Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; [email protected] (A.S.); [email protected] (T.C.M.A.S.); [email protected] (H.B.) 2 Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan 3 Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 4 Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-(0)5-0361-2364; Fax: +31-(0)5-0361-9306 Received: 7 November 2017; Accepted: 19 December 2017; Published: 29 December 2017 Abstract: Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs).
    [Show full text]
  • BUFF Safety Assessment of Retinol and Retinyl Palmitate As Used In
    BUFF Safety Assessment of Retinol and Retinyl Palmitate as Used in Cosmetics CIR EXPERT PANEL MEETING SEPTEMBER 10-11, 2012 August 16, 2012 Memorandum To: CIR Expert Panel From: Wilbur Johnson, Jr. Manager/Lead Specialist Subject: Re-review Document on Retinol and Retinyl Palmitate A final report on the safety assessment of retinol and retinyl palmitate with the following conclusion was published in 1987: On the basis of the available animal and clinical data presented in this report, the CIR Expert Panel concludes that retinyl palmitate and retinol are safe as cosmetic ingredients in the present practices of use and concentration. The Expert Panel confirmed this original conclusion in 2005, after reviewing published and unpublished data that became available since 1987. Since then, a National Toxicology Program (NTP) photocarcinogenicity study on retinyl palmitate and retinoic acid was completed and studies on the photogenotoxicity of retinyl palmitate and retinol have entered the published literature. With support from FDA, CIR staff determined that these new data warranted another re-review of the safety of retinol and retinyl palmitate in cosmetics. A copy of the re-review document on these two ingredients is included along with the CIR report history, Literature search strategy, Ingredient Data profile, Minutes from the June 13-14 2005 Expert Panel Meeting, 1987 published CIR final report on retinol and retinyl palmitate, and 2012 FDA VCRP data. The following memoranda from the Environmental Working Group (EWG) and Personal Care Products Council (PCPC) relating to the NTP photocarcinogenicity study on retinyl palmitate and retinoic acid are included as well: 1.
    [Show full text]
  • Review Article Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects
    Hindawi Publishing Corporation Journal of Lipids Volume 2013, Article ID 710290, 19 pages http://dx.doi.org/10.1155/2013/710290 Review Article Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects Angel Catalá1,2 1 Instituto de Investigaciones Fisicoqu´ımicas Teoricas´ y Aplicadas (INIFTA-CCT La Plata-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina 2 Carrera del Investigador Cient´ıfico, Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas´ (CONICET), 1900 La Plata, Argentina Correspondence should be addressed to Angel Catala;´ [email protected] Received 6 September 2013; Accepted 7 October 2013 Academic Editor: Robert Salomon Copyright © 2013 Angel Catala.´ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and 14 their effects. The first project I became involved in was the organic synthesis of[1- C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids.
    [Show full text]
  • Risk Assessment of Vitamin a (Retinol and Retinyl Esters) in Cosmetics
    Risk assessment of vitamin A (retinol and retinyl esters) in cosmetics Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics of the Norwegian Scientific Committee for Food Safety Date: 22.08.12 Doc. no.: 10-405-3 final ISBN: 978-82-8259-059-4 VKM Report 2012: 25 VKM Report 2012: 25 Norwegian Scientific Committee for Food Safety (VKM) 10/405-3 final Risk assessment of vitamin A (retinol and retinyl esters) in cosmetics Ragna Bogen Hetland (Chair) Berit Granum Claus Lützow-Holm Jan Ludvig Lyche Jan Erik Paulsen Vibeke Thrane 2 Norwegian Scientific Committee for Food Safety (VKM) 10/405-3 final Contributors Persons working for VKM, either as appointed members of the Committee or as ad hoc experts, do this by virtue of their scientific expertise, not as representatives for their employers. The Civil Services Act instructions on legal competence apply for all work prepared by VKM. Acknowledgements The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has appointed a working group consisting of both VKM members and external experts to answer the request from the Norwegian Food Safety Authority. The members of the working group are acknowledged for their valuable work on this opinion. The members of the working group are: VKM members Ragna Bogen Hetland, Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics (Chair) Berit Granum, Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact
    [Show full text]
  • 9. Recommendations for Futu Research
    Vitamin A 9. Recommendations for futu asbestos, tobacco, bidi smoking, betel nut research I chewing, alcohol and environmental toxins influence these systems. The assessment of the literature presented in A better understanding of the way the cell this handbook led to formulation of the following and the body control their vitamin A supply recommendations for future research: will allow better definition of vitamin A status, distribution at times of deficiency, and assess- 1. To study the mechanism of action of retinol ment of effects on how distribution is and its metabolites at the molecular and organized. Epidemiologically, the eye has been genetic levels in relation to carcinogenesis; considered the organ most vulnerable to vitamin A status. However, in the last decade, 2. To identify new nontoxic conjugates and the importance of vitamin A for immune func- formulations of retinol and retinyl esters tion has become apparent. Impaired immune that may show cancer-preventive proper- function has been identified in populations ties; where ophthalmological signs are rare, and morbidity is reduced by vitamin A supple- 3. To consider the conduct of randomized ments. Animal studies have shown that prevention trials of longer duration among vitamin A deficiency increases susceptibility to particularly high-risk groups such as chemical carcinogens. Thus, the aspects of asbestos-exposed individuals and former vitamin A metabolism that are disrupted lung cancer patients; during deficiency should be identified, as should the point at which vitamin A depletion 4. To evaluate exposure biomarkers useful in occurs. Other questions that still need to be epidemiological studies and clinical trials; resolved are how adaptation to low vitamin A intake occurs and what pathway is attenuated S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7459.288 B2 Bosley Et Al
    US007459288B2 (12) United States Patent (10) Patent No.: US 7459.288 B2 Bosley et al. (45) Date of Patent: Dec. 2, 2008 (54) METHOD OF PRODUCING RETINYL EP O O94771 5, 1983 ESTERS EP O 343 444 5, 1989 GB 2 0263.19 7, 1978 (75) Inventors: John Anthony Bosley, Kettering (GB); JP 56113760 9, 1981 Clive Roderick Harding, Trumbull, CT JP 612125.15 9, 1986 (US); Christopher Rawlins, Shambrook JP 622484.95 10, 1987 (GB); Julia Sarah Rogers, Shambrook JP 6032774 2, 1994 (GB); Ian Richard Scott, Stratford upon WO 99.32105 7, 1999 Avon (GB) WO O 1/78676 10, 2001 (73) Assignee: Unilever Home & Personal Care USA, division of Conopco, Inc., Greenwich, OTHER PUBLICATIONS CT (US) International Search Report, PCT/EP03/12206, mailed Mar. 1, 2004, (*) Notice: Subject to any disclaimer, the term of this 2 pp. patent is extended or adjusted under 35 GB Search Report, GB 0226270.7, dated Apr. 17, 2003, 1 p. U.S.C. 154(b) by 412 days. GB Search Report, GB0226270.7, dated May 21, 2003, 1 p. Maugard, et al., “Enzymatic Synthesis of Derivatives of Vitamin A in (21) Appl. No.: 10/534,520 Organic Media”, Journal of Molecular Catalysis B Enzymatic, vol. 8, No. 4-6, Feb. 18, 2000, pp. 275-280, XP002270 197. (22) PCT Filed: Oct. 27, 2003 O'Connor, et al., “Candida-Cylindracea Lipase-Catalysed Synthesis of Retinyl and Oleyl Palmitates Carbon Chain Length Dependence of (86). PCT No.: PCT/EPO3/12206 Esterase Activity”, Australian Journal of Chemistry, vol. 45, No. 4. 1992, pp. 641-649, XP0008027552.
    [Show full text]
  • A Study on the Latest Research Trends in Natural Products with Anti-Aging Effects
    Journal of Convergence for Information Technology e-ISSN 2586-4440 Vol. 9. No. 12, pp. 286-293, 2019 DOI : https://doi.org/10.22156/CS4SMB.2019.9.12.286 A Study on the Latest Research Trends in Natural products with Anti-Aging Effects Young-Hee Pyo1, Seon-Hee You2* 1Professor, Dept. of Beauty & Cosmetic, Osan University 2Adjunct professor, Dept. of Beauty Stylist-Major in Skin Care, Yeonsung University 항노화 효능을 가진 천연물에 대한 최신 연구 동향에 관한 연구 표영희1, 유선희2* 1오산대학교 뷰티&코스메틱계열 교수, 2연성대학교 뷰티스타일리스트과 겸임교수 Abstract In this study, four types of retinol, retinyl palmitate, adenocin, and polytoxylate-dretinamide, which are the ingredients of the Ministry of Food and Drug Safety Notice, included in the study. also we looked at trends in research on Sciadopitys verticillata, Prunella vulgaris, Celosia cristata L., Brazilin, Persicaria hydropiper, Astragalus membranaceus Bunge, Forsythiae Fructus, Lithospermum root, Rheum undulatum L. and Cistanche deserticola Y. C. Ma a natural material that has the efficacy of antioxidant aging. The anti-aging study so far has been found to be centered mainly on collagen production and elastase synthesis inhibition mechanisms. However, given that the aging process of the skin is caused by various ageing processes, it is believed that anti-aging studies using safe and effective natural materials that can help the skin age with various mechanisms should be conducted. Key Words : Anti-aging, Ministry of Food and Drug Safety, Elastase, Wrinkle Improvement, Natural Materials, Collagen 요 약 본 연구에서는 식약청 고시 원료인 레티놀, 레티닐팔미테이트, 아데노신, 폴리에톡실레이티드레틴아마이드 4종류와 항 노화의 효능을 가진 천연 원료인 금송, 하고초, 맨드라미, 브라질린, 여뀌, 황기, 연교, 자근, 대황, 육종 용에 대한 연구 동향을 살펴보았다.
    [Show full text]
  • Toxicity, Metabolism and Applied Uses of 3,4-Didehydroretinol Pamela Kay Duitsman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Toxicity, metabolism and applied uses of 3,4-didehydroretinol Pamela Kay Duitsman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Medical Toxicology Commons, Nutrition Commons, and the Toxicology Commons Recommended Citation Duitsman, Pamela Kay, "Toxicity, metabolism and applied uses of 3,4-didehydroretinol " (1995). Retrospective Theses and Dissertations. 10896. https://lib.dr.iastate.edu/rtd/10896 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This mamiscript has been reproduced from the microfilm master. UMI films the text directfy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter £ace, while others may be from any type of conq>uter printer. Hie qnality of this reproduction is dq)endait upon the qnality of the copy snbniitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard Tnarging and inqn-oper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these wOl be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overly Each original is also photographed in one exposure and is included in reduced form at the bade of the book.
    [Show full text]