Early Pennsylvanian Paleotopography and Depositional Environments, Rock Island County, Illinois

Total Page:16

File Type:pdf, Size:1020Kb

Early Pennsylvanian Paleotopography and Depositional Environments, Rock Island County, Illinois iS Guidebook 18 Early Pennsylvanian Paleotopography and Depositional Environments, Rock Island County, Illinois Richard L. Leary C. Brian Trask Nineteenth Annual Meeting, North-Central Section of the Geological Society of America Northern Illinois University, De Kalb, Illinois, April 25-27, 1985 Sponsored by the Illinois State Geological Survey Early Pennsylvanian Paleotopography and Depositional Environments, Rock Island County, Illinois Richard L. Leary Illinois State Museum Springfield, Illinois 62706 C. Brian Trask Illinois State Geological Survey Champaign, Illinois 61820 ISGS Guidebook 18 Illinois State Geological Survey Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 1985 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/earlypennsylvani18lear WARNING: ACCESS TO THESE QUARRIES IS RESTRICTED!! Persons entering without permission are subject to arrest and fines! Primarily due to OSHA (Occupational Safety and Health Administration) and MSHA (Mine Safety and Health Administration) federal regulations and insurance requirements, ALL persons entering property associated with quarries and mines MUST have WRITTEN PERMISSION and MUST WEAR hard hats, safety goggles, and steel-toed shoes and meet all other current federal safety regulations. WRITTEN permission MUST be obtained from the appropriate company PRIOR to entering the quarry property. Write well in advance of any planned visit to assure completion of necessary arrangements before the selected date. Write to: (Allied Stone Company quarry) (Collinson Stone Company quarry) Mr. James O. Ellis, President Mr. Richard DeShepper Moline Consumers 3115 23rd Avenue 313 16th Street Moline, IL 61265 Moline, IL 61265 1,1 «»*** EARLY PENNSYLVANIAN PALEOTOPOGRAPHY AND DEPOSITIONAL ENVIRONMENTS, ROCK ISLAND COUNTY, ILLINOIS INTRODUCTION The Geological Society of America, North- assemblage is distinct from the more com- Central Section, presents this one-day field monly preserved "coal-swamp flora." trip to Rock Island County, Illinois, where you The distinctive character of the flora has will have the opportunity to examine the pre- been considered the result of the distinctive Pennsylvanian unconformity, overlying sedi- environment that produced the flora. All flora ments, and an early Pennsylvanian upland from Rock Island County, and one from compression flora. The itinerary repeats a Brown County to the south, have been referred trip originally offered during the Ninth Inter- to as an "upland" flora. national Congress of Carboniferous Stratig- This field trip will give geologists and raphy and Geology (IX-ICC) in 1979. paleobotanists an opportunity to examine the In recent years the nature and significance stratigraphic and paleotopographic setting of of the Mississippian-Pennsylvanian boundary this flora. It will also provide an opportunity have received considerable attention. In Illi- to discuss the nature of the flora, its relation- nois, as in much of the continental United ship to the setting, and the paleoecological States, the boundary is marked by a major and evolutionary implications. unconformity. Extensive topographic relief The guidebook itself is a reprint of Leary developed on underlying strata prior to initial (1979). Some revisions have been made to up- Pennsylvanian deposition. In parts of Illinois, date the guidebook with new exposures, new especially along the margins of the Illinois data, and new references. The geology of the Basin, erosion removed great thicknesses of field-trip area has been discussed by Leary pre-Pennsylvanian rocks (although some forma- (1981). Additional information concerning tions may have been thinner than equivalent Labriscorpio alliedensis is also available (Leary, strata in the deep part of the basin, or in fact, 1980). Phillips and Peppers (1984) have sum- may never have been deposited). marized regional paleoenvironmental patterns In the Rock Island County area, the of coal swamps and discussed the effect of cli- Pennsylvanian System overlies rocks ranging mate on coal occurrence in Euramerican coal in age from Silurian to Devonian. Pre-Pennsyl- fields. vanian topography was characterized by deep Figure 6 has been revised to reflect new valleys, high hills, and some karst features. data. Now this illustration better shows the Although much of this topography can be pre-Pennsylvanian paleovalleys in the Rock examined only by means of drilling records, Island County area. Figure 7 shows the full some higher elevations are now exposed. extent of the channel exposed in the Allied Several of these features will be seen on this Stone Company quarry. It also indicates that field trip. most of the fossil-bearing strata have now been In recent years the senior author has col- removed by quarrying. Figure 8 has been lected a large number of well preserved early updated to show a current (1984) cross section Pennsylvanian plant fossils in the Rock Island of a channel. area. The fossils occur in rocks immediately Russel A. Peppers at the Illinois State overlying the erosional surface developed on Geological Survey has examined the spore Devonian carbonate strata (Cedar Valley and content of the coal from Stop 2. He believes Wapsipinicon Limestones: Middle Devonian (1984. personal communication) that this Series). The composition of the fossil plant coal is lower Westphalian A in age. Guidebooklet: Illinois State Museum No. 4 E Q Z < o u- z ? LU o > < -2-1 LU Q 2 u_ -1 Q u. Z i_ > LU O 2 r- > _l m O O LU Q CC q CO CO O < a. co < O co < O 3 Q CO < Z O LU > CC LU Q LU CC LU O. a o. z o 0- Q Q < 2 g u- S o > "- cc LU Z C3 H o LU LU §1 O cc 9z or < CO LU Q B? I UJ < o u § ueiuBAiAsuuaj UeiUOASQ ueunifs Figure 1. Geologic map of the Rock Island County area. Circled numbers are stops. Base map from Edmund and Anderson, 1967. < 1979 Leary: Pennsylvanian Flora, Rock Island County, Illinois u c '> o o -a p o C/3 9 o o •fi <u c (-1 0) +3 s CO 0) en d So 73 o> u rt c 9i oco i 1 1 1 1 1 1 1 C G c 5 CO a a a a a a a CO CO 09 co CO CO CO CO •t— •fH CO cn cn CO co co co CO •^H s § 2 2 O s O ,* £ s S § Figure 2. Generalized sub-Pennsylvanian geologic map of Illinois. (From Plate 2, Paleotectonic investigations of the Pennsylvanian System in the United States, McKee and Crosby, Coordinators, U.S.G.S. Prof. Paper 853.) Guidebooklet: Illinois State Museum No. 4 Z to < >>c£> a; C75 a •"• cc CO e e < 3 C "C s-o; O a> C3 _ fi- Q § CO ns 3 u )H c ... S 'Ho "3 a. 3 GO .2 w J "o o C/J o> c k-H Oil re 01 CO O S OS tt a; a c ce _> o Oh o c >> o «i 3 C CD C C c o co CD - Oh > — C CO (xj >h c CD >> 3 0) u 2 o H c/1 C/> Oh Oh £ o < c 0) 35 Oh \ £ ° B3 i O >- Oh 1 i 1 u « iJ X 03 y H Q CO BACKGROUND Geological Background the Rock River north of Vandruff Island and the Allied quarry. This hill is about 10 m above the Stratigraphy. In the Illinois Basin, Penn- river level which is the approximate elevation sylvanian strata overlie rocks ranging in age of the major portion of the unconformity here. from Ordovician to Mississippian. The sub- This hill will be seen at Stop 2. Pennsylvanian strata are primarily carbonates Although extensive areas of relatively low and had been exposed to subaerial erosion. relief are present, some deep valleys were also Along the western margin of the Basin, Penn- developed prior to earliest Pennsylvanian sylvanian rocks overlie older Mississippian sedimentation. One such valley occurs in south- rocks in the central part and Devonian rocks eastern Rock Island County (see map, Fig. 6). in the northwest (Reinertsen et a/., 1974). A system of steep-sided, flat-bottomed Silurian and Ordovician strata underlie the channels was developed on Devonian limestone Pennsylvanian along the northern margin (see in the Rock Island County area. Although now geologic maps, Figs. 2, 3). largely destroyed by quarrying operations, these The relevant portion of the stratigraphic were observed in both the Allied Stone Company sequence in the Rock Island County area is quarry and the Cleveland quarry. The primary illustrated in Figure 4. The major unconformity trend of these channels was east-west (Fig. 7), between the Devonian Cedar Valley Limestone but the locations were apparently controlled by and basal Pennsylvanian indicates a long period jointing in the limestone. The exact nature of of erosion prior to earliest Pennsylvanian sedi- these channels has not been determined. mentation. Because strata as young as the St. These channels were 4 to 6 m deep and 8 Louis Limestone (Valmeyeran = basal Visean) to 20 m wide (Fig. 8). They were filled with occur beneath the unconformity to the south, shale, mudstone, and occasional lenses or thin, it is believed that the period of erosion came in discontinuous layers of sandstone. Occasional Late Mississippian/Early Pennsylvanian (at the thin layers and masses of pyrite are also present base of the European Namurian?). with a few pyritized plant axes. The shale and Pre-Pennsylvanian topography. Major valleys mudstone are almost exclusively gray except are known to have drained eastward and south- for the upper portion which is sometimes thinly eastward across the pre-Pennsylvanian surface laminated black shale. in the Illinois Basin (Smith, 1941; Horberg, Similar channels have been exposed in 1950). Similar valleys up to 140 m deep and up several other quarries in the Rock Island County to 32 km wide are known from other parts of area (Fig.
Recommended publications
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
    Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany.
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • Ancient Noeggerathialean Reveals the Seed Plant Sister Group Diversified Alongside the Primary Seed Plant Radiation
    Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation Jun Wanga,b,c,1, Jason Hiltond,e, Hermann W. Pfefferkornf, Shijun Wangg, Yi Zhangh, Jiri Beki, Josef Pšenickaˇ j, Leyla J. Seyfullahk, and David Dilcherl,m,1 aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; bCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; cUniversity of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; dSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; eBirmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; fDepartment of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316; gState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; hCollege of Paleontology, Shenyang Normal University, Key Laboratory for Evolution of Past Life in Northeast Asia, Ministry of Natural Resources, Shenyang 110034, China; iDepartment of Palaeobiology and Palaeoecology, Institute of Geology v.v.i., Academy of Sciences of the Czech Republic, 165 00 Praha 6, Czech Republic; jCentre of Palaeobiodiversity, West Bohemian Museum in Plzen, 301 36 Plzen, Czech Republic; kDepartment of Paleontology, Geozentrum, University of Vienna, 1090 Vienna, Austria; lIndiana Geological and Water Survey, Bloomington, IN 47404; and mDepartment of Geology and Atmospheric Science, Indiana University, Bloomington, IN 47405 Contributed by David Dilcher, September 10, 2020 (sent for review July 2, 2020; reviewed by Melanie Devore and Gregory J.
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]
  • Palynology and Alluvial Architecture in the Permian Umm Irna Formation, Dead Sea, Jordan
    GeoArabia, 2013, v. 18, no. 3, p. 17-60 Gulf PetroLink, Bahrain Palynology and alluvial architecture in the Permian Umm Irna Formation, Dead Sea, Jordan Michael H. Stephenson and John H. Powell ABSTRACT A series of lithofacies associations are defined for the Permian Umm Irna Formation indicating deposition in a fluvial regime characterised by low-sinuosity channels with deposition on point bars, and as stacked small-scale braided channels. Umm Irna Formation floodplain interfluves were characterised by low-energy sheet- flood deposits, shallow lakes and ponds, and peaty mires. Floodplain sediments, where not waterlogged, are generally pedogenically altered red-beds with ferralitic palaeosols, indicating a fluctuating groundwater table and humid to semi-arid climate. The Dead Sea outcrop provides a field analogue for similar fluvial and paralic depositional environments described for the upper Gharif Formation alluvial plain ‘Type Environment P2’ in the subsurface in Oman and the upper the basal clastics of the Khuff Formation at outcrop and in the subsurface in Central Saudi Arabia. Coarse-grained clasts within channel sandstones are mineralogically immature; their palaeocurrent directions and new evidence of glaciogenic sediments from Central Saudi Arabia suggests derivation from Pennsylvanian–Early Permian glaciofluvial outwash sandstones located to the east-southeast. The palynology of the Umm Irna Formation is remarkably varied. Samples from argillaceous beds of fluvial origin appear to contain a palynomorph representation of the wider hinterland of the drainage basin of the river including floodplain plants and more distant communities. In restricted water bodies like oxbow lakes or other impermanent stagnant floodplain ponds and peaty mires (immature coals), a higher proportion of purely local palynomorphs appear to be preserved in associated sediments.
    [Show full text]
  • Angiosperm Leaf Vein Evolution Was Physiologically and Environmentally Transformative C
    Downloaded from http://rspb.royalsocietypublishing.org/ on January 14, 2015 Proc. R. Soc. B (2009) 276, 1771–1776 doi:10.1098/rspb.2008.1919 Published online 25 February 2009 Angiosperm leaf vein evolution was physiologically and environmentally transformative C. Kevin Boyce1,*, Tim J. Brodribb2, Taylor S. Feild3 and Maciej A. Zwieniecki4 1Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA 2Department of Plant Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia 3Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Arnold Arboretum of Harvard University, Jamaica Plain, MA 02130, USA The veins that irrigate leaves during photosynthesis are demonstrated to be strikingly more abundant in flowering plants than in any other vascular plant lineage. Angiosperm vein densities average 8 mm of vein per mm2 of leaf area and can reach 25 mm mmK2, whereas such high densities are absent from all other plants, living or extinct. Leaves of non-angiosperms have consistently averaged close to 2 mm mmK2 throughout 380 million years of evolution despite a complex history that has involved four or more independent origins of laminate leaves with many veins and dramatic changes in climate and atmospheric composition. We further demonstrate that the high leaf vein densities unique to the angiosperms enable unparalleled transpiration rates, extending previous work indicating a strong correlation between vein density and assimilation rates. Because vein density is directly measurable in fossils, these correlations provide new access to the physiology of extinct plants and how they may have impacted their environments. First, the high assimilation rates currently confined to the angiosperms among living plants are likely to have been unique throughout evolutionary history.
    [Show full text]
  • 2010 Literature Citations
    Annual Review of Pteridological Research - 2010 Literature Citations All Citations 1. Abbasi, T. & S. A. Abbasi. 2010. Enhancement in the efficiency of existing oxidation ponds by using aquatic weeds at little or no extra cost to the macrophyte-upgraded oxidation pond (MUOP). Bioremediation Journal 14: 67-80. [India; Salvinia molesta] 2. Abbasi, T. & S. A. Abbasi. 2010. Factors which facilitate waste water treatment by aquatic weeds - the mechanism of the weeds' purifying action. International Journal of Environmental Studies 67: 349-371. [Salvinia] 3. Abeli, T. & M. Mucciarelli. 2010. Notes on the natural history and reproductive biology of Isoetes malinverniana. Amerian Fern Journal 100: 235-237. 4. Abraham, G. & D. W. Dhar. 2010. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 245: 105-111. 5. Adam, E., O. Mutanga & D. Rugege. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296. [Asplenium nidus] 6. Adams, C. Z. 2010. Changes in aquatic plant community structure and species distribution at Caddo Lake. Stephen F. Austin State University, Nacogdoches, Texas USA. [Thesis; Salvinia molesta] 7. Adie, G. U. & O. Osibanjo. 2010. Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. Toxicological and Environmental Chemistry 92: 39-49. [Nephrolepis biserrata] 8. Afshan, N. S., S. H. Iqbal, A. N. Khalid & A. R. Niazi. 2010. A new anamorphic rust fungus with a new record of Uredinales from Azad Kashmir, Pakistan. Mycotaxon 112: 451-456.
    [Show full text]
  • 'Pompeii of Prehistoric Plants' Unlocks Evolutionary Secret: Study 8 March 2021
    'Pompeii of prehistoric plants' unlocks evolutionary secret: study 8 March 2021 that evolved complex cone-like structures from modified leaves. Despite their sophistication, Noeggerathiales fell victim to the profound environmental and climate changes of 251 million years ago that destroyed swamp ecosystems globally. The international research team, led by palaeontologists at Nanjing Institute of Geology and Palaeontology and the University of Birmingham, today published its findings in the Proceedings of the National Academy of Sciences (PNAS). Reconstruction of the crown of Paratingia wuhaia sp. nov. Credit: University of Birmingham Spectacular fossil plants preserved within a volcanic ash fall in China have shed light on an evolutionary race 300 million years ago, which was eventually won by the seed-bearing plants that dominate so much of the Earth today. New research into fossils found at the 'Pompeii of prehistoric plants', in Wuda, Inner Mongolia, reveals that the plants, called Noeggerathiales, were highly-evolved members of the lineage from which came seed plants. This reconstruction is based on the type specimen from the Wuda Tuff Flora and shows what scientist think the Noeggerathiales were important peat-forming plant looked like when it was alive. Reconstruction of the plants that lived around 325 to 251 million years peat-forming plant community at Wuda in which the new species Paratingia wuhaia (yellow arrows) grew. Credit: ago. Understanding their relationships to other University of Birmingham plant groups has been limited by poorly preserved examples until now. The fossils found in China have allowed experts to Co-author Dr. Jason Hilton, Reader in work out that Noeggerathiales are more closely Palaeobiology at the University of Birmingham's related to seed plants than to other fern groups.
    [Show full text]
  • A Molecular Biomarker for End-Permian Plant Extinction In
    https://doi.org/10.1130/G49123.1 Manuscript received 6 April 2021 Revised manuscript received 27 June 2021 Manuscript accepted 1 July 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. A molecular biomarker for end-Permian plant extinction in South China Chunjiang Wang1* and Henk Visscher2* 1 College of Geosciences, and State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China 2 Faculty of Geosciences, Utrecht University, 3584CS Utrecht, The Netherlands ABSTRACT remaining islands were the domain of the clas- To help resolve current controversies surrounding the fundamental question of synchrony sic late Permian Gigantopteris wetland flora, the between end-Permian mass extinction on land and in the sea, we examined the marine Perm- final phase in the development of the Pennsyl- ian–Triassic reference section at Meishan (southeastern China) for land-derived molecular vanian–Permian Cathaysian floral province of degradation products of pentacyclic triterpenoids with oleanane carbon skeletons, diagnostic East Asia. Macrofossil and spore-pollen records for the Permian plant genus Gigantopteris. We identified a continuous quantitative record of have been analyzed from multiple boundary sec- mono-aromatic des-A-oleanane, which abruptly ends in the main marine extinction interval tions deposited in fluvial and coastal settings, just below the Permian-Triassic boundary. This taxon-specific molecular biomarker, therefore, particularly in the provinces of Guizhou and reveals in unmatched detail the timing and tempo of the demise of one of the most distinc- Yunnan in southwestern China (e.g., Ouyang, tive Permian plants and provides evidence of synchronous extinction among continental and 1982; Peng et al., 2006; Yu et al., 2015; Chu marine organisms.
    [Show full text]
  • Annual Review of Pteridological Research - 2004
    Annual Review of Pteridological Research - 2004 Annual Review of Pteridological Research - 2004 Literature Citations All Citations 1. Abbink, O. A., J. H. A. van Konijnenburg–van Cittert, C. J. van der Zwan & H. Visscher. 2004. A sporomorph ecogroup model for the northwest European Upper Jurassic Lower Cretaceous II: Application to an exploration well from the Dutch North Sea. Neth. J. of Geology/Geologie en Mijnbouw 83: 81–92. 2. Abbink, O. A., J. H. A. van Konijnenburg–van Cittert & H. Visscher. 2004. A sporomorph ecogroup model for the northwest European Upper Jurassic Lower Cretaceous I: Concepts and framework. Neth. J. of Geology/Geologie en Mijnbouw 83: 17–38. 3. Abdul–Salim, K., T. J. Motley & R. Moran. 2004. Elaphoglossum (Elaphoglossaceae) section Squamipedia: phylogenetic relationships based on chloroplast trnL–trnF and rps4–trnS sequences. In Abstracts of Botany 2004, July 31 – August 5, No. 824. Botanical Society of America, Salt Lake City, UT (www.2004.botanyconference.org). [Abstract] 4. Adalberto, P. R., A. C. Massabni, A. J. Goulart, R. Monti & P. M. Lacava. 2004. Effect of the phosphorus on the mineral uptake and pigmentation of Azolla caroliniana Willd. (Azollaceae). Revista Brasileira de Botanica 27: 581– 585. [Portuguese] 5. Adams, J. B., B. M. Colloty & G. C. Bate. 2004. The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa. Wetlands Ecology & Management 12: 531–541. [Acrostichum aureum] 6. Aguiar, S., J. Amigo & L. G. Quintanilla. 2004. Does Blechnum collalense hybridize with B. mochaenum (Blechnaceae: Pteridophyta)? P. 37. In Ferns for the 21st Century, An International Symposium on Pteridophytes.
    [Show full text]