Ep 2898900 B1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amylase Release from Rat Parotid Gland Slices C.L
Br. J. P!harmnic. (1981) 73, 517-523 THE EFFECTS OF SUBSTANCE P AND RELATED PEPTIDES ON a- AMYLASE RELEASE FROM RAT PAROTID GLAND SLICES C.L. BROWN & M.R. HANLEY MRC Neurochemical Pharmacology Unit, Medical Research Council Centre, Medical School, Hills Road, Cambridge CB2 2QH 1 The effects of substance P and related peptides on amylase release from rat parotid gland slices have been investigated. 2 Supramaximal concentrations (1 F.M) of substance P caused enhancement of amylase release over the basal level within 1 min; this lasted for at least 40 min at 30°C. 3 Substance P-stimulated amylase release was partially dependent on extracellular calcium and could be inhibited by 50% upon removal of extracellular calcium. 4 Substance P stimulated amylase release in a dose-dependent manner with an ED50 of 18 nm. 5 All C-terminal fragments of substance P were less potent than substance P in stimulating amylase release. The C-terminal hexapeptide of substance P was the minimum structure for potent activity in this system, having 1/3 to 1/8 the potency of substance P. There was a dramatic drop in potency for the C-terminal pentapeptide of substance P or substance P free acid. Physalaemin was more potent than substance P (ED50 = 7 nM), eledoisin was about equipotent with substance P (ED5o = 17 nM), and kassinin less potent than substance P (ED50 = 150 nM). 6 The structure-activity profile observed is very similar to that for stimulation of salivation in vivo, indicating that the same receptors are involved in mediating these responses. -
Rheumatoide Arthritis Im Mausmodell - Immunologische Und Strukturelle Verän- Derungen Im Darm
Rheumatoide Arthritis im Mausmodell - immunologische und strukturelle Verän- derungen im Darm in Medizin 3 Rheumatologie/ Immunologie des Universitätsklinikums Erlangen Klinikdirektor: Prof. Dr. med. univ. Georg Schett Dissertation der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. med. vorgelegt von Oscar Theodor Schulz aus Burgwedel Als Dissertation genehmigt von der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Vorsitzender des Promotionsorgans: Prof. Dr. Markus F Neurath Gutachter: Prof. Dr. Mario Zaiss Gutachter: Prof. Dr. Gerhard Krönke Tag der mündlichen Prüfung: 16. März 2021 Inhaltsverzeichnis 1. Zusammenfassung / Abstract ...................................................................... - 1 - 1.1.1 Hintergrund und Ziele ......................................................................... - 1 - 1.1.2 Methoden (Patienten, Material und Untersuchungsmethoden) .......... - 1 - 1.1.3 Ergebnisse und Beobachtungen ......................................................... - 2 - 1.1.4 Schlussfolgerung ................................................................................ - 3 - 1.2.1 Background and aims ......................................................................... - 4 - 1.2.2 Methods (patients, material and examination methods) ..................... - 4 - 1.2.3 Results ................................................................................................ - 5 - 1.3.4 Conclusion ......................................................................................... -
Intracerebroventricular Responses to Neuropeptide Y in the Antagonists
British Journal of Pharmacology (1996) 117, 241-249 B 1996 Stockton Press All rights reserved 0007-1188/96 $12.00 9 Intracerebroventricular responses to neuropeptide y in the conscious rat: characterization of its receptor with selective antagonists Pierre Picard & 'Rejean Couture Department of Physiology, Faculty of Medicine, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7 1 The cardiovascular and behavioural effects elicited by the intracerebroventricular (i.c.v.) administration of neuropeptide y (NPy) in the conscious rat were assessed before and 5 min after i.c.v. pretreatment with antagonists selective for NKI (RP 67,580), NK2 (SR 48,968) and NK3 (R 820) receptors. In addition, the central effects of NPy before and after desensitization of the NK, and NK2 receptors with high doses of substance P (SP) and neurokinin A (NKA) were compared. 2 Intracerebroventricular injection of NPy (10-780 pmol) evoked dose- and time-dependent increases in mean arterial blood pressure (MAP), heart rate (HR), face washing, head scratching, grooming and wet-dog shake behaviours. Similar injection of vehicle or 1 pmol NPy had no significant effect on those parameters. 3 The cardiovascular and behavioural responses elicited by NPy (25 pmol) were significantly and dose- dependently reduced by pretreatment with 650 pmol and 6.5 nmol of SR 48,968. No inhibition of NPy responses was observed when 6.5 nmol of RP 67,580 was used in a similar study. Moreover, the prior co-administration of SR 48,968 (6.5 nmol) and RP 67,580 (6.5 nmol) with or without R 820 (6.5 nmol) did not reduce further the central effects of NPy and significant residual responses (30-50%) remained. -
Naiyana Gujral
University of Alberta ANTIBODY-BASED DIAGNOSTIC AND THERAPEUTIC APPROACHES ON GLUTEN-SENSITIVE ENTEROPATHY by Naiyana Gujral A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Pharmaceutical Sciences Faculty of Pharmacy and Pharmaceutical Sciences © Naiyana Gujral Fall 2013 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. DEDICATION I dedicate this thesis to my beloved family with all my love respect, and gratitude. ABSTRACT Gluten-sensitive enteropathy, called Celiac disease (CD), is one of the most frequent autoimmune diseases, occurring in 1% people worldwide, upon gliadin ingestion. Currently, the only treatment available for CD individual is a strict life-long gluten-free diet. Chicken egg yolk immunoglobulin Y (IgY) is produced and examined for its efficacy in vitro, ex vivo, and in vivo to prevent enteric absorption of gliadin. This antibody was also used to develop sensitive and rapid detection kits for gluten. The extracted toxic gliadin was immunized into chickens inducing humoral immune response to produced gliadin-specific IgY antibodies. -
The Pennsylvania State University the Graduate School College Of
The Pennsylvania State University The Graduate School College of Agricultural Sciences PHYSICOCHEMICAL MODIFICATION OF GLIADIN BY DIETARY POLYPHENOLS AND THE POTENTIAL IMPLICATIONS FOR CELIAC DISEASE A Dissertation in Food Science by Charlene B. Van Buiten © 2017 Charlene B. Van Buiten Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Charlene B. Van Buiten was reviewed and approved* by the following: Ryan J. Elias Associate Professor of Food Science Dissertation Advisor Chair of Committee Joshua D. Lambert Associate Professor of Food Science John N. Coupland Professor of Food Science Gregory R. Ziegler Professor of Food Science Connie J. Rogers Associate Professor of Nutritional Sciences Robert F. Roberts Professor of Food Science Head of the Department of Food Science *Signatures are on file in the Graduate School ii ABSTRACT Celiac disease is an autoimmune enteropathy that affects approximately 1% of the world population. Characterized by an adverse reaction to gluten protein, celiac disease manifests in the small bowel and results in inflammation and increased permeability of the gut barrier. This is followed by an immune response mounted against not only gluten, but also tissue transglutaminase 2 (TG2), a gluten-reactive enzyme secreted by intestinal epithelial cells. Despite the growing number of individuals affected by this disease, the only reliable intervention strategy available is lifelong adherence to a gluten-free diet. Novel strategies for treating or preventing celiac disease include synthetic pharmaceuticals to modify the gut barrier, parabiotic infection to reduce inflammatory cytokine release and administration of a synthetic polymer that binds gluten proteins and prevents their digestion and absorption. -
Multisystem Inflammatory Syndrome in Children Is Driven by Zonulin-Dependent Loss of Gut Mucosal Barrier
The Journal of Clinical Investigation CLINICAL MEDICINE Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier Lael M. Yonker,1,2,3 Tal Gilboa,3,4,5 Alana F. Ogata,3,4,5 Yasmeen Senussi,4 Roey Lazarovits,4,5 Brittany P. Boribong,1,2,3 Yannic C. Bartsch,3,6 Maggie Loiselle,1 Magali Noval Rivas,7 Rebecca A. Porritt,7 Rosiane Lima,1 Jameson P. Davis,1 Eva J. Farkas,1 Madeleine D. Burns,1 Nicola Young,1 Vinay S. Mahajan,3,6 Soroush Hajizadeh,3,8 Xcanda I. Herrera Lopez,3,8 Johannes Kreuzer,3,8 Robert Morris,3,8 Enid E. Martinez,1,3,9 Isaac Han,3,5 Kettner Griswold Jr.,3,5 Nicholas C. Barry,3,5 David B. Thompson,3,5 George Church,3,5,10 Andrea G. Edlow,3,11,12 Wilhelm Haas,3,8 Shiv Pillai,3,6 Moshe Arditi,7 Galit Alter,3,6 David R. Walt,3,4,5 and Alessio Fasano1,2,3,13 1Mucosal Immunology and Biology Research Center and 2Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA. 3Harvard Medical School, Boston, Massachusetts, USA. 4Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA. 5Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 6Ragon Institute of MIT, MGH and Harvard, Cambridge, Massachusetts, USA. 7Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA. 8Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. -
Back Matter (PDF)
MOLECULAR PHARMACOLOGY 26:605-609 AUTHOR INDEX FOR VOLUME 26 A berg, Aaron, Watanabe, Kyoichi A., Fox, Jack J., and Philips, Frederick S. Metabolic Competition Studies of 2’-Fluoro-S-iodo-l- Albengres, Edith. See Urien, Riant, Brioude, and Tillement, 322 f3-D-arabinofuranosylcytosine in Vero Cells and Herpes Simplex Albuquerque, E. X. See Aracava, Ikeda, Daly, and Brooks, 304 Type 1-Infected Vero Cells, 587 See Ikeda, Aronstam, Daly, and Aracava, 293 Christie, Nelwyn T. See Cantoni, Swann, Drath, and Costa, 360 Ambler, S. Kelly, Brown, R. Dale, and Taylor, Palmer. The Chrivia, John. See Bolger, Dionne, Johnson, and Taylor, 57 Relationship between Phosphatidylinositol Metabolism and Mobili- Colacino, Joseph M. See Chou, Lopez, Feinberg, Watanabe, Fox, and zation of Intracellular Calcium Elicited by Alpha,-Adrenergic Recep- Philips, 587 tar Stimulation in BC3H-1 Muscle Cells, 405 Collins, Sheila, and Marletta, Michael A. Carcinogen-Binding Aracava, Y. Ikeda, S. R., Daly, J. W., Brookes, N., and Albu- Proteins: High-Affinity Binding Sites for Benzo[ajpyrene in Mouse querque, E. X. Interactions of Bupivacaine with Ionic Channels of Liver Distinct from the Ah Receptor, 353 the Nicotonic Receptor: Analysis of Single-Channel Currents, 304 Cooper, Dermot M. F. See Sadler and Mailer, 526 See Ikeda, Aronstam, Daly, and Albuquerque, 293 Corbett, Michael D. See Doerge, 348 Aronstam, R. S. See Ikeda, S. R. , Daly, J. W., Aracava, Y. , and Cormier, Ethel. See Jordan, Lieberman, Koch, Bagley, and Ruenitz, Albuquerque, E. X. , 293 272 Aub, Debra L. See Putney, McKinney, and Leslie, 261 Costa, Erminio. See Quach, Tang, Kageyama, Mocchetti, Guidotti, Meek, and Schwartz, 255 B Costa, Max. -
Gliadin Sequestration As a Novel Therapy for Celiac Disease: a Prospective Application for Polyphenols
International Journal of Molecular Sciences Review Gliadin Sequestration as a Novel Therapy for Celiac Disease: A Prospective Application for Polyphenols Charlene B. Van Buiten 1,* and Ryan J. Elias 2 1 Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO 80524, USA 2 Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-970-491-5868 Abstract: Celiac disease is an autoimmune disorder characterized by a heightened immune response to gluten proteins in the diet, leading to gastrointestinal symptoms and mucosal damage localized to the small intestine. Despite its prevalence, the only treatment currently available for celiac disease is complete avoidance of gluten proteins in the diet. Ongoing clinical trials have focused on targeting the immune response or gluten proteins through methods such as immunosuppression, enhanced protein degradation and protein sequestration. Recent studies suggest that polyphenols may elicit protective effects within the celiac disease milieu by disrupting the enzymatic hydrolysis of gluten proteins, sequestering gluten proteins from recognition by critical receptors in pathogenesis and exerting anti-inflammatory effects on the system as a whole. This review highlights mechanisms by which polyphenols can protect against celiac disease, takes a critical look at recent works and outlines future applications for this potential treatment method. Keywords: celiac disease; polyphenols; epigallocatechin gallate; gluten; gliadin; protein sequestration Citation: Van Buiten, C.B.; Elias, R.J. Gliadin Sequestration as a Novel 1. Introduction Therapy for Celiac Disease: A Gluten, a protein found in wheat, barley and rye, is the antigenic trigger for celiac Prospective Application for disease, an autoimmune enteropathy localized in the small intestine. -
The Vanilloid Receptor and Hypertension1
Acta Pharmacologica Sinica 2005 Mar; 26 (3): 286–294 Invited review The vanilloid receptor and hypertension1 Donna H WANG2 Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48825, USA Key words Abstract TRP family; afferent neurons; capsaicin; Mammalian transient receptor potential (TRP) channels consist of six related pro- calcitonin gene-related peptide; substance P; tein sub-families that are involved in a variety of pathophysiological function, and vanilloid receptor; renin-angiotensin- aldosterone system; endothelin, sympathetic disease development. The TRPV1 channel, a member of the TRPV sub-family, is nervous system; salt-sensitive hypertension identified by expression cloning using the “hot” pepper-derived vanilloid com- pound capsaicin as a ligand. Therefore, TRPV1 is also referred as the vanilloid 1 This work was supported in part by National receptor (VR1) or the capsaicin receptor. VR1 is mainly expressed in a subpopula- Institutes of Health (grants HL-52279 and tion of primary afferent neurons that project to cardiovascular and renal tissues. HL-57853) and a grant from the Michigan These capsaicin-sensitive primary afferent neurons are not only involved in the Economic Development Corporation. 2 Correspondence to Donna H WANG, MD. perception of somatic and visceral pain, but also have a “sensory-effector” function. Phn 1-517-432-0797. Regarding the latter, these neurons release stored neuropeptides through a cal- Fax 1-517-432-1326. cium-dependent mechanism via the binding of capsaicin to VR1. The most studied E-mail [email protected] sensory neuropeptides are calcitonin gene-related peptide (CGRP) and substance Received 2004-08-10 P (SP), which are potent vasodilators and natriuretic/diuretic factors. -
And Substance P and Dumping SEIKI ITO, YOICHI IWASAKI, TAKESHI
Tohoku J. exp. Med., 1981, 135, 11-21 Neurotensin and Substance P and Dumping Syndrome SEIKI ITO, YOICHI IWASAKI,TAKESHI MOMOTSU, KATSUMI TAKAI,AKIRA SHIBATA, YOICHI MATSUBARA* and TERUKAZU MUTO* The First Department of Internal Medicine and * the First Department of Surgery, Niigata University School of Medicine, Niigata 95.E ITO, S., IWASAKI, Y., MOMOTSU, T., TAKAI, K., SHIBATA, A., MATSUBARA, Y, and MUTO, T. Neurotensin and Substance P and Dumping Syndrome. Tohoku J. exp. Med., 1981, 135 (1), 11-21 To investigste the pathophysiologi- cal relation between releases of gut hormones and dumping syndrome, plasma radioimmunoassayable neurotesin, substance P, glucagon-like immunoreactivity (GLI), insulin and blood sugar were measured in both gastrectomized patients and control subjects after 50 g oral glucose tolerance tests. Remarkable rises of radioimmunoassayable neurotesin and GLI were found in all gastrectomized patients, but not in control subjects. In contrast, plasma radioimmunoassayable substance P responses were not detected in either gastrectomized patients or control subjects. There were three patients with symptoms of dumping syndrome in the early stage of the test. Plasma radioimmunoassayable neurotensin responses in two out of these three were higher than those in other patients, though the other patient with symptoms had the same degree of neurotensin elevation as patients with no symptoms. In view of the pharmacological effects of neurotensin, it could not be ruled out that a part of the early symptoms of dumping syndrome -
Effect of Bradykinin and Eledoisin on Renal Function in the Dog Department of Internal Medicine (Prof. T. Torikai), Tohoku Unive
Tohoku J. exp. Med., 1966, 89, 69-76 Effect of Bradykinin and Eledoisin on Renal Function in the Dog Takashi Furuyama,. Chikara Suzuki, Hiroshi Saito, Yozo Onozawa , Ryuji Shioji, Shozo Rikimaru, Keishi Abe and Kaoru Yoshinaga Department of Internal Medicine (Prof. T. Torikai), Tohoku University School of Medicine, Sendai Bradykinin (0.05, 0.1 and 0.2 ƒÊg/kg/min) and eledoisin (0.5, 1.0, 5.0 and 10.0ng/kg/min) were infused directly into the left renal artery of anesthetized dogs to demonstrate the effects of these peptides on renal function. Urinary volume, endogenous creatinine clearance (GFR), PAR clearance (RPF) and excretion of electrolytes were increased by infusion of these two peptides, but no constant change was observed in UK/U ,Va ratio. These data demonstrate that the increase in urinary output and electrolyte excretion is caused by the augmentation of tubular load of solutes which resulted from the increase of RPF and GFR. Tachy phylaxis was observed in dogs which received repeated infusions of bradykinin but this phenomenon was less distinct in the case of eledoisin. Bradykinin is a nonapeptide formed by the action of kinin-forming enzymes upon alpha-2-globulin fraction of the plasma and it plays an important role in the local control of blood flow to certain tissues. On the other hand, eledoisin isolated from the salivary gland of Eledone, is endecapeptide having powerful kinin-like activity2. Bradykinin and eledoisin administered intravenously produce reduction in systemic blood pressure because of vasodilator action of the peptides.2,3 Since the change in systemic blood pressure affects renal function in experiments with intravenous infusion of the peptides, it is difficult to reveal their direct action on the kidney. -
Biologically Active Peptides from Australian Amphibians
Biologically Active Peptides from Australian Amphibians _________________________________ A thesis submitted for the Degree of Doctor of Philosophy by Rebecca Jo Jackway B. Sc. (Biomed.) (Hons.) from the Department of Chemistry, The University of Adelaide August, 2008 Chapter 6 Amphibian Neuropeptides 6.1 Introduction 6.1.1 Amphibian Neuropeptides The identification and characterisation of neuropeptides in amphibians has provided invaluable understanding of not only amphibian ecology and physiology but also of mammalian physiology. In the 1960’s Erspamer demonstrated that a variety of the peptides isolated from amphibian skin secretions were homologous to mammalian neurotransmitters and hormones (reviewed in [10]). Erspamer postulated that every amphibian neuropeptide would have a mammalian counterpart and as a result several were subsequently identified. For example, the discovery of amphibian bombesins lead to their identification in the GI tract and brain of mammals [394]. Neuropeptides form an integral part of an animal’s defence and can assist in regulation of dermal physiology. Neuropeptides can be defined as peptidergic neurotransmitters that are produced by neurons, and can influence the immune response [395], display activities in the CNS and have various other endocrine functions [10]. Generally, neuropeptides exert their biological effects through interactions with G protein-coupled receptors distributed throughout the CNS and periphery and can affect varied activities depending on tissue type. As a result, these peptides have biological significance with possible application to medical sciences. Neuropeptides isolated from amphibians will be discussed in this chapter, with emphasis on the investigation into the biological activity of peptides isolated from several Litoria and Crinia species. Many neurotransmitters and hormones active in the CNS are ubiquitous among all vertebrates, however, active neuropeptides from amphibian skin have limited distributions and are unique to a restricted number of species.