The Attempted Synthesis of a Thiazolidinedione-Containing

Total Page:16

File Type:pdf, Size:1020Kb

The Attempted Synthesis of a Thiazolidinedione-Containing THE ATTEMPTED SYNTHESIS OF A THIAZOLIDINEDIONE-CONTAINING LIGAND FOR VANADYL COMPLEXATION: INVESTIGATING POTENTIAL SYNERGISTIC INSULIN MIMICS by Devin Paul Mitchell B.Sc. (Hons.), McGill University, Canada, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Chemistry) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 1999 © Devin Paul Mitchell, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of cC-Af/H/i//v The University of British Columbia Vancouver, Canada Date hjei/ f is/11 DE-6 (2/88) ABSTRACT Thiazolidinedione-containing compounds are a relatively recent class of oral hypoglycemic agents used today to treat type II diabetes mellitus. Vanadium is well known to be an effective agent for lowering blood-glucose levels. In this study, synthesis of the ligand precursors 5-[4-(3-hydroxypropoxy)benzyl]-2,4- thiazolidinedione (HPBT), 5-[4-(3-bromopropoxy)benzyl]-2,4-thiazolidinedione (BPBT), and 5-[4-(3-iodopropoxy)benzyl]-2,4-thiazolidinedione (IPBT) were accomplished at high purity in gram scale quantities. These were fully characterized by the methods mentioned below. Several synthetic pathways were examined, with varying success; 5-[4-(3-p- toluenesulfonylpropoxy)benzyl]-2,4-thiazolidinedione (TsPBT), N-BOC-5-[4-(3- hydroxypropoxy)benzyl]-2,4-thiazolidinedione (BocHPBT), N-BOC-5-[4-(3- iodopropoxy)benzyl]-2,4-thiazolidinedione (BocIPBT), and 5-[4-(3- sulfonylimidazolepropoxy)benzyl]-2,4-thiazolidinedione (ImPBT) were compounds on those pathways. 5-[4-(3-Acetyl-6-hexoxy-2-one)benzyl]-2,4-thiazolidinedione (APBT), was synthesized, but not successfully purified. The vanadium coordination complex, bis-(5-[4-(3-acetyl-6-hexoxy-2-one)benzyl]-2,4-thiazolidinedionato) oxovanadium VO(APBT)2) gave encouraging preliminary results, e.g., synthesis of the complex directly from IPBT and vanadyl acetylacetonate; however further purification of the ligand would be required to determine stability constants. The ligand precursors were characterized by [H NMR spectroscopy, mass 13 spectrometry, elemental analyses, infrared spectroscopy and, in certain instances, C ii NMR spectroscopy and two dimensional NMR spectroscopy for HPBT and IPBT. BocHPBT was characterized as a pure compound with !H NMR spectroscopy. TsPBT, BocIPBT and ImPBT were not purified enough for complete characterization. LSIMS characterization of the thiazolidinedione oxovanadium(IV) complex, VO(APBT)2, indicated that the synthetic pathway so far elucidated could ultimately be refined to yield this compound in greater purity and quantity. iii TABLE OF CONTENTS page Abstract ii Table of Contents iv List of Figures vi List of Tables viii List of Abbreviations ix Acknowledgements xiii Chapter 1 Introduction xiii 1.1 Diabetes Mellitus 1 1.2 Vanadium Background. 2 1.3 Insulin-Mimetic Effects of Vanadium 3 1.4 Thiazolidinediones 5 1.5 Research Focus 8 Chapter 2 Experimental 10 2.1 Materials 10 2.2 Instrumentation 11 2.3 Procedures 11 2.4 Synthesis: Reactions Accomplished 12 2.5 Synthesis: Reactions Attempted. 19 Chapter 3 Results and Discussion 27 3.1 Design and Syntheses 27 iv 3.2 Characterization 38 Chapter 4 Conclusions and Future Directions 49 4.1 Conclusions 49 4.2 Future Directions 50 References 53 v LIST OF FIGURES page Figure 1.1 Bis(maltolato)oxovanadium(IV) (BMOV) 4 Figure 1.2 Chemical structures of various thiazolidinediones 5 Figure 1.3 5-[4-(3-Acetyl-6-hexoxy-2-one)benzyl]-2,4-thiazolidinedione (APBT) and its target vanadyl complex (VO(APBT)2) 9 Figure 2.1 Schematic diagram of a dry flash column 12 Figure 3.1 Synthesis of 4-(3-hydroxypropoxy)benzaldehyde 27 Figure 3.2 Overall scheme for the reactions described in this thesis 28 Figure 3.3 Synthesis of 5-([4-(3-hydroxypropoxy)phenyl]methylene)-2,4- thiazolidinedione (oxidized HPBT) 29 Figure 3.4 Synthesis of 5-[4-(3-hydroxypropoxy)benzyl]-2,4-thiazolidinedione (HPBT) 30 Figure 3.5 Synthesis of 5-[4-(3-bromopropoxy)benzyl]-2,4-thiazolidinedione (BPBT).. 31 Figure 3.6 Synthesis of 5-[4-(3-iodopropoxy)benzyl]-2,4-thiazolidinedione (IPBT) 32 Figure 3.7 Synthesis of A^-BOC-5-[4-(3-hydroxypropoxy)benzyl]-2,4-thiazolidinedione (BocHPBT) 32 Figure 3.8 Synthesis of A^A^'-sulfuryldiimidazole 33 Figure 3.9 Synthesis of 5-[4-(3-acetyl-6-hexoxy-2-one)benzyl]-2,4-thiazolidinedione (APBT) 34 Figure 3.10 Synthesis of 5-[4-(3-/7-toluenesulfonylpropoxy)benzyl]-2,4-thiazolidinedione (TsPBT) 35 vi Figure 3.11 Synthesis of A^-BOC-5-[4-(3-iodopropoxy)benzyl]-2,4-thiazolidinedione (BocIPBT) 36 Figure 3.12 Synthesis of N-BOC-2,4-thiazolidinedione 36 Figure 3.13 Synthesis of 5-[4-(3-sulfonylimidazolepropoxy)benzyl-2,4-thiazolidinedione (ImPBT) 37 Figure 3.14 Synthesis of bis-(5-[4-(3-acetyl-6-hexoxy-2-one)benzyl]-2,4- thiazolidinedionato) oxovanadium (VO(APBT)2) 38 Figure 3.15 Selected FTIR spectra comparing various ligand precursors 40 Figure 3.16 Regions of *H NMR (200 MHz) spectra of various precursor compounds .. 42 Figure 3.17 !H-NMR spectra (200 MHz) of BocHPBT 43 Figure 3.18 13C NMR (125 MHz) spectrum of HPBT with assignments 45 Figure 3.19 13C NMR (75 MHz) spectrum of IPBT with assignments 45 Figure 3.20 HMQC spectrum of HPBT 46 Figure 3.21 HMQC spectrum of IPBT 47 Figure 3.22 VO(APBT)2 mass spectrum (LSIMS) 48 Figure 4.1 Synthesis of APBT using BOC protected IPBT 50 Figure 4.2 Synthesis of APBT using ImPBT 51 Figure 4.3 Synthesis of the desired complex (VO(APBT)2) from APBT and VOS04 .... 51 vii LIST OF TABLES page Table 2.1 Variations in conditions for acetylacetone reaction 20 Table 3.1 Characteristic IR absorptions (cm"1) of ligand precursors 39 Table 3.2 Characteristic IR absorptions (cm"1) of N'-sulfuryldiimidazole 40 viii LIST OF ABBREVIATIONS Abbreviation Meaning acac acetylacetone AIDS Acquired Immune Deficiency Syndrome Anal. Analysis APBT 5 - [4-(3 -acetyl-6-hexoxy-2-one)benzyl] -2,4- thiazolidinedione APT attached proton test ATPase adenosine triphosphatase BMOV bis(maltolato)oxovanadium(IV) BOC butyloxycarbonyl BocHPBT N-BOC-5-[4-(3-hydroxypropoxy)benzyl]-2,4- thiazolidinedione BocIPBT N-BOC-5- [4-(3 -iodopropoxy)benzyl] -2,4-thiazolidinedione (Boc)20 di-terr-butyl dicarbonate BPBT 5 - [4-(3 -bromopropoxy)benzyl] -2,4-thiazolidinedione Calc. Calculated °C degrees Celsius CDCI3 deuterated chloroform CD3OD deuterated methanol cm centimeter cm"1 wave number ix d doublet dd doublet of doublets 5 chemical shift (ppm, NMR) A heat DMAP 4-(dimethylamino)pyridine DMF N,N-dimethylformamide EI electron-impact ionization eq equivalents EtOH ethanol FDA Food and Drug Administration (U.S.) FTIR fourier transform infrared g gram GI gastrointestinal GLUT-4 insulin-activated transporter protein HMQC heteronuclear multiple quantum coherence HPBT 5-[4-(3-hydroxypropoxy)benzyl]-2,4-thiazolidinedione HPLC high performance liquid chromatography hr hour IDDM insulin-dependent diabetes mellitus ImPBT 5-(3-sulfonylimidazolepropoxy)benzyl)-2,4- thiazolidinedione IPBT 5-[4-(3-iodopropoxy)benzyl]-2,4-thiazolidinedione IR infrared x LD50 dose of a substance at which 50% of subjects die LSIMS liquid secondary ion mass spectrometry m multiplet M moles/liter [M]+ positively charged parent mass MHz megahertz mL milliliter mmol millimole mol mole MS mass spectrometry m/z mass-to-charge ratio NIDDM non-insulin-dependent diabetes mellitus NMR nuclear magnetic resonance v stretching vibration (IR) oxidized HPBT 5-([4-(3-hydroxypropoxy)phenyl]methylene)-2,4- thiazolidinedione % percent p para pH negative log of the concentration of H3<_)+ pKa negative log of the deprotonation constant PPAR peroxisome proliferator activated receptor PPARy peroxisome proliferator activated receptor gamma PPI13 triphenylphosphine xi PPb.3«Br2 dibromotriphenylphosphine ppm parts per million PTPase protein tyrosine phosphatase RXR retinoid X receptor s singlet STZ streptozotocin t triplet temp temperature tert tertiary THF tetrahydrofuran TLC thin layer chromatography Ts j!?-toluenesulfonate TsPBT 5-[4-(3-p-toluenesulfonylpropoxy)benzyl]-2,4- thiazolidinedione tt triplet of triplets UV-vis ultraviolet-visible VOL2-2H vanadyl with two deprotonated ligands attached VO(acac)L-H vanadyl with one deprotonated ligand and one acetylacetonate ligand attached VO(APBT)2 bis-(5- [4-(3 -acetyl-6-hexoxy-2-one)benzyl] -2,4- thiazolidinedionato)oxovanadium(IV) xii ACKNOWLEDGMENTS The first person to whom I owe thanks is without a doubt Dr. Chris Orvig, who, was patient and understanding. His guidance and encouragement was invaluable and immensely appreciated. The past and present Orvig group members helped make this research project very memorable. Peter especially took me under his wing at the beginning and led me into my project. I felt that the group dynamics were very positive and that there was always somebody who would be willing to help. Plenty of non-Orvig group chemistry people helped in myriad ways and I would like to list them all by name but there are just too many. I would especially like to thank my family and Karycia for their loving support. My friends in organic chemistry were life-savers when it came time to find new directions of research. Thanks. Prof. R. V. Stick was extremely helpful and I appreciate the time he took out of his schedule to help lend his experience to my research. I would also like to thank Mr. Peter Borda for completing the elemental analyses and the UBC Chemistry support staff for their assistance in navigating the bureaucracy of UBC.
Recommended publications
  • Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {Tpw(NO)(Pme3)}
    Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {TpW(NO)(PMe3)} Laura Jessica Strausberg Baltimore, Maryland B.A., Hollins University, 2008 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Chemistry University of Virginia July, 2013 ii Abstract Chapter 1 introduces the organic chemistry of aromatic hydrocarbons, with attention paid to regiochemical outcomes of organic reactions. The binding of naphthalene and anthracene to metal complexes is discussed, along with organic transformations they undergo as a result of their complexation. The previous work on osmium and rhenium complexes of naphthalene from the Harman group is explored. Finally, some spectroscopic techniques for exploring the chemistry of {TpW(NO)(PMe3)} complexes of naphthalene and anthracene are introduced. Chapter 2 discusses the highly distorted allyl complexes formed from {TpW(NO)(PMe3)} and the exploration of their origin. Attempts at stereoselectively deprotonating these cationic complexes is also discussed. 2 Chapter 3 describes our study of TpW(NO)(PMe3)(3,4-η -naphthalene)’s ability to undergo a Diels-Alder reaction with N-methylmaleimide. A solvent study suggested that this reaction proceeds by a concerted mechanism. To probe the mechanism further, we synthesized a series of methylated and methoxylated naphthalene complexes and measured their rates of reaction with N-methylmaleimide compared to the parent complex. We found that 1- substitution on the naphthalene increased the rate of cycloaddition, even if the substituent was in the unbound ring, while 2-substitution slowed the reaction rate when in the bound ring. This information is consistent with a concerted mechanism, as a 2-substituted product would be less able to isomerize to form the active isomer for the cycloaddition to occur.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0020856A1 Bell Et Al
    US 2005.0020856A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0020856A1 Bell et al. (43) Pub. Date: Jan. 27, 2005 (54) PROCESS FOR PRODUCTION OF ACETYL (21) Appl. No.: 10/627,254 ANHYDRIDES AND OPTIONALLY ACETIC ACID FROM METHANE AND CARBON (22) Filed: Jul. 24, 2003 DOXDE Publication Classification (75) Inventors: Alexis T. Bell, Oakland, CA (US); Sudip Mukhopadhyay, Williamsville, (51) Int. Cl. ................................................. C07C 69/02 NY (US); Mark Zerella, Berkeley, CA (52) U.S. Cl. .............................................................. 562/888 (US); John Glenn Sunley, East Yorkshire (GB); Sander Gaemers, Bishop Burton (GB) (57) ABSTRACT Correspondence Address: TOWNSEND AND TOWNSEND AND CREW, Acetyl anhydrides Such as acetyl Sulfate are produced by a LLP process for comprising contacting methane and carbon diox TWO EMBARCADERO CENTER ide in an anhydrous environment in the presence of effective EIGHTH FLOOR amounts of a transition metal catalyst and a reaction pro SAN FRANCISCO, CA 94111-3834 (US) moter, and an acid anhydride compound, and optionally an acid. The acetyl anhydride can be contacted with water to (73) Assignee: THE REGENTS OF THE UNIVER- produce acetic acid or with an alcohol to produce a product SITY OF CALIFORINIA, OAKLAND, comprising an acetate ester and that may also comprise CA (US) acetic acid. Patent Application Publication Jan. 27, 2005 Sheet 1 of 3 US 2005/0020856A1 C O O O O O 4.5 4.0 35 3.0 2.5 2.0 15 ppm FIG. I. Patent Application Publication Jan. 27, 2005 Sheet 2 of 3 US 2005/0020856A1 O C O 4.5 40 3.5 3.0 2.5 2.O 15 ppm FIG 2 Patent Application Publication Jan.
    [Show full text]
  • Ligands With
    SYNTHESIS OF GOLD COMPLEXES FROM DIPHOSPHINE LIGANDS AND SCREENING REACTIONS OF HETEROCYCLIC ACETYLACETONATO (ACAC) LIGANDS WITH TRANSITIONAL METAL COMPLEXES Rogers Nyamwihura, B.Sc. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS August 2015 APPROVED: Michael G. Richmond, Major Professor Martin Schwartz, Committee Member William E. Acree, Jr., Committee Member and Chair of the Department of Chemistry Costas Tsatsoulis, Interim Dean of Toulouse Graduate School Nyamwihura, Rogers. Synthesis of gold complexes from diphosphine ligands and screening reactions of heterocyclic acetylacetonato (ACAC) ligands with transitional metal complexes. Master of Science (Chemistry), August 2015, 122 pp., 14 tables, 44 figures, 98 numbered references. Syntheses of diphosphine gold (I) complexes from gold THT and two ligands, 4, 5-bis (diphenylphosphino)-4-cyclopenten-1, 3-dione (BPCD) and 2,3-bis(diphenylphosphino)-N- phenylmaleimide (BPPM), were done separately. The reactions happened under ice conditions followed by room temperature conditions and produced two diphosphine gold (I) complexes in moderated yield. Spectroscopic results including nuclear magnetic resonance (NMR) and X-ray crystallography were used to study and determine the structures of the products formed. Moreover, X-rays of all newly synthesized diphosphine gold (I) complexes were compared with the known X-ray structures of other phosphine and diphosphine gold (I) complexes. There were direct resemblances in terms of bond length and angle between these new diphosphine gold (I) complex structures and those already published. For instance, the bond lengths and angles from the newly prepared diphosphine gold (I) complexes were similar to those already published. Where there were some deviations in bond angles and length between the newly synthesized structures and those already published, appropriate explanation was given to explain the deviation.
    [Show full text]
  • Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1961 Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes. Lawrence Henry Holmes Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Holmes, Lawrence Henry Jr, "Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes." (1961). LSU Historical Dissertations and Theses. 713. https://digitalcommons.lsu.edu/gradschool_disstheses/713 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 62-1233 microfilmed exactly as received H O L M E S , Jr., Lawrence Henry, 1935- PHYSICAL CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS. I. METALLIC COMPLEXES OF DIMETHYLSULFOXIDE. II. PRE­ PARATION AND SPECTRAL STUDIES OF VANA­ DYL COMPLEXES. University Microfilms, Inc., Ann Arbor, Michigan H O L M E S , Jr., Lawrence Henry, 193 5- 62-1233 Louisiana State University, Ph.D., 1961 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PHYSICAL' CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS I. METALLIC COMPLEXES OF DIMETHYIBULFOXIDE II. PREPARATION AND SPECTRAL STUDIES OF VANADYL COMPLEXES A DISSERTATION Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Ffechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Lawrence Henry Holmes, Jr.
    [Show full text]
  • APPLICATION to BAND ASSIGNMENTS in the INFRARED SPECTRA of METAL COMPLEXES
    ISOTOPIC LABELLING: APPLICATION TO BAND ASSIGNMENTS IN ThE INFRARED SPECTRA OF METAL COMPLEXES A thesis submitted to the·Town UNIVERSITY OF CAPE TOWN in fulfilment of the requirements for the degree of Cape MASTER OF SCIENCE of by PHILLIP EDGAR RUTHERFORD B.Sc.(Hons.) (Cape Town), S.T.D. University Department of Inorganic Chemistry University of Cape Town · Rondebosch 7700 Republic of South Africa September 1978 ~-~- ,. ' ; ~r:·: ,,~t.-,:.,...1,·:r ·?~ ~~-~ .. 7,~\"3:t· L'"'~~ :~~.:-°":: ~~·f\~t':ft :t;1~::· :.~" b~:~,~1T:du..~::;..~ ·t~~~~ t:l~;-~f~·!. (tt vviH.de i l; ot· h~ r:.•:-t. C~::·:~tj·ig:-~:. is ~v:fd ~l\' ~1'.1e :JUttfCL i, U... ~ :.c·:..-··~--~-· .. :'.~-,.-- -~-·c_,_-_.-~c~,-:::"d,: The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University - l ACKNOWLEDGEMENTS The author would like to thank Professor D.A. Thornton most sincerely for his invaluable assistance during the course of this research and in the preparation of this thesis. 1he author acknowledges his colleagues, the late Dr. G.C. Percy, Dr. C. Engelter, Ms. M. Niven and Messrs. J. Hodgson, K. Koch and A. Hutton for their most helpful discussions concerning this work. Thanks are also due to Mr. W.R.T. Hernsted for perfonning the micro­ analyses and Ms.
    [Show full text]
  • IIIHIIII USOO5583242A United States Patent (19) 11 Patent Number: 5,583,242 Schieven (45) Date of Patent: Dec
    IIIHIIII USOO5583242A United States Patent (19) 11 Patent Number: 5,583,242 Schieven (45) Date of Patent: Dec. 10, 1996 54 USE OF PHOSPHOTYROSINE L. B. Justement et al., "Regulation of B Cell Antigen PHOSPHATASE INHIBITORS FOR Receptor Signal Transduction and Phosphorylation by CONTROLLING CELLULAR CD45,” Science 252:1839-1842 (1991). PROLFERATION M. R. Gold et al., "Stimulation of Protein Tyrosine Phos phorylation by the B-Lymphocyte Antigen Receptor,' 75 Inventor: Gary L. Schieven, Seattle, Wash. Nature 345.810-813 (1990). M. C. Cam et al., “In Vivo Antidiabetic Actions of Naglivan, 73) Assignee: Bristol-Myers Squibb Company, New An Organic Vanadyl Compound in Streptozotocin-Induced York, N.Y. Diabetes, Diabetes Res. & Clin. Pract. 20:111-121 (1993). A. L. Burkhardt et al., "Anti-Immunoglobulin Stimulation (21) Appl. No.: 450,342 of B Lymphocytes Activates src-Related Protein-Tyrosine Kinases.' Proc. Natl. Acad. Sci. USA 88:7410–7414 (1991). 22 Filed: May 25, 1995 F. M. Uckun et al., “Tyrosine Phosphorylation Is a Manda tory Proximal Step in Radiation-Induced Activation of the Related U.S. Application Data Protein Kinase C Signaling Pathway in Human B-Lympho cyte Precursors,” Proc. Natl. Acad. Sci. USA 90:252-256 62 Division of Ser. No. 189,330, Jan. 31, 1994. (1993). (51 Int. Cl. ........................................ C07F 5/00 C. P. Stewart & A. L. Prote, "Electron Paramagnetic Reso (52 U.S. Cl. ................................... 556/44; 556/1; 556/42; nance Spectra of Some Oxovanadium (IV) Chelates,” J. 556/114: 556/116; 556/17 Chem. Soc. Dalton Trans. 1661-1666 (1972). 58) Field of Search .................................... 556/1, 42, 44, X.-R.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,541,659 B1 Chen (45) Date of Patent: Apr
    USOO6541659B1 (12) United States Patent (10) Patent No.: US 6,541,659 B1 Chen (45) Date of Patent: Apr. 1, 2003 (54) PROCESS FORACYL SUBSTITUTION OF (56) References Cited ANHYDRIDE BY WANADYL SALT CATALYST PUBLICATIONS (75) Inventor: Chien-Tien Chen, Taipei (TW) Klaseketal, Chemical Papers, (1997) 51 (2) pp. 111-116 as described in Chemical Abstract vol. 127 num 135436. (73) ASSignee: National Taiwan Normal University, Lee et al, Bull. Korean Chem. Soc. (1988) 9 (6) pp. Taipei (TW) 362-364, as described in Chemical Abstract, Vol. 110, No. - 204627.* (*) Notice: Subject to any disclaimer, the term of this Chem Abrst. vol. 110, No. 204627 Lee et al.* patent is extended or adjusted under 35 Chem. Abst. vol. 127 No. 135436 Klasek et al. U.S.C. 154(b) by 0 days. C. AOS. WO. O. SCK C. a. * cited by examiner (21) Appl. No.: 10/115,546 Primary Examiner Alan L. Rotman Assistant Examiner Hector M Reyes (22) Filed: Apr.a 2,49 2002 (74) Attorney, Agent, or Firm Morgan & Finnegan, LLP (57) ABSTRACT (51) Int. Cl." ........................... C07C 69/02; B01J 21/00 A proceSS for acyl Substitution of an anhydride with an active-hydrogen-containing compound includes reacting the (52) U.S. Cl 560/231; 502/100: 502/103; anhydride with the active-hydrogen-containing compound in the presence of a Vanadyl Salt catalyst to obtain a high 502/151; 502/153; 502/154 yield of acyl Substitution reaction product with high chemoSelectivity. (58) Field of Search .......................... 560/231; 502/100, 502/103, 151,153, 154 10 Claims, No Drawings US 6,541,659 B1 1 2 PROCESS FOR ACYL SUBSTITUTION OF SUMMARY OF THE INVENTION ANHYDRIDE BY WANADYL SALT CATALYST Therefore, the object of the present invention is to provide a process for acyl Substitution of an anhydride with an BACKGROUND OF THE INVENTION 5 active-hydrogen-containing compound that is devoid of the 1.
    [Show full text]
  • Spectral Studies on Vanadyl Complexes. Thomas Russell Ortolano Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1964 Spectral Studies on Vanadyl Complexes. Thomas Russell Ortolano Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ortolano, Thomas Russell, "Spectral Studies on Vanadyl Complexes." (1964). LSU Historical Dissertations and Theses. 992. https://digitalcommons.lsu.edu/gradschool_disstheses/992 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 65-3391 microfilmed exactly as received ORTOLANO, Thomas Russell, 1938- SPECTRAL STUDIES ON VANADYL COMPLEXES Louisiana State University, Ph.D., 1964 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan SPECTRAL STUDIES ON VANADYL COMPLEXES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial- fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Thomas Russell Ortolano •S., Loyola University of the South, 1960 August, 1964 ACKNOWLEDGMENTS The writer wishes to express his sincere appreciation to Dr. Joel Selbin, under whose direction this work was per­ formed, for his helpful guidance throughout the course of these investigations. In addition, he would like to thank Dr. Sean P. McGlynn who served as his temporary advisor this past year while Dr. Selbin was on Sabbatical Leave in Rome. Considerable gratitude is also due his wife, June, for her two and a half years of patience and encouragement.
    [Show full text]
  • Vanadium and Iron Complexes for Catalytic Oxidation
    Vanadium and Iron Complexes for Catalytic Oxidation Alette Ligtenbarg Cover picture: The goddess Vanadis, provided by prof. dr. L. Pettersson, Umeå University, Sweden. This research project was financially supported by the Unilever Research Laboratory, Vlaardingen. RIJKSUNIVERSITEIT GRONINGEN Vanadium and Iron Complexes for Catalytic Oxidation PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. D.F.J. Bosscher, in het openbaar te verdedigen op vrijdag 1 juni 2001 om 16.00 uur door Alette Gerda Jeannet Ligtenbarg geboren op 19 maart 1974 te Groningen Promotor: Prof. dr. B.L. Feringa Referent: Dr. R. Hage Beoordelingscommissie: Prof. dr. J.G. de Vries Prof. dr. A.M. van Leusen Prof. dr. A.W. Gal ISBN 90-367-1413-3 Voorwoord Een groot aantal mensen heeft in meer of mindere mate een bijdrage geleverd aan de totstandkoming van dit proefschrift. In dit voorwoord wil ik dan ook al die personen hartelijk bedanken. Een aantal van hen wil ik echter met name noemen. Allereerst wil ik mijn promotor prof. dr. Ben Feringa bedanken voor de mogelijkheid om in zijn groep dit promotieonderzoek uit te voeren, voor de vrijheid die ik heb gekregen en voor het in mij gestelde vertrouwen. Dr. Ronald Hage van Unilever Research wil ik niet alleen bedanken voor het schrijven van dit onderzoeksvoorstel, maar ook voor zijn ontelbare waardevolle suggesties, hulp en enthousiasme. De leden van de beoordelingscommissie, prof. dr. J.G. de Vries, prof. dr. A.M. van Leusen, en prof. dr. A.W. Gal wil ik bedanken voor de kritische correctie van het manuscript.
    [Show full text]
  • Mechanistic Insight Into the Cyclohexene Epoxidation with VO(Acac)2 and Tert- Butyl Hydroperoxide
    Mechanistic insight into the cyclohexene epoxidation with VO(acac)2 and tert- butyl hydroperoxide Matthias Vandichel1, Karen Leus2, Pascal Van Der Voort2, Michel Waroquier1,* and Veronique Van Speybroeck1,* 1 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium 2 Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281 – building S3, 9000 Gent, Belgium *Corresponding authors: Prof. M. Waroquier [email protected], Prof. V. Van Speybroeck, [email protected]. Abstract The epoxidation reaction of cyclohexene is investigated for the system vanadyl acetylacetonate (VO(acac)2) as catalyst with tert-butyl hydroperoxide (TBHP) as oxidant with the aim to identify the most active species for epoxidation and to retrieve insight into the most plausible epoxidation mechanism. The reaction mixture is composed of various inactive and active complexes in which vanadium may either have oxidation state +IV or +V. Inactive species are activated with TBHP to form active complexes. After reaction with cyclohexene each active species transforms back into an inactive complex which may be reactivated again. The reaction mixture is quite complex containing hydroxyl, acetyl acetonate, acetate or a tert-butoxide anion as ligands and thus various ligand exchange reactions may occur among active and inactive complexes. Also radical decomposition reaction allow transforming V+IV to V+V species. To obtain insight into the most abundant active complexes, each of previous transformation steps has been modeled through thermodynamic equilibrium steps. To unravel the nature of the most plausible epoxidation mechanism, first principle chemical kinetics calculations have been performed on all proposed epoxidation pathways.
    [Show full text]
  • Grafting of Vanadyl Acetylacetonate Onto Organo-Hexagonal Mesoporous Silica and Catalytic Activity in the Allylic Epoxidation of Geraniol
    Polyhedron 28 (2009) 994–1000 Contents lists available at ScienceDirect Polyhedron journal homepage: www.elsevier.com/locate/poly Grafting of vanadyl acetylacetonate onto organo-hexagonal mesoporous silica and catalytic activity in the allylic epoxidation of geraniol Bruno Jarrais a,1, Clara Pereira a, Ana Rosa Silva a,2, Ana P. Carvalho b, João Pires b,*, Cristina Freire a,* a REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal b Departamento de Química e Bioquímica and CQB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal article info abstract Article history: Vanadyl(IV) acetylacetonate ([VO(acac)2]) was grafted onto a hexagonal mesoporous silica (HMS) using Received 28 November 2008 three different methodologies: method A – direct complex immobilisation; method B – functionalisation Accepted 31 December 2008 of the HMS with 3-aminopropyltriethoxysilane (APTES) followed by the complex immobilisation; and Available online 4 February 2009 method C – treatment of the APTES functionalised support prepared by method B with trimethylethox- ysilane (TMS) to deactivate eventually unreacted surface silanol groups, followed by complex grafting. Keywords: All the materials were characterised by nitrogen elemental analysis, XPS, FTIR, N2 adsorption isotherms Vanadyl acetylacetonate at À196 °C and the [VO(acac) ] based materials were also characterised by vanadium ICP-AES analysis. Hexagonal mesoporous silica 2 The results indicated that, in method B, APTES was successfully grafted onto the HMS with 90% of effi- Complex immobilisation Allylic epoxidation ciency and allowed the covalent attachment of [VO(acac)2] complex mainly in the inner pores with an efficiency of 65%. In method C, a lower complex immobilisation efficiency was obtained, c.a.
    [Show full text]
  • D. Organometallic Compounds
    D. ORGANOMETALLIC COMPOUNDS Organometallic complexes are compounds containing both the organic and metal species. They are synthesized by the formation of the metal-carbon covalent bond. C containing part is called as organic ligand. The coordination number of the metal can have a range between 3-9 with a number of chemical substances which have different chemical and physical properties. Most of the organometallic compounds which have been investigated up to now have coordination number 6 or 4. Complexes with coordination number 5 are less common, but have received intensive study in recent years.i In the following experiments you will synthesize both six-coordinate (tris(acetylacetonato)aluminium(III)) and five-coordinate (vanadyl acetylacetonate) complexes. Experiment 6: Synthesis of tris-(acetylacetanato) aluminium (III): Introduction: Acetylacetonate is a common bidentate ligand, and the source is acetylacetone. Acetylacetone undergoes tautomerization in solution and exists in the keto and enol forms. (Figure 1) In basic medium, enol form loses the hyrdoxyl H so negatively charged acetylacetonate is formed which is resonance stabilized and called as a chelate. (Figure 2) O O Figure 1. Figure 2. Two covalent bonds are formed between the metal atom and the corresponding carbon during the reaction of organometallic compounds of acetylacetonate (bidantate ligand). Since the oxidation state is +3 for Al and -1 acetylacetonate three acetylacetonates react with one Al and then forms a complex with octahedral geometry. Procedure 1) Dissolve 4 grams of Al(NO3)3·9H2O in about 25 mL of distilled water. 2) Check the pH of the solution. 3) Add 1.25 mL of acetylacetone to the solution, mix and stir well.
    [Show full text]