Structure-Function Relationships of Metal Coordination Complexes for Non-Aqueous Redox Flow Batteries by Jonathan Kucharyson
Total Page:16
File Type:pdf, Size:1020Kb
Structure-Function Relationships of Metal Coordination Complexes for Non-Aqueous Redox Flow Batteries by Jonathan Kucharyson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in the University of Michigan 2017 Doctoral Committee: Professor Levi T. Thompson, Chair Professor Mark Barteau Professor Melanie Sanford Professor Johannes Schwank © Jonathan Kucharyson 2017 Dedication This dissertation is dedicated to the two most important women in my life. While I played with glove boxes and destroyed all of my clothes with acid, my wife worked tirelessly to provide for our family; she supported me during discouraging moments, and placed much of her own ambitions and hobbies on hold. She is an intelligent, caring, beautiful woman and I am blessed beyond measure to call her me wife. The second individual has covered me with vomit, screamed at me countless times, and filled my heart with more love than I ever thought possible. My daughter is the reason I wake up in the morning (literally and figuratively), and to write a dedication to you, Laila, is a dream come true. Finally, I would like to thank my Father, Mother, and brothers for always encouraging me to do everything to the best of my abilities. Your support through all of life’s ups and downs means the world to me, and I hope that I have made you proud. ii Acknowledgements I would like to acknowledge the support of my dissertation committee, the Thompson research group, and several collaborative groups that have been instrumental in the completion of my research. The Sanford research group at the University of Michigan made this project possible, and I would like to specifically thank Dr. James Suttil, Pablo Cabrera, Dr. Christo Sevov, Dr. Rachel Brooner, and Sharmila Samaroo for all of their help. The Savinell research group from Case Western Reserve University (specifically, Dr. Ismailia Escalante-Garcia), and the Curtiss research group from Argonne National Lab (specifically, Dr. Lei Cheng) were both an enormous help and I valued our collaboration. Also, thanks to Dr. Nicolai Lehnert for many helpful DFT discussions. I would also like to thank the National Science Foundation for funding my research, as well as Argonne National Laboratory-Advanced Photon Source. Finally, while everyone at the Thompson research group has influenced my research, I would like to specifically thank Dr. Xingyi Yang, Dr. Krista Hawthorne, Dr. Jason Gaudet, Dr. Brian Wyvratt, Sydney Laramie, Siuon Tung, and my predecessor, Dr. Aaron Shinkle. iii Table of Contents Dedication ........................................................................................................................... ii Acknowledgements ............................................................................................................ iii List of Figures .................................................................................................................. viii List of Tables ................................................................................................................... xvi List of Abbreviations ....................................................................................................... xix Abstract ............................................................................................................................ xxi Chapter 1 Introduction ........................................................................................................ 1 1.1 Redox Flow Batteries ........................................................................................... 1 1.1.1 Aqueous Redox Flow Batteries .................................................................... 3 1.1.2 Non-aqueous Redox Flow Batteries ............................................................. 5 1.1.3 Energy Density Equation ............................................................................ 12 1.2 Research Goal and Approach ............................................................................. 14 Chapter 2 Effect of Functional Group and Metal on Standard Potential and Solubility .. 19 2.1 Background and Approach ................................................................................. 19 2.2 Experimental Techniques ................................................................................... 24 2.2.1 Solubility Measurements Using UV-Vis Spectrophotometry..................... 24 2.2.2 Cyclic Voltammetry [20] ............................................................................ 27 2.2.3 Charge-Discharge Battery Characterization [64] ........................................ 33 2.2.4 Flow Cell Characterization ......................................................................... 36 2.2.5 Density Functional Theory Calculations .................................................... 39 2.3 Effect of Functional Group and Metal on Standard Potentials and Solubility ... 48 2.3.1 Approach ..................................................................................................... 48 2.3.2 Results: Standard Potentials ........................................................................ 50 2.3.3 Results: Solubilities .................................................................................... 61 2.3.4 Results: Diffusion Coefficients and Kinetic Rate Constants ...................... 66 2.4 Charge-Discharge Performance of Functionalized Chromium(III) and Vanadium(III) Acetylacetonate ..................................................................................... 69 2.4.1 Approach ..................................................................................................... 69 2.4.2 Results: H-Cell Performance ...................................................................... 70 iv 2.4.3 Results: Flow Cell Performance ................................................................. 72 2.5 Conclusions ........................................................................................................ 77 Chapter 3 Understanding the Stabilities of Metal(III) Acetylacetonate Complexes ........ 80 3.1 Background and Approach ................................................................................. 80 3.1.1 Current Literature Approach ....................................................................... 81 3.1.2 Approach ..................................................................................................... 86 3.2 Experimental Techniques ................................................................................... 90 3.2.1 Bulk Electrolysis ......................................................................................... 90 3.2.2 DFT LUMO/HOMO Density Quantification ............................................. 94 3.3 Solubility Studies ............................................................................................... 95 -1 +1 3.3.1 Results: V(acac)3, [V(acac)3] , and [V(acac)3] ....................................... 95 3.4 Shelf Life Studies ............................................................................................... 99 3.4.1 Results: V(acac)3 ......................................................................................... 99 3.4.2 Results: Shelf Life of functionalized V(acac)3 (Complex 20) .................. 103 3.5 Electrochemical Stability Assessment ............................................................. 107 3.5.1 Background and Approach ....................................................................... 107 3.5.2 Results: Bulk Electrolysis Cycle Life Quantification ............................... 109 3.5.3 Results: Electrochemical Changes ............................................................ 113 3.5.4 Results: Correlations ................................................................................. 121 3.6 Conclusions ...................................................................................................... 125 Chapter 4 Charge Storage Mechanism and Structural Changes ..................................... 127 4.1 Background and Approach ............................................................................... 127 4.2 Experimental Techniques ................................................................................. 129 4.2.1 X-Ray Absorption Spectroscopy [133], [134] .......................................... 129 4.2.2 Vanadium(III) Acetylacetonate ................................................................ 130 4.2.3 Ruthenium(III) Acetylacetonate Experiments .......................................... 132 4.3 Vanadium(III) Acetylacetonate ........................................................................ 137 4.3.1 Background and Approach ....................................................................... 137 4.3.2 Results: Electrochemical Characterization ............................................... 138 4.3.3 Results: Structural Characterization ......................................................... 142 4.3.4 Results: Charge Distribution Characterization ......................................... 148 4.3.5 Conclusions ............................................................................................... 149 4.4 Ruthenium(III) Acetylacetonate ....................................................................... 150 4.4.1 Background and Approach ....................................................................... 150 v 4.4.2 Results: Structural Changes During Oxidation and Reduction................