SYNTHESIS AND CHARACTERIZATION OF CHIRAL OXOVANADYL (IV)-

SALEN CATALYSTS AND -CATALYZED STEREOSELECTIVE

EPOXIDATION REACTIONS

A Thesis

Presented to the faculty of the Department of Chemistry

California State University, Sacramento

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Chemistry

by

Diana Cheng

SUMMER 2018

© 2018

Diana Cheng

ALL RIGHTS RESERVED ii

SYNTHESIS AND CHARACTERIZATION OF CHIRAL OXOVANADYL (IV)-

SALEN CATALYSTS AND VANADIUM-CATALYZED STEREOSELECTIVE

EPOXIDATION REACTIONS

A Thesis

by

Diana Cheng

Approved by:

______, Committee Chair James Miranda, Ph.D.

______, Second Reader Cynthia Kellen-Yuen, Ph.D.

______, Third Reader Jacqueline Houston, Ph.D.

______Date

iii

Student: Diana Cheng

I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis.

______, Graduate Coordinator ______Susan Crawford, Ph.D. Date

Department of Chemistry

iv

Abstract

of

SYNTHESIS AND CHARACTERIZATION OF CHIRAL OXOVANADYL (IV)-

SALEN CATALYSTS AND VANADIUM-CATALYZED STEREOSELECTIVE

EPOXIDATION REACTIONS

by

Diana Cheng

Synthesizing pharmaceutical drugs with incorrect stereochemistry can lead to detrimental effects in one’s body. Therefore, developing a method that can yield high stereoselectivity is important in natural product and pharmaceutical drug syntheses.

Epoxides are frequently used as intermediates in total synthesis of bioactive compounds due to their ability to create multiple chiral centers simultaneously, which can reduce the number of steps in a synthesis. The classic asymmetric epoxidations (Jacobsen’s and

Sharpless-Vanadium epoxidation reactions) utilize metal catalysts to generate with high stereoselectivity.

This research focuses on the development of optically active chiral oxovanadyl (IV) catalysts by utilizing salen ligands to offer an alternative methodology for catalytic epoxidation reactions. Vanadium catalysts are, in particular, of high interest due to their ability to effectively activate peroxides and transfer oxygen to . Eight unique oxovanadyl (IV) salen catalysts were synthesized and characterized by FT-IR and HR-ESI- v

MS. The catalysts were employed in various epoxidation reactions with different substrates to test for formation and stereoselectivity. Epoxidizing a variety of non- functionalized alkenes gave yields between 20% - 52%, while functionalized alkenes

(allylic ) gave between 85% - 99% yield. Stereoselectivity was observed when epoxidizing aromatic alkenes and allylic alcohols using the catalysts synthesized. The results from this project suggest multiple plausible mechanisms, including a stepwise biradical pathway and Sharpless-type concerted pathway.

______, Committee Chair James Miranda, Ph.D.

______Date

vi

ACKNOWLEDGEMENTS

To my advisor, Dr. James Miranda, thank you for your patience with me through the program and your encouragement during the times when reactions didn’t work. I’m very fortunate to have joined your research group as an undergraduate student and even more fortunate to have continued my graduate research with you. Your positivity was very heart-warming and uplifting through the most difficult times in my research.

To my committee members, Dr. Jacqueline Houston and Dr. Cynthia Kellen-Yuen, thank you for taking your time to read my thesis and giving me great feedback. I really appreciate the suggestions that you have given me to help polish my thesis.

To my mentors, Dr. Claudia Lucero and Dr. Jeffrey Mack, thank you for all that you have done for me. If I ever needed help with anything, whether it be with teaching, research, or life advice, both of you were there for me, without hesitation at all. I cannot express to you how much this means to me.

To Dr. Roy Dixon and Maria Santos, thank you for helping with the HR-ESI-MS instrument. This instrumentation was extraordinarily important for catalyst characterization.

vii

To my friends, Olga, Victor, and Morgan, thank you for being there for me. I am so grateful to have met you during my graduate program. We have become such great friends and shared so many memories and laughs. All I can say is we finally did it!

To my family, I am forever grateful for your support and guidance through my life. I am so fortunate to have parents and siblings who are so understanding and patient. Thank you for all your unconditional love- it means so much to me. Words cannot express the gratitude I have for each of you and I could not have done it without you all

viii

TABLE OF CONTENTS

Page

Acknowledgements ...... vii

List of Tables ...... xiii

List of Figures ...... xiv

List of Schemes ...... xviii

List of Tables ...... xx

List of Abbreviations ...... xxi

Chapter

1. INTRODUCTION ...... 1

BACKGROUND ...... 8

1.1 Vanadium and Its Applications ...... 8

1.2 Epoxidation Reactions ...... 9

1.2.1 Sharpless Vanadium-Epoxidation ...... 9

1.2.2 Jacobsen’s Epoxidation ...... 15

1.3 Nuclear Magnetic Resonance (NMR) Spectroscopy ...... 26

1.3.1 Yield Determination ...... 26

1.3.2 Calculating Enantiomeric and Diastereomeric Excess ...... 27

2. RESULTS AND DISCUSSION: OPTIMIZATION OF EPOXIDATION

REACTIONS USING OXOVANADYL (IV) SALEN CATALYSTS ...... 29

ix

2.1 Synthesis of Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-

1,2-cyclohexane diamine catalyst...... 30

2.2 Oxidant Study ...... 32

2.3 Temperature Study ...... 36

2.4 Solvent Study ...... 38

2.5 Catalytic Loading Study ...... 39

2.6 Characterization of [1,2-bis(tert-butylperoxy)ethyl] ...... 40

3. RESULTS AND DISCUSSION: EPOXIDATION REACTIONS AND

STEREOSELECTIVITY ...... 48

3.1 Sample synthesis of one chiral ligand: (1R,2R)-N,N’-bis(5-bromo-

salicylidene)-1,2-cyclohexanediamine (Bromo ligand)...... 50

3.2 Epoxidation of Various Substrates using Synthesized Catalysts ...... 52

3.3 Mechanism ...... 77

3.4 Other Reactions Tested ...... 91

4. CONCLUSIONS AND FUTURE WORK ...... 93

5. EXPERIMENTAL ...... 95

A. Ligands ...... 96

B. Metal Complexes ...... 102

C. Epoxidation Reactions ...... 109

x

Appendix A. Characterization of ligands ...... 119

Spectra of (1R,2R)-N,N’-bis(3-methyl-salicylidene)-1,2-

cyclohexanediamine ...... 120

Spectra of (1R,2R)-N,N’-bis(methoxy-salicylidene)-1,2-

cyclohexanediamine ...... 122

Spectra of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-

cyclohexanediamine ...... 124

Spectra of 1,1’[(1R,2R)-1,-cyclohexanediylbis[(E)-

nitrilomethyllidyne]]bis-2-naphthalenol ...... 126

Spectra of (1R,2R)-N,N’-bis(nitro-salicylidene)-1,2-cyclohexanediamine .... 128

Spectra of (1R,2R)-N,N’-bis(3,5-dibromo-salicylidene)-1,2-

cyclohexanediamine ...... 130

Appendix B. Characterization of Catalysts ...... 132

IR Spectra and Mass Spectrometry Data of Methyl Catalyst ...... 133

IR Spectra and Mass Spectrometry Data of Methoxy Catalyst ...... 148

IR Spectra and Mass Spectrometry Data of Ethoxy Catalyst ...... 165

IR Spectra and Mass Spectrometry Data of Di-tert-butyl Catalyst ...... 183

IR Spectra and Mass Spectrometry Data of Nitro Catalyst ...... 200

IR Spectra and Mass Spectrometry Data of Napthyl Catalyst ...... 219

IR Spectra and Mass Spectrometry Data of Bromo Catalyst ...... 241

IR Spectra of Dibromo Catalyst ...... 280

xi

Appendix C. Characterization of Epoxides and Chiral Shift Studies of Epoxides ...... 283

Styrene Oxide ...... 284

Trans-stilbene Oxide ...... 286

6,7-epoxycitronellol ...... 287

2,3-epoxygeraniol ...... 290

6,7-epoxycitronellylpivalate ...... 292

Epoxy α-methylstyrene ...... 293

Trans-β-epoxymethylstyrene...... 294

cis-β-epoxymethylstyrene ...... 295

Syn-2,3-epoxy-3,5,5-trimethylcyclohexanol ...... 296

Appendix D. X-Ray Crystallography Data ...... 298

References ...... 308

xii

List of Tables

Tables Page

1. Results from the catalytic asymmetric epoxidation of cis-β-methylstyrene

using Catalysts 1-4. Reaction conditions are shown in Scheme 6.7...... 23

2. Results from the catalytic asymmetric epoxidation of cis-β-methylstyrene ...... 25

3. Results from adding different oxygen sources...... 34

4. Results from varying the amount of TBHP in the reaction...... 36

5. Results from varying temperature for the epoxidation of styrene ...... 37

6. Results from varying the solvent in the epoxidation of styrene...... 38

7. Results from catalytic loading study ...... 39

8. Catalyst outline with specific R substituents...... 50

9. Results in the catalyzed epoxidation of trans-stilbene and ∝-methyl styrene

using the various catalyst...... 55

10. Results in the catalytic epoxidation of cis-β-methyl styrene...... 59

11. Results from the epoxidation of citronellol and citronellyl pivalate...... 61

12. Results from the catalytic epoxidation of using the synthesized

oxovanadyl (IV) salen catalyst...... 65

13. Results from the epoxidation of trans-hex-2-en-1-ol using oxovanadium (IV)

salen catalysts...... 68

14. Results from the epoxidation of 3,5,5-trimethylcyclohexen-1-ol using

oxovanadium (IV) salen catalysts...... 75

xiii

List of Figures

Figures Page

1. Structure of (S,S) Jacobsen’s catalyst...... 4

2. Structures of different oxovanadyl (IV) salen catalysts that was synthesized in

this project to use in catalytic epoxidation reactions...... 6

3. (2R,3R) 1,2,3-trimethylepoxypropanol favored due to 1,2 allylic strain. The

20 abbreviation Ln indicates acetylacetonate ligand...... 11

4. Binding modes of hydroxamic acid to vanadium alkoxides.18,19 ...... 13

5. Structure of (S,S)-Jacobsen's Catalyst...... 15

6. Proposed catalytic cycle for the formation of epoxide using Jacobsen’s catalyst. 16

7. Proposed paths for attack of to the oxidant source.6 ...... 17

8. Proposed position of attack depending on substituents on the alkene.22 ...... 18

9. Transition states (TS) of cis-, trans-, and trisubstituted alkenes.22,23...... 19

10. Possible radical intermediate transition states to explain stereochemical

outcome using cis-stilbene, trans-stilbene, and trans-α-methylstilbene.8 ...... 20

11. R1 and R2 substituent varied to test for steric effects on the ligand...... 22

12. R1 and R2 substituents varied to study the electronic effects of ligand...... 24

13. Complexation of a Europium chiral shift reagent with a chiral epoxide...... 28

14. Structure of oxovanadium (IV) salen catalyst used ...... 29

15. FT-IR spectrum of Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-

1,2-cyclohexane diamine catalyst (3)...... 31 xiv

16. One scan from ES-MS for Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert

butylsalicylidenato)-1,2-cyclohexane diamine catalyst...... 32

17. GC/MS spectrum upon injection of [1,2-bis(tert-butylperoxy)ethyl]benzene.

Peak observed 4.0 minutes represents benzaldehyde...... 43

1 18. H NMR spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3...... 44

1 1 19. H- H COSY spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3. .... 45

1 13 20. H- C HSQC spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3. ... 46

21. Oxovanadyl (IV) salen catalyst synthesized by former group members...... 48

22. General Structure of Catalyst with R1, R2, and R3 substituents varied...... 49

23. 1H NMR spectrum of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-

cyclohexanediamine (Bromo ligand)...... 52

24. Substrates used in the catalytic epoxidation using oxovanadyl (IV) salen

catalyst...... 53

25. Expanded region between 3.0-3.4 ppm in the 1H NMR spectrum of the

epoxidation cis-β-methyl styrene using mCPBA...... 57

26. Expanded region between 3.0-3.4 ppm in the 1H NMR spectrum of the

epoxidation cis-β-methyl styrene using oxovanadium (IV) salen catalyst...... 58

27. Possible diastereomers produced after epoxidation using citronellyl pivalate. .... 62

28. 13C NMR spectrum of epoxy-citronellyl pivalate from the epoxidation of

citronellyl pivalate using nitro catalyst...... 63

xv

29. 2 possible enantiomers from the epoxidation of geraniol using the oxovanadyl

(IV) salen catalyst...... 65

30. Example of 1H NMR spectra of the chiral shift study of 2,3-epoxygeraniol

using di-tert-butyl catalyst. Top spectrum (Red) indicates the diastereomers

observed upon the addition of an chiral shift reagent. Bottom spectrum (Blue)

indicates pure epoxygeraniol without chiral shift reagent...... 66

31. 1H NMR spectrum of the epoxide product from the epoxidation of ...... 69

32. Top Spectrum (Red): 1H NMR spectrum of trans-2,3-epoxyhexan-1-ol from

catalytic epoxidation. Bottom Spectrum (Blue): 1H NMR spectrum of trans-

2,3-epoxyhexan-1-ol using mCPBA...... 70

33. Possible enantiomers of trans-2,3-epoxyhexan-1-ol...... 71

34. Overlapping expanded region from 2.2-6.0 ppm of 1H NMR spectra upon

gradual addition of chiral shift reagent to trans-2,3-epoxyhexan-1-ol the

epoxidation of (3-propyloxiran-2-yl)methanol using dibromo vanadium

catalyst...... 72

35. Possible epoxides that can be produced when epoxidizing 3,5,5-

trimethylcyclohex-2-en-1-ol...... 73

36. Expanded region from 2.9-4.3 ppm of 1H NMR spectrum from the product of

the epoxidation of 3,5,5-trimethylcyclohex-2-en-1-ol using di-tert-butyl

vanadium catalyst...... 74

xvi

37. Possible syn enantiomers produced from the epoxidation of 3,5,5-

trimethylcyclohex-2-en-1-ol...... 75

38. Top Spectrum (Red): 1H NMR spectrum of (1R, 2R, 3S)-2,3-epoxy-3,5,5-

trimethylcyclohexan-1-ol with addition of the chiral shift reagent. Bottom

Spectrum (Blue): 1H NMR spectrum of (1R, 2R, 3S)-2,3-epoxy-3,5,5-

trimethylcyclohexan-1-ol without chiral shift reagent ...... 76

39. Oxovanadyl (IV) salen catalyst used in the epoxidation of various alkenes.11 ..... 78

40. X-ray Crystallography structure of the naphthyl oxovanadyl (IV) salen catalyst. 79

41. Proposed transition states to obtain the anti and syn products after epoxidizing

3,5,5-trimethylcyclohex-en-1-ol. Model I is used to explain formation of syn

products, while Model II is used to explain formation of anti products...... 90

xvii

List of Schemes

Schemes Page

1. Epoxidation of an steroidal allylic using vanadium acetylacetonate and

TBHP.12 ...... 3

2. Jacobsen’s epoxidation using cis-β-methylstyrene with NaOCl in

dichloromethane...... 4

3. Synthesis of 2,3-Epoxygeraniol.12 ...... 9

4. Synthesis of 1,2,3-trimethylepoxypropanol.20 ...... 10

5. Synthesis of 2,3-diphenylepoxypropanol...... 12

6. Epoxidation of cis-β-methylstyrene...... 16

7. Synthesis of vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-1,2

cyclohexane diamine (di-tert-butyl catalyst)...... 30

8. Reaction conditions for the epoxidation of styrene to styrene oxide...... 33

9. Oxidized products from the oxidation of styrene using TBHP and catalyst...... 35

10. Optimal reaction conditions for the epoxidation of styrene after oxidant and

temperature study...... 37

11. Final optimal conditions for the epoxidation of styrene using di-tert-butyl

catalyst...... 40

12. Reaction conditions to produce [1,2-bis(tert-butylperoxy)ethyl]benzene...... 42

13. Synthesis of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-cyclohexanediamine. 51

xviii

14. Conformational change and oxidation of the oxovanadium (IV) salen catalyst

when TBHP is introduced...... 80

15. Liberation of the V-O bond to form a hydroxyl group on the oxovanadium

(IV) salen catalyst after TBHP is introduced...... 81

16. Postulated mechanism of the epoxidation of cis-β-methyl styrene to produce

trans-2-methyl-3-phenyoxirane...... 81

17. Two postulated compounds (red box) produced when a homolytic cleavage

occurs on the peroxy bond...... 86

18. Catalytic cycle in the epoxidation of styrene showing two pathways to produce

styrene oxide and [1,2-bis(tert-butylperoxy)ethyl]benzene...... 88

19. Reaction conditions for the epoxidation of styrene to styrene oxide using

molecular oxygen...... 92

xix

List of Tables

Tables Page

1. Molar Ratio between analyte and internal standard ...... 27

2. Calculating amount of product obtained from internal standard ...... 27

xx

List of Abbreviations

CHCl3 = chloroform

CDCl3 = deuterochloroform

CHP = cumene

COSY = correlation spectroscopy

DCM = dichloromethane

DCE = 1,2-dichloroethane (common name: ethylene dichloride)

TCM = trichloromethane (common name: chloroform)

EtOAc = ethyl acetate

Et2O = diethyl ether

PhH = benzene

PhMe = toluene

MeOH = methanol mCPBA = meta-chloroperoxybenzoic acid

NMR = nuclear magnetic resonance spectroscopy

TBHP = tert-butylhydroperoxide

THF = tetrahydrofuran

TMS = trimethylsilane

TLC = thin layer chromatography

VO(acac)2 = vanadyl acetylacetonate

TBA = tetrabutylammonium ion

xxi

Schiff base = imine

PET = petroleum ether

MeOH = methanol

(R,R) Jacobsen’s salen ligand = (R,R)-(−)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2- cyclohexanedia mine

xxii

1

CHAPTER ONE

INTRODUCTION

Stereoselectivity in compounds has always been an important component in drug or natural product synthesis because of its effects in the body. Most living organisms have L-amino acids in proteins and D-sugars in RNA and DNA.1 Because living organisms have a specific chirality, each enantiomer of a pharmaceutical drug can behave differently in vivo. Synthesizing the wrong enantiomer of a drug molecule can have damaging effects on a person’s life. For example, in 1953, Chemie Grunenthal was the

2 first to synthesize a drug molecule called thalidomide, C13H10N2O4. This drug was designed to treat convulsions in epilepsy patients, but failed in clinical trials. Despite this, epilepsy patients did report longer duration and better quality of sleep.3 Scientists did not fully understand the side effects to this drug other than the fact that thalidomide can also treat nausea during pregnancy. Because of this, Grunenthal also promoted this drug as safe and effective for pregnant women. Unfortunately, in 1960, people started noticing the detrimental side effects of thalidomide. This molecule caused severe birth defects, where either babies were born with hands and feet protruding out of their torso (known as phocomelia) or no hands or feet at all.3,4 The number of birth defects was estimated between eight thousand to eighty thousand in Europe during that time. The reason for this tragedy is that thalidomide was sold as a racemic mixture of enantiomers, where they later found out that the (R)-(+)-thalidomide is a sedative and (S)-(-)-thalidomide is a teratogen. The molecule (S)-(-)-thalidomide inhibits growth of new blood vessels, which

2 causes problems in the organ development of the fetus.4,5 As a result, chiral chemistry quickly became a new area of research in which developing drugs that had correct chiral centers might prevent such catastrophes in the future.6–9 One way to create stereoselective pharmaceutical drugs, or natural products involve the utilization of epoxides as intermediates in syntheses.

Epoxides are powerful building blocks for medicinal chemistry and drug syntheses because of their ability to introduce up to two stereocenters simultaneously from a prochiral alkene. Additionally, adding a chiral catalyst can improve the stereochemical outcome of the epoxide. New functional groups can then be added by simply employing reagents such as cyanides and organometallic reagents. There are two known epoxidation reactions that revolutionized this field of research, which are the

Sharpless-vanadium catalyzed epoxidation and Jacobsen’s epoxidation.9–11

Research in this area did not truly evolve until the 1980’s, when Sharpless published an article on epoxidation reactions with metal catalysts. He subjected vanadium acetylacetonate and tert-butyl hydrogen peroxide (TBHP) to a series of alkenes to test for any epoxide formation.12 Typical reaction conditions for these epoxidation reactions are shown in Scheme 1.

3

Scheme 1: Epoxidation of an steroidal allylic alcohol using vanadium acetylacetonate

12 and TBHP.

Epoxidation of some functionalized alkenes (i.e. allylic alcohols) using TBHP and vanadium acetylacetonate provided high yield and high stereoselectivity, with up to 95% diastereoselectivity.12 Another main advantage to vanadium as a catalyst is that it requires less catalytic loading and is not moisture sensitive.13 However, the disadvantage of this reaction was it only worked well for allylic alcohols. Consequently, Jacobsen set out to develop a method that would oxidize unfunctionalized alkenes. He developed metal complexes that aided in the formation of epoxides and provided high selectivity for one enantiomer. The catalyst contained manganese in an optically active salen framework

(Figure 1).7

4

Figure 1: Structure of (S,S) Jacobsen’s catalyst.

A classic Jacobsen’s epoxidation reaction utilizes (S,S) Jacobsen’s catalyst with sodium hypochlorite in dichloromethane. An example of a Jacobsen’s epoxidation is shown in Scheme 2 where (2R, 3S)-2-methyl-3-phenyloxirane was produced in 84% yield with 92% enantiomeric excess.

Scheme 2: Jacobsen’s epoxidation using cis-β-methylstyrene with NaOCl in

dichloromethane.

The epoxidation of non-functionalized alkenes proved to be successful with high stereoselectivity. However, the disadvantages of this reaction include difficult separation

5 and fast deactivation of the catalyst. Current research in the Miranda lab involves developing optically active catalysts that are stable at room temperature and that can epoxidize any alkene with high stereoselectivity. Vanadium’s active role in nature stimulated much interest as catalysts for epoxidation reactions. Because Jacobsen’s catalyst showed such promising results due to the design of the catalyst, it is thought that attaching a salen ligand to vanadium may result in an increase of epoxide yield and stereoselectivity. The catalysts under study contain vanadium and optical active salen ligands, which contain various electron withdrawing and electron donating groups

(Figure 2).

6

Figure 2: Structures of different oxovanadyl (IV) salen catalysts that was synthesized in

this project to use in catalytic epoxidation reactions.

7

Varying the electronic effects in the salen framework of the catalyst can help to further understand how these oxovanadyl (IV) salen catalysts may indirectly play a role in stereoselectivity of epoxidation reactions. The ultimate goal in this project is to synthesize these catalysts (Figure 2) and test for stereoselectivity in catalytic epoxidation reactions.

8

BACKGROUND

1.1 Vanadium and Its Applications

Vanadium is a transition metal and trace mineral that is found naturally in soil and water. Two naturally occurring isotopes of vanadium are 50V and 51V, where the latter is

99.75% abundant. In the Earth’s crust, vanadium compounds typically exist as metal oxides, which have oxidation states of (III), (IV), or (V) depending on the environment.

When forming complexes with vanadium, the oxidation states of the metal can range from -3 to +5.14 The wide range of oxidative states of the metal offers much variety in applications, including active roles in several enzymes, catalysis, and medicinal treatments.15–17

Two classes of vanadium-containing enzymes have been discovered: vanadium nitrogenases and vanadium-dependent haloperoxidases.15 Bacteria use vanadium nitrogenase to convert nitrogen gas to ammonia in the nitrogen cycle, which is crucial for plants to grow. Vanadium-dependent haloperoxidases, conversely, utilize hydrogen peroxide to halogenate various organic compounds.16 These compounds are often produced from living organisms as a defense mechanism for pigmentation, and/or as pheromones. Vanadium’s active role in nature has stimulated much interest in vanadium coordination chemistry.

Vanadium pentoxide is among the most commonly used compound due to its versatility of applications including the vanadium pentoxide battery, coloring material for glasses and ceramics, and as a catalyst for synthetic reactions.18 In fact, vanadium

9 pentoxide was one of the first transition metal compounds used for catalytic epoxidation with tert-butyl hydrogen peroxide (TBHP) as an oxidant source.19 Other vanadium compounds such as vanadium acetylacetonate and vanadium bonded to hydroxamate ligands, have been explored in catalytic epoxidation of TBHP and have been found to produce stereoselective products.

1.2 Epoxidation Reactions

1.2.1 Sharpless Vanadium-Epoxidation

One of the earliest publications using vanadium as a catalyst for asymmetric epoxidation was in 1973 by Sharpless and Michaelson. Sharpless and his coworkers utilized reagents such as vanadium acetylacetonate and TBHP to facilitate the epoxidation of geraniol (Scheme 3).

Scheme 3: Synthesis of 2,3-Epoxygeraniol.12

By allowing this reaction to reflux at 80oC for four hours, geraniol was completely consumed. The epoxy alcohol formed was then treated with and to produce epoxyacetate. Impressively, this reaction had a 93% overall yield of the epoxyacetate with a 98:2 regioselectivity of the 2,3-epoxide over the 6,7-epoxide.12

10

The group noted that reaction times for the epoxidation of allylic alcohols when using this vanadium catalyst and TBHP was on the order of 102 times faster than that of classic uncatalyzed reactions using mCPBA.12

Often times when using a metal catalyst, hydroxyl groups exert a directive effect on epoxidation (metal-alcoholate binding), where the closest bond from the hydroxyl group and TBHP are in close enough proximity to each other for efficient oxygen transfer.12 This can explain the fast reactivity and regioselectivity as seen for the epoxidation of geraniol. The epoxidation reactions were relatively quick, however they suffered from low enantio- and diastereoselectivity, with the best enantiomeric excess generally being twenty-five percent.17 The only way allylic alcohols could be highly stereoselective was when there were substituents attached to carbons 1 and 2 of the molecule. An example of this is shown in Scheme 4.

Scheme 4: Synthesis of 1,2,3-trimethylepoxypropanol.20

In order to understand the stereochemical outcome of the epoxide, it is necessary to utilize the Felkin Anh model It then becomes clear that 1,2 or 1,3- allylic strain plays a role in the stereoselectivity of the epoxide (Figure 3).

11

Figure 3: (2R,3R) 1,2,3-trimethylepoxypropanol favored due to 1,2 allylic strain. The

20 abbreviation Ln indicates acetylacetonate ligand.

With vanadium as the catalyst and TBHP as the oxidant, Sharpless proposed two possible transition states that can explain the stereoselectivity of these particular allylic alcohols.20 As shown in Figure 3, the two oxygen atoms from TBHP and the oxygen atom from the allylic alcohol can complex (chelate) with the vanadium metal. The oxygen atom of the hydroxyl group directs the alkene of the allylic alcohol closer to the oxidant, which results in allylic strain between the methyl groups in the 1,2 position of the substrate. This results in an higher energy transition state, which in turn gives lower diastereomeric excess. The other transition state (in Figure 3) shows that the methyl

12 group in carbons 1 and 2 are positioned to minimize steric interactions between the two substituents, therefore producing higher diastereomeric excess. From the two proposed transition states, the anti epoxide is favored over the syn epoxide. Only alkenes that had

1,2-allylic strain in the transition states produced high diastereoselectivity, therefore other ligands were used to attach to vanadium to see if this problem can be addressed.

Sharpless and his group developed different vanadium catalysts utilizing chiral hydroxamate ligands.21–23 These ligands showed resistance towards oxidation and seemed to have good binding affinity with vanadium. Over 20 different chiral vanadium hydroxamates were studied and the highest enantiomeric excess in the epoxidation of allylic alcohols was 80%. Results showed a yield of 90% in the reaction of 2,3- diphenylcinnamyl alcohol with TBHP, vanadium alkoxide, and hydroxamic acid

(Scheme 5).21,22

Scheme 5: Synthesis of 2,3-diphenylepoxypropanol.

Despite the success of these reactions, Sharpless soon realized that this reaction was very sensitive to the amount of ligand. Not incorporating enough hydroxamate ligand caused a strong ligand deceleration effect, however adding too much of the ligand caused

13 significant deactivation of the catalyst. In order to explain this effect, the possible binding modes of hydroxamic acid to vanadium alkoxides were considered (Figure 4).

Figure 4: Binding modes of hydroxamic acid to vanadium alkoxides.18,19

As shown in Figure 4, the ethoxy ligands on the initial vanadium alkoxide are replaced by the bidentate hydroxamate ligand to form a monohydroxamate complex B.

Complexes A and B are necessary for the epoxidation of allylic alcohols because theses complexes have at least two adjacent exchangeable ligand sites for TBHP and substrate.

Complex B is believed to be active catalyst responsible for the asymmetric induction as seen in Scheme 5. However, the ligands of the vanadium (V) alkoxides tend to undergo rapid ligand exchange and can easily form complexes A and C in equilibrium with complex B. Complex A is very active making epoxidation reactions much faster, but the disadvantage to this is it gives a racemic mixture of epoxides. In order to suppress this complex from forming, adding an excess amount of ligand relative to the vanadium

14 alkoxide is required. However, overloading the reaction with chiral ligand can cause vanadium to form complex C or D, which renders the catalyst inactive. Therefore, it is crucial to find an optimal amount of ligand to add in order to increase selectively without overloading the reaction. The optimum balance was a 3:1 ratio of the ligand to vanadium for the reaction in Scheme 5.20,24,25

Because of the ligand deceleration effect and dynamic ligand exchange processes,

Sharpless and coworkers could not develop a procedure that gave a higher than 80% enantiomeric excess, therefore abandoned this research to work on titanium-catalyzed epoxidations using a tartrate ligand.23 This system showed ligand accelerating effect on titanium, which activates the catalyst thus controlling stereoselectivity of an epoxy alcohol. Sharpless and his coworkers employed a variety of allylic alcohols in reactions with titanium catalysts, which gave epoxide yields ranging from 70-95% and enantioselectivity from 90-95%.21

Over the next two decades, Sharpless and his group extensively researched on titanium and osmium complexes to catalyze oxidation reactions.26 This research led to

Sharpless being awarded the Nobel Prize in Chemistry in 2001 for work on catalyzed asymmetric oxidation reactions.27 His methods were soon used in pharmaceutical industries to create antibiotics, anti-inflammatory drugs, heart medicines, and agricultural chemicals. Since then, vanadium-catalyzed reactions became less utilized in asymmetric epoxidations.

15

1.2.2 Jacobsen’s Epoxidation

The Sharpless vanadium-epoxidation remains to be one of the most well-designed methods of asymmetric synthesis for allylic alcohols, however it does not work as well for unfunctionalized cyclic and acyclic alkenes. During the early 1990s, attention had been directed towards a new class of catalysts, optically active magnanese (III) salen complexes, designed and synthesized by Jacobsen and coworkers (Figure 5).

Figure 5: Structure of (S,S)-Jacobsen's Catalyst.

With this catalyst, cis-, tri- and tetra-substituted alkenes were successfully epoxidized with over 90% enantiomeric excesses.7,28 The stoichiometric oxidants employed were either iodosobenzene or sodium hypochlorite (more commonly known as bleach) (Scheme 6).7

16

Scheme 6: Epoxidation of cis-β-methylstyrene.

The mechanism of the Jacobsen's catalyst with NaOCl has been explored further to help explain the high stereoselectivity seen in this reaction. The stereochemical outcome is ultimately predicted by either employing the (R,R) or (S,S) isomer of

Jacobsen's catalyst. The proposed catalytic cycle for the Jacobsen's catalyst is shown in

(Figure 6).7,28

Figure 6: Proposed catalytic cycle for the formation of epoxide using Jacobsen’s catalyst.

(Ligand on the Manganese catalyst omitted for clarity).6

In Figure 6, sodium hypochlorite oxidizes manganese, forming an oxo- manganese (V) salen complex, while sodium hypochlorite reduces to form sodium

17 chloride as a by-product. The alkene is then introduced to the active oxo-manganese (V) salen complex, which can then epoxidize an alkene and regenerate the manganese (III) catalyst. This may help understand how the epoxides are formed, but it does not explain the stereochemical outcome observed in the epoxide, therefore the design of the catalyst must be further evaluated.

The structure of the salen catalyst is quite bulky, especially when there are di-tert- butyl substituents shielding the aryl rings. The substituents contribute to steric interactions if the alkene comes from those pathways. Due to the structure of the salen complex surrounding the C-O bond, attack of the alkene is limited to two pathways: a side on approach of the double bond parallel to the salen ligand (Path A) or an attack from the direction of the diimine bridge (Path A) or shown in Figure 7.6

Figure 7: Proposed paths for attack of alkene to the oxidant source.6

18

Jacobsen and Katsuki had slightly opposing views on how the alkene approaches the oxidant source. Katsuki believed that the alkene approached the oxidant source between the cyclohexane ring and tert-butyl substituent (Path B).The large substituent of the alkene must be oriented away from the tert-butyl group to minimize steric interactions to result in such stereochemical outcome. In addition, it was thought that this pathway was even more favored due to the π- π interactions between the alkene and the catalyst.6,29

Figure 8: Proposed position of attack depending on substituents on the alkene.22

Jacobsen believed that instead of the attack of the alkene coming from path B, the alkene approach from path A. Figure 8 is a representation of how the alkene must be oriented approaching from across the cyclohexane ring. The particular chiral catalyst shown has a (S,S) configuration. When the alkene approaches across the top of the manganese-oxo species, the larger substituent on the substrate is directed away from the axial hydrogen on the bridge. This prevents interactions between the large substituent and

19 the axial hydrogen, which ultimately determines the chirality of the epoxide product of the cis alkenes.

Generally, cis-olefins are more reactive substrates than trans-olefins and react with higher enantioselectivity when catalyzed by this chiral catalyst. When epoxidizing trans alkenes, lower enantioselectivities of epoxide products are observed (<65% ee).8 A reason for this preference is the interaction of the alkene and the ligand on the catalyst

(Figure 9). With cis-alkenes, the R groups are remote from the catalyst plane providing easy oxygen transfer from the catalyst to the alkene concertedly. However, with trans- and trisubstituted alkenes, there are considerable interactions between the ligand and the substituent on the alkene. Steric repulsion occurs preventing oxygen transfer from the catalyst to the alkene.

Figure 9: Transition states (TS) of cis-, trans-, and trisubstituted alkenes.22,23

Further studies have been done using tri and tetrasubstituted alkenes to test if the prediction of these substrates hold true. In 1994, Brandes and Jacobsen were able to epoxidize conjugated trisubstituted alkenes with high enantioselectivity (greater than

86% ee) by adding catalytic levels of pyridine N-oxide dertivatives.8 These results seem

20 inconsistent with what was expected based on models shown in Figure 9. Because of this, Jacobsen had to re-evaluate his initial proposed mechanism for this epoxidation reaction. The new approach consisted of a "side-on" skewed attack of the oxo- manganese complex, which proceed through a stepwise mechanism involving radical intermediates. The possible transitions states for cis-, trans- and trisubstituted alkenes based on this new approach are shown in Figure 10.8

Figure 10: Possible radical intermediate transition states to explain stereochemical

outcome using cis-stilbene, trans-stilbene, and trans-α-methylstilbene.8

21

If cis-alkenes do proceed through a radical intermediate, then it is clear that there is a high energy (4) and a low energy (1) transition state. The low energy transition state

(1) has the two substituents facing away from the catalyst plane so it does not suffer from any steric interactions. This results in only one possible enantiomer formed. The trans- alkenes, however, have two competing intermediates that have high energy transition (2 and 5) states. Both intermediates will go through similar steric interactions with the catalyst plane, consequently giving poor stereoselectivity. Lastly, applying the same analysis as the cis- and trans- alkenes, it is apparent that that the intermediate preferred is the low energy (without steric interactions) transition state (6), which results in a relatively higher enantioselectivity. One important note about these radical intermediates is that tertiary radicals are more stable than secondary radicals, which may explain the higher enantioselectivity observed in trisubstituted epoxides. In addition, trisubstituted non-conjugated alkenes give lower enantioselectivity than trisubstituted conjugated alkenes. This is due to the delocalization of the electrons through resonance and eventually stabilizing the tertiary partial radical. The mechanisms via radical intermediates provide a better explanation of the stereochemical outcome of epoxides from cis-, trans-, and trisubstituted alkenes.

As seen, substituents on the substrate play a role in the selectively of the epoxide, however, the framework on the catalyst can have just as big of an effect on the overall percent yield and enantiomeric excess. There are two important factors that contributes to stereoselectivity of epoxides that must be considered when designing the salen

22 framework of the manganese (III) catalyst, which are steric effects and electronic effects.

Therefore, Jacobsen and his coworkers decided to change the steric bulk on the salen framework, where they varied R1 and R2 substituents to test these effects (Figure 11).

Figure 11: R1 and R2 substituent varied to test for steric effects on the ligand.

The substituents they altered on the catalyst are provided in Table 1.7 When both

R1 and R2 substituents were bulkier substituents, the percent yield and percent enantiomeric excess was much lower. When R1 substituent is smaller and R2 substituent on the catalyst is bulker, both percent yield and enantiomeric excess increase.

23

Table 1: Results from the catalytic asymmetric epoxidation of cis-β-methylstyrene using

Catalysts 1-4. Reaction conditions are shown in Scheme 6.7

Catalyst R1 R2 % Yield % ee

1 Me Me 54 49

2 Me t-Bu 56 55

3 H Me 87 80

4 H t-Bu 81 92

The optimal design of the catalyst is when hydrogen as R1 substituents were hydrogens and R2 substituents were tert-butyl groups. This further proves the Jacobsen’s proposed mechanism in that the alkene must approach across the cyclohexane ring to produce such high enantiomeric excess. When the chiral part of the catalyst becomes bulkier, the ability for the alkene to epoxidize is now less likely due to the steric interactions from chiral methyl groups and substituents on the alkene. Therefore, when developing a catalyst, it is important to not add too much steric bulk, otherwise the alkene will not be able reach the oxygen source on the catalyst.

Another important factor when developing a catalyst is the electronic effects on the ligand. The electronic variations on the salen ligand can indirectly affect the overall stereochemical outcome of the epoxide. Jacobsen explored this further by altering the R1 and R2 substituents of the catalyst (Figure 12).

24

Figure 12: R1 and R2 substituents varied to study the electronic effects of ligand.

The different substituents employed to test for the electronic variations on the catalyst are provided in Table 2. The catalyst that provided the greatest enantiomeric excess was when the R1 and R2 substituents are tert-butyl groups (Catalyst D). However, electronic effects on the catalyst played an indirect role on the enantioselectivity of the epoxide. When R1 substituents are electron withdrawing groups, lower enantioselectivity is observed. As the R1 substituents increase in its electron donating capabilities to the catalyst, an increase in enantioselectivity of epoxides are observed.

25

Table 2: Results from the catalytic asymmetric epoxidation of cis-β-methylstyrene

using Catalysts A-D. Reaction conditions are shown in Scheme 6.28

Catalyst R1 R2 % ee

A NO2 t-Bu 46

B Me t-Bu 80

C OMe t-Bu 86

D t-Bu t-Bu 90

As observed with the catalyst A-D, the enantioselectivity of the epoxides increased when employing catalysts with electron donating substituents. The Hammond postulate argument was used to rationalize these results, in which the ligand substituents modulate the reactivity of the high-valent oxo manganese (V) intermediate.30,31 Upon oxidation to Mn(V)=O, the donating capabilities of the substituents stabilizes the manganese center leading to a stronger Mn=O bond. The system with a stronger bond require a greater amount of activation energy, which therefore decreases the rate of epoxidation and transfers oxygen to alkene via a more product-like (or late) transition state, resulting in a more specific nonbonded interaction.30 A late transition state require a certain proximity between the alkene and manganese oxo complex that leads to a small amount of spatial separation between the substrate and catalyst.30 This provides greater differentiation of diastereomeric transition states, which results in greater enantioselectivity.

26

1.3 Nuclear Magnetic Resonance (NMR) Spectroscopy

1.3.1 Yield Determination

There are a variety of techniques that are used to quantify yield of organic compounds. The most common technique used is chromatographic separation. This is typically coupled with a spectroscopic (e.g. UV/visible, etc.) or a spectrometric (e.g. mass spectrometry) detection. These detection methods typically provide great results, however, there are often issues such as response factors or matrix effects that need to be accounted for in the analysis and therefore affect determination of yields.32

NMR spectroscopy is primarily used for structural analysis in organic chemistry, but this technique frequently provides much more than just structure determination. NMR spectroscopy can also be utilized as a technique for quantitative analysis since the integrated signal intensities are directly proportional to the number of nuclei representing that signal, provided that particular conditions are met.33,34 In general, the signal integration is reliable when the NMR sample is a homogeneous mixture. In addition, when running experiments, the protons within the sample must have sufficient spin- lattice relaxation time in order to reduce line broadening. 1H NMR experiments meet these requirements.

To obtain quantitative yield, it is necessary to use an internal standard. Internal standard is viable if (1) the standard selected is not very volatile, (2) at least one signal from both the analyte and the standard is not overlapping with any other signals, and (3)

27 it does not react with the analyte.35 When a spectrum is obtained, proper phasing and a good signal to noise ratio is necessary to ensure that yields are as accurate as possible.

I A⁄ NA rA = I (Eqn 1) ⁄IS IS⁄ NIS

The molar ratio between the analyte and internal standard can be calculated using

35 Equation 1. The abbreviations Ia, Na, IIS, NIS stand for integral of analyte, number of nuclei corresponding to the peak chosen of the analyte, integral of the internal standard, and number of nuclei representing the peak chosen of the internal standard, respectively.

As discussed, the signal of the analyte cannot be overlapping with any other signals. The molar amount of analyte (nA) can then be determined by multiplying the ratio obtained

35 from Equation 1 with molar amount of internal standard (nIS) shown in Equation 2.

The molar amount of analyte from Equation 2 is used to determine percent yield of the product(s).

nA = nIS ∙ rA (Eqn 2) ⁄IS

1.3.2 Calculating Enantiomeric and Diastereomeric Excess

In order to determine enantiomeric excess, chiral shift reagents or chiral derivatizing agents (such as Mosher’s carboxylic acid) are typically used. Chiral shift reagents are Lewis acids (usually lanthanides) containing chiral centers. When this reagent is added to a solution of an epoxide, the molecule is converted from a mixture of

28 enantiomers to a mixture of diastereomers. The chiral shift reagent Europium tris[3-

(heptafluoropropylhydroxymethlene-(+)-camphorate] will complex with the lone pairs on the oxygen of the epoxide to produce diastereomers as shown in Figure 13. When a reagent is introduced into solution, the signal for the chiral hydrogen will split into two peaks. The two signals are integrated, which will provide ratios of each diastereomer, and in turn, enantiomer. Chiral shift reagents provide a much more convenient way to determine enantiomeric excess than using chiral derivatizing agents and therefore will be used for this study.

Figure 13: Complexation of a Europium chiral shift reagent with a chiral epoxide.

As stated in Chapter 1, the specific aims of this research include: (1) developing, synthesizing, and characterizing oxovanadyl (IV) salen catalysts, (2) optimizing percent yield of epoxide with the catalyst synthesized and (3) epoxidizing a variety of substrates with the catalyzed synthesized to test whether the electronic effects of the catalyst influence the stereoselectivity in the catalytic epoxidation reactions.

29

CHAPTER TWO

RESULTS AND DISCUSSION: OPTIMIZATION OF EPOXIDATION

REACTIONS USING OXOVANADYL (IV) SALEN CATALYSTS

The goal of this research was to develop a variety of optically active chiral oxo- vanadyl (IV) salen catalyst and employ them in epoxidation reactions. The epoxides produced are subjected to a chiral shift reagent to determine stereoselectivity.

The first component of this project was to find reaction conditions that will give maximum epoxide formation with an oxovanadium (IV) salen catalyst. The catalyst

(Figure 14), which resembles the Jacobsen’s catalyst, was synthesized to test for optimal conditions for epoxidation. This ligand was used because it contains: (1) a chiral component and (2) bulky groups around the ligand.

Figure 14: Structure of oxovanadium (IV) salen catalyst used

for the optimization of epoxidation reactions.

30

2.1 Synthesis of Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-1,2- cyclohexane diamine catalyst.

A solution of one equivalent of (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidene)-

1,2-cyclohexanediamine and one equivalent of Vanadyl acetylacetonate in methanol was stirred at room temperature for 24 hours. The resulting green precipitate was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The resulting pure oxovanadium compound was collected in 76% yield (Scheme 7).

Scheme 7: Synthesis of vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-1,2

cyclohexane diamine (di-tert-butyl catalyst).

Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-1,2-cyclohexane diamine (di-tert-butyl catalyst) was characterized by FT-IR spectroscopy. In the FT-IR spectrum (Figure 15), the characteristic of V=O stretching frequency appears at 982.19 cm-1, which matches the reported literature value.36,37

31

Figure 15: FT-IR spectrum of Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert-butylsalicylidenato)-

1,2-cyclohexane diamine catalyst (3).

In the IR spectrum, the O-H stretch of the free ligand is not present, which confirms the coordination of vanadium to the oxygen. The C=N stretching frequency, which typically appears at 1629.04 cm-1 for a free ligand,36 is shifted to a lower frequency, 1602.39 cm-1. This lower frequency can be explained by a decrease in C=N bond order from the coordination of vanadium with azomethine nitrogen lone pair.36

For further confirmation of compound of the di-tert-butyl catalyst, HR-ESI-MS was utilized (Figure 16). To obtain results in Figure 16, a solution of the di-tert-butyl catalyst in acetonitrile and methanol was spiked with three internal standards (i.e. reserpine, ultramark, and tetrabutylammonium chloride). The method of choice was in the positive ion mode and four scans were taken to attain an average m/z of 611.3431.

The exact mass of compound 3, C36H52N2O3V, was calculated to be 611.3418u. Upon

32 analysis, this resulted in a mean error of 3.17 ppm. Because the mean error is less than 5 ppm, the may be suitable for publication.

Figure 16: One scan from ES-MS for Vanadyl (1R,2R)-N,N’-bis(3,5-di-tert

butylsalicylidenato)-1,2-cyclohexane diamine catalyst.

2.2 Oxidant Study

The source of oxygen becomes important in epoxidation reactions with vanadium catalysts. Typically, peroxides are used in epoxidation reactions with vanadium due to its ability to activate peroxides and effectively transfer oxygen to an alkene substrate. In this study, three different oxidants (O2, hydrogen peroxide, and TBHP) were studied to test for the highest selectivity in epoxide formation. Other variables, such as temperature, solvent, and amount of catalyst are also crucial in epoxidation; however, starting

33 conditions were based on previous reaction conditions by Martin (Scheme 8).11 Epoxide formation was not observed, therefore this methodology work was needed to optimize the reactions conditions. The substrate chosen was styrene, which typically reacts well.

Scheme 8: Reaction conditions for the epoxidation of styrene to styrene oxide.

In order to obtain a quantify yield of oxidized products using 1H NMR spectroscopy (as discussed earlier in Chapter 1, section 3), 1,2,4-trimethoxybenzene was used as an internal standard. Every thirty minutes, an aliquot of a reaction mixture was analyzed by 1H NMR spectrum for percent conversion of styrene. Again, the specific aim of this component in the project was to find the reaction conditions for the maximum epoxide formation. Any known side products that do form (i.e. benzaldehyde, 1-phenyl-

1,2-ethanediol, and phenylacetaldehyde) will quantified and mentioned in tables. The tables will also include the percent conversion of styrene (i.e. the amount styrene has reacted).

In scheme 7, the di-tert-butyl catalyst resembles very similarly to the active

Jacobsen’s catalyst. Because of this, it is thought that the oxovanadium catalyst may be able catalyze the reaction without an external oxygen source. An experiment was carried out with reaction conditions shown in Scheme 8 in the absence of any oxidants. This

34 blank reaction was carried out for 48 hours and was monitored by TLC. As confirmed by

1H NMR spectroscopy, results showed a lack of any product formation from styrene (i.e. only styrene was present). The results indicate the necessity of both the external oxygen and catalyst to oxidize styrene.

The conditions slightly varied depending upon the source of oxygen. In the epoxidation of styrene employing molecular oxygen and the di-tert-butyl catalyst, a consistent flow of oxygen with a rate of 2 mL per minute and output pressure of 300 psi was added over a period of 48 hours. The results showed no activity of any chemical reaction between styrene and oxygen. A similar outcome followed with the reaction between styrene and two equivalents of hydrogen peroxide and the di-tert-butyl catalyst.

In a 14-hour reaction, 5% of styrene reacted to produce benzaldehyde (Table 3).

Table 3: Results from adding different oxygen sources.

Oxidant Time (h) % Conversion Benzaldehyde (%) Styrene Oxide (%)

O2 48 0 0 0

H2O2 14 5 5 0

TBHP 4 78 3 43

In the epoxidation reaction of styrene using two equivalents of TBHP (Scheme

9), there was a 78% conversion of styrene to oxidized products, 43% selectively oxidizing to styrene oxide. After 4 hours however, a decrease in yield of styrene oxide

35 led to an immediate termination of the reaction by quenching it with sodium thiosulfate.

From Table 3, the amount of styrene converted to products does not match the amount of the two products mentioned. In this reaction, there are other oxidized products formed that are not observed in typical catalytic epoxidation reaction. One other oxidized product was formed in this reaction that will not be discussed in this section but will be discussed in section 6 of chapter 2. From these results, TBHP was used as the oxidant for all further studies.

Scheme 9: Oxidized products from the oxidation of styrene using TBHP and catalyst.

Although two equivalents of TBHP proved successful for the epoxidation of styrene, a study to test if the amount of oxidant would produce a greater percentage of epoxide was carried out. Results from this study are shown in Table 4. Increasing the amount of TBHP does increase the percent conversion of styrene, however more byproducts are formed. Therefore, two equivalents of TBHP is used in all subsequent reactions.

36

Table 4: Results from varying the amount of TBHP in the reaction.

Mol oxidant Time (h) % Conversion Benzaldehyde (%) Styrene Oxide (%)

1.5 3 67 1 31

2 4 78 3 43

2.5 4 90 6 42

2.3 Temperature Study

As seen in the epoxidation of allylic alcohols employing TBHP, the reactions are typically run under reflux conditions. However, in literature, it has been postulated that decreasing temperature can increase the enantioselectivity of an epoxide.38 Therefore, an investigation of various temperatures ranging from 25oC to reflux conditions has been carried out (Table 5). All reactions were monitored by 1H NMR spectroscopy and quenched with sodium thiosulfate when there was a decrease in styrene oxide. The pure product was isolated by chromatographic separation and a chiral shift reagent was introduced to determine enantioselectivity.

37

Table 5: Results from varying temperature for the epoxidation of styrene

% Benzaldehyde Styrene Oxide

Temp. Time Conversion (%) (%) % ee

25 oC 10 days 52 2 22 4

45 oC 48 h 82 6 41 5

55 oC 48 h 88 8 44 4

75 oC 4 h 85 3 54 4

Reflux (84 oC) 4 h 78 3 43 2

One apparent difference in this study was the increase in reaction time of styrene and TBHP as the temperature was lowered. There was very little to no change in the enantioselectivity of styrene oxide. However, at 75 oC, there was a 10 % increase in the selectivity for the epoxide. Therefore, all subsequent reactions were carried out at 75 oC

(Scheme 10).

Scheme 10: Optimal reaction conditions for the epoxidation of styrene after oxidant and

temperature study.

38

2.4 Solvent Study

Epoxidations reactions are usually run in polar, aprotic solvents. Polar protic solvents have the capability of hydrogen bonding to the epoxide, thus increasing the likelihood for a nucleophilic attack of the epoxide and opening the ring. In literature, common solvents used for epoxidation reactions are as follows: acetonitrile, chloroform, dichloromethane, and THF.7,8,39–41 Therefore, these solvents were screened in the epoxidations of styrene using optimized reaction conditions (Scheme 10). The summary of these results is shown in Table 6.

Table 6: Results from varying the solvent in the epoxidation of styrene

Solvent Time (h) % Conversion Benzaldehyde (%) Styrene Oxide (%)

THF 6 0 0 0

DCM 5.5 62 1 20

DCE 4 85 3 54

TCM 3.5 40 1 15

ACN 5.5 54 8 45

It was observed (Table 6) that using 1,2-dichloroethane as a solvent gave the best percent yield of epoxide. Acetonitrile is typically the solvent of choice, however with the di-tert-butyl catalyst and these reaction conditions, epoxidation of styrene using 1,2- dichloroethane gave 9% greater yield.

39

2.5 Catalytic Loading Study

The amount of catalyst incorporated into an oxidation reaction can have a profound effect on the products formed. Typically, less than 10 mol percent of catalyst is considered to be a catalytic amount. In this study, the amount of catalyst was varied, ranging from 0.5 mol percent to 10 mol percent in the oxidation of styrene to test for selectivity to styrene oxide (Table 7).

Table 7: Results from catalytic loading study

Mol % catalyst Time (h) % Conversion Benzaldehyde (%) Styrene Oxide (%)

0.5 4 85 3 54

0.75 4 76 3 45

1 4 83 1 35

5 1.5 69 2 13

10 1.5 73 6 12

Increasing the amount of catalyst in the reaction does not increase the amount of styrene oxide formed. In fact, increasing the catalytic loading by ten-fold led to a decrease in 40% yield of styrene oxide. Furthermore, the crude mixture obtained from using 5-10 mol % catalyst was difficult to work with since these mixtures became very viscous and elastic. Upon cooling, the reaction mixture completely solidified. This may

40 be an indication that the reaction underwent an polymerization of styrene to form polystyrene. Therefore, investigating all factors that affect the selectivity for the epoxide led to the most optimal conditions using oxovanadyl (IV) salen catalyst for the epoxidation of styrene (Scheme 11).

Scheme 11: Final optimal conditions for the epoxidation of styrene using di-tert-butyl

catalyst.

One important note to emphasize with this methodology work is the difference between Martin’s reaction conditions and the conditions stated here are the reaction times. Therefore, in the catalytic epoxidation of other substrates, it is important to monitor to the reaction to maximize the amount of epoxide formed.

2.6 Characterization of [1,2-bis(tert-butylperoxy)ethyl] benzene

In literature, the only oxidized products presented involving styrene, TBHP, and vanadium catalyst are styrene oxide, benzaldehyde, and 1-phenyl-1,2-ethanediol.42–44

However, using reaction conditions stated in Scheme 11, [1,2-bis(tert- butylperoxy)ethyl]benzene was produced (Scheme 12).

Organic peroxides have been extensively used as radical polymerization initiators in industrial synthesis. These peroxides are also used for the crosslinking of silicone, acrylonitrile-butadiene, and fluorinated rubber.45,46 Furthermore, several commercial

41 monomers require a variety of peroxides, such as organic , dialkyl peroxides, cyclic triperoxides, bishydroperoxides, and peracetals.19,47 In addition, organic peroxides have received quite a bit of attention recently in the area of medicinal chemistry and pharmacology. Compounds such as tetraoxane and ozonides were found to display antitumor48 and antimalarial properties.49 The known methods for the synthesis of vicinal bisperoxides from styrene and TBHP employ palladium acetate,50 cobalt (III) complexes,51 ruthenium (II) bipyridine,52 dinuclear nickel complexes,53 or copper complexes.50 The disadvantages to these catalysts are: (1) difficult to prepare, (2) expensive, and (3) give relatively low yields of vicinal bisperoxides (<26% yield).

Recently, catalytic Manganese(III) acetate and TBHP have been shown to produce compounds similar to [1,2-bis(tert-butylperoxy)ethyl]benzene in relatively high yields,

46-75%.47 However, there have not been any studies in literature displaying the use of oxovanadyl (IV) salen compounds as catalyst for the synthesis of vicinal bisperoxides.

Using conditions stated in Scheme 12, a 41% yield of [1,2-bis(tert- butylperoxy)ethyl]benzene is formed. Selectivity for [1,2-bis(tert- butylperoxy)ethyl]benzene may be attained by increasing the amount of TBHP incorporated in the reaction. However, this was not tested since the main focus was to test selectivity for the epoxide.

42

Scheme 12: Reaction conditions to produce [1,2-bis(tert-butylperoxy)ethyl]benzene.

In the epoxidation of styrene employing TBHP and oxovanadyl (IV) salen catalysts, these results were unanticipated. The expected mechanism to this reaction follows a concerted rather than stepwise pathway. However, due to the formation of [1,2- bis(tert-butylperoxy)ethyl]benzene it now appears otherwise. The compound was initially unidentifiable due to the difficulty of obtaining a GC/MS spectrum. Since peroxides can decompose quickly at high temperatures, [1,2-bis(tert-butylperoxy)ethyl]benzene decomposed mostly to benzaldehyde upon injection into the GC/MS (Figure 17).

43

Figure 17: GC/MS spectrum upon injection of [1,2-bis(tert-butylperoxy)ethyl]benzene.

Peak observed 4.0 minutes represents benzaldehyde.

The 1H NMR, 13C NMR, COSY and HSQC spectral data provided useful information for the identification of [1,2-bis(tert-butylperoxy)ethyl]benzene. The 1H

NMR and 13C NMR spectra matched literature values reported by Terent’ev.47 As shown

44 in Figure 18, two apparent signals upfield are present from the methyl hydrogens on the tert-butyl groups. The hydrogens, (d) and (e), become non-equivalent (diastereotopic) hydrogens due to the surrounding chiral environment and can be seen as two different signals. The signal at 5.24 ppm, which was assigned to (c), is relatively downfield due to the combined effects of the anisotropy of the phenyl group and the deshielding effect of peroxy group.

1 Figure 18: H NMR spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3.

[1,2-bis(tert-butylperoxy)ethyl]benzene was further analyzed by 1H-1H COSY.

The off-diagonal spots in the 1H-1H COSY showed coupling between neighboring hydrogens (Figure 19). The 1H NMR assignments made for hydrogens at positions (c),

45

(d), and (e), are confirmed due to the two diastereotopic methylene hydrogens, (d) and

(e), coupling to the methine hydrogen (c).

1 1 Figure 19: H- H COSY spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3.

1H-13C HSQC spectrum (Figure 20) provided further evidence for all assignments. The methyl hydrogens, (a) and (b) gave contours to the carbon signals, (A) and (B). The methylene hydrogens, (d) and (e), gave positive contours to 13C peak at approximately 77 ppm, indicating that both hydrogens appear on the same carbon. The

COSY spectrum was to further analyze and confirm the identity of [1,2-bis(tert- butylperoxy)ethyl]benzene.

46

1 13 Figure 20: H- C HSQC spectrum of [1,2-bis(tert-butylperoxy)ethyl]benzene in CDCl3.

This compound proved to be a challenge to characterize since the molecular weight was still unknown. Although it may seem obvious by NMR spectroscopy, the number of oxygens in the compound can only be known by mass spectrometry data. It was only by

47 serendipity that a journal article was found with matching literature values to the spectral data. HR-ESI-MS would give the exact mass of the compound, which would provide further confirmation of catalyst, however, the capability is not currently available in the chemistry department.

48

CHAPTER THREE

RESULTS AND DISCUSSION: EPOXIDATION REACTIONS AND

STEREOSELECTIVITY

The last specific aim of this project was to observe the potential role of modified salen ligands on the stereoselectivity of epoxidation products. Jacobsen and his coworkers noted a change in enantioselectivity by altering the exterior portion of the ligand with various electron donating and electron withdrawing groups (Figure 12).

Because of these results (Table 2), Miranda’s group has sought out to vary the catalyst in a similar fashion. Former group members, Eric Martin and Maddy McHendrick, observed the stereoselective effects afforded when adding steric bulk to the chiral component of the catalyst.11 Some catalysts that were synthesized by the group are shown in Figure 21.

Therefore, the chiral component of the ligand will remain similar to that of the Jacobsen’s catalyst, where the diamine bridge contains a cyclohexane ring.

Figure 21: Oxovanadyl (IV) salen catalysts synthesized by former group members.

49

For this study, the chiral component will contain an cyclohexane ring and the substituents are varied based on substituents listed in Table 8. The general structure of the catalyst where specific R1, R2, and R3 is shown in Figure 22.

Figure 22: General Structure of Catalyst with R1, R2, and R3 substituents varied.

The substituents (R1, R2, and R3) were varied using different electron donating and withdrawing groups (Table 8). The names of the catalyst are shown in Table 8 and will be used through the remainder of this study for simplicity.

50

Table 8: Catalyst outline with specific R substituents.

Substituents

Catalyst R1 R2 R3

Bromo Br H H

Dibromo Br H Br

Nitro NO2 H H

Methyl H H Me

Ethoxy H H OEt

Methoxy OMe H H

Di tert-butyl t-Bu H t-Bu

3.1 Sample synthesis of one chiral ligand: (1R,2R)-N,N’-bis(5-bromo- salicylidene)-1,2-cyclohexanediamine (Bromo ligand).

The synthesis of (1R,2R)-(-)-N,N’-Bis(5-bromo-salicylidene)-1,2- cyclohexanediamine was accomplished via a Schiff base condensation (Scheme 13). A solution of one equivalent of (1R,2R)-(-)-1,2-diaminocyclohexane and two equivalents of

5-bromo-2-hydroxybenzaldehyde in ethanol was heated to reflux for four hours. Upon completion, the solution was cooled and vacuum filtration was used to collect pure bromo ligand in 97 % yield.

51

Scheme 13: Synthesis of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-

cyclohexanediamine.

The bromo ligand was characterized by 1H NMR and 13C NMR spectroscopy.

Due to the symmetry of the ligand, the 1H NMR spectrum (Figure 23) provides eight distinct signals. The singlet downfield at 8.17 ppm, corresponds to hydrogen (d), which indicates the formation of a Schiff base. Hydrogen (g), at 7.32 ppm, couples with nonequivalent hydrogens, (f) and (e), which splits the signal into a doublet of doublets

(Jge = 8.87 Hz, Jgf = 2.3 Hz). At 7.25 ppm, hydrogen (f) couples with hydrogen (g), which splits the signal into a doublet. The 4J coupling constant was 2.2 Hz, which is consistent with a para-benzylic coupling hydrogen. The signal at 6.79 ppm had a 3J coupling constant of 9 Hz, which is consistent of an ortho-benzylic coupling hydrogen, and therefore assigned to hydrogen (e). Hydrogen (c) is more downfield from hydrogen (a) and (b) due to its proximity to the Schiff base. Although hydrogen (c) is thought to be a triplet, the resolved peak resembled a multiplet due to second order effects of the magnetically non-equivalent protons.

52

Figure 23: 1H NMR spectrum of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-

cyclohexanediamine (Bromo ligand).

All ligands were synthesized in a similar manner; however, some proved to be difficult to obtain in pure yields through vacuum filtration. Recrystallization was performed on certain ligands with ethanol to afford pure products. The specific ligands to undergo recrystallization are provided in the experimental section. The ligands made were subjected to conditions shown in Scheme 7 to obtain pure optically active oxovanadyl (IV) salen catalysts.

3.2 Epoxidation of Various Substrates using Synthesized Catalysts

A variety of substrates were used in study to test for stereoselectivity in the catalytic epoxidation using the oxovanadium (IV) salen catalysts. The substrates tested can be split into three main categories: (1) non-aromatic alkenes, (2) aromatic alkenes,

53 and (3) allylic alcohols. The specific substrates, shown in Figure 24, were utilized in this study because the results obtained can provide insight on how substituents on the alkene affect the overall stereochemical outcome of epoxide produced. In addition, using such variety of substrates can help understand how the catalyst plays role in the stereoselectivity of epoxidation reactions.

Figure 24: Substrates used in the catalytic epoxidation using oxovanadyl (IV) salen

catalyst.

Before discussing the epoxidation reactions of different substrates, it should be noted that the quantities of reagents used were the same throughout each reaction (shown in Scheme 11). The only varying factor for each substrate was the time it took to obtain the greatest yield of epoxide. The epoxidation for each substrates utilized seven of the

54 eight catalyst synthesized and will be shown in the tables provided throughout the study.

All reactions were monitored by 1H NMR spectroscopy by taking an aliquot of the reaction mixture every hour. The reactions were quenched when there was an apparent decrease in yield of epoxide in the mixture. Chromatographic separation for each reaction was performed to introduce the chiral shift reagent when needed. The epoxide will be the only oxidized product discussed throughout this study since that is the main focus of this work.

The first substrate analyzed was ∝-methylstyrene. This substrate was used to test if formation of epoxide was even possible. Epoxidation of ∝-methylstyrene using the catalyst synthesized took six hours to maximize the percent yield. The percent yields of the epoxides were 25-40% (Table 9). Stereoselectivity was not analyzed, however the results showed that it possible to epoxidize alkenes that contain germinal substituents.

Another substrate tested for stereoselectivity in the catalytic epoxidation was trans-stilbene, which took 13 hours for reaction to produce trans-2,3-diphenyloxirane and give percent yields ranging from 20 to 43% (Table 9). The epoxide produced from each of the seven reactions with different catalysts showed that the trans-isomer was completely favored over the cis-isomer, which indicate that the electronics on the catalyst did not influence the stereoselectivity of the epoxidation reaction. In addition, trans- isomers are intrinsically more stable than cis-isomers, which may be the reason as to why the trans-isomer was completely favored in these reactions.

55

Table 9: Results in the catalyzed epoxidation of trans-stilbene and ∝-methyl styrene

using the various catalyst.

Substrate Product Catalyst % Yield Selectivity

Nitro 25 % N/A

Dibromo 30 % N/A

Bromo 32 % N/A

Di tert-butyl 40 % N/A

Methyl 33 % N/A

ethoxy 35 % N/A

Methoxy 36 % N/A

Nitro 20 % ~100% trans

Dibromo 25 % ~100% trans

Di tert-butyl 37 % ~100% trans

Bromo 25 % ~100% trans

Methyl 30 % ~100% trans

Ethoxy 30 % ~100% trans

Methoxy 43 % ~100% trans

56

Because the trans-epoxide was favored when epoxidizing trans-stilbene, cis-β- methyl styrene was used to possibly provide insight on the mechanism of these reactions.

If the reaction follows a concerted type approach, the major product formed should be cis-epoxide. A reaction with cis-β-methyl styrene and mCPBA was carried out to compare the results with the catalytic epoxidations since it is known that these reactions typically follow a concerted mechanism.

In the epoxidation of cis-β-methyl styrene with mCPBA, it was clear that there were two diastereomeric compounds produced. Since diastereomeric compounds usually provide signals with different chemical shifts values, selectivity can be calculated using nonoverlapping signals that correspond to similar hydrogens on each of the diastereomers. An 1H NMR spectrum was obtained from the epoxidation using mCPBA

(Figure 25). The specific signals of interest that provided diastereomeric ratios of epoxides are signals that correspond to hydrogen (a). By utilizing the integrated values, the results showed that the reaction was 97% selective towards the cis-isomer. This confirmed the expected results of the epoxidation of cis-β-methyl styrene using mCPBA.

57

Figure 25: Expanded region between 3.0-3.4 ppm in the 1H NMR spectrum of the

epoxidation cis-β-methyl styrene using mCPBA.

An 1H NMR spectrum from the epoxidation of cis-β-methyl styrene using TBHP and the oxovanadium (IV) salen catalysts was obtained (Figure 26) and compared to results from epoxidation of cis-β-methyl styrene using mCPBA. The experimental results showed that the reaction was 88% selective, favoring the trans-epoxide over the cis- epoxide. Because of the opposite selectivity observed in these reactions, the results suggest that the reaction follows a step-wise approach, in which a bond rotation must occurs within the reaction itself to provide such stereoselectivity.

58

Figure 26: Expanded region between 3.0-3.4 ppm in the 1H NMR spectrum of the

epoxidation cis-β-methyl styrene using oxovanadium (IV) salen catalyst.

When epoxidizing cis-β-methyl styrene with oxovanadium (IV) salen catalysts, the percent yield ranged from 33 to 52% (Table 10). In addition, a general trend can be observed wherein the catalysts containing electron withdrawing groups provided greater diastereoselectivity than the catalyst containing electron donating groups. Although the difference in selectivity is rather minor (about 10%), it can still be noted that the electronics of the catalyst do have some influence on the stereoselectivity of these epoxidation reactions. Another observation to note for these reactions was that when epoxidizing cis-β-methyl styrene with either the di-bromo catalyst or di-tert-butyl

59 catalyst, the reaction was even more selective towards the trans-isomer (e.g. around 10% increase between dibromo vs bromo catalyst).

Table 10: Results in the catalytic epoxidation of cis-β-methyl styrene.

Substrate Product Catalyst Yield (%) Selectivity

Nitro 33 % 79 % trans

21 % cis

Dibromo 52 % 88 % trans

12 % cis

Bromo 44 % 78 % trans

22 % cis

Di tert-butyl 50 % 81 % trans

19 % cis

Methyl 36 % 65 % trans

35 % cis

Ethoxy 42 % 70 % trans

30 % cis

Methoxy 40 % 68 % trans

32 % cis

60

The electronic effects of the catalysts do have some influence on stereoselectivity but cannot be explained in the same way as the Jacobsen’s epoxidation. Therefore, further testing should be done with substrates similar to cis-β-methyl styrene (i.e. cis- stilbene and trans-β-methylstyrene) when funding is available to access how much the catalyst plays a role on stereoselectivity.

Citronellol and citronellyl pivalate were used to test for stereoselectivity in the epoxidation reactions of non-aromatic alkenes. These compounds contain a set chiral center, which means that there can only be two possible diastereomers produced from the epoxidation reactions. When epoxidizing citronellol and citronellyl pivalate, the reaction took eight hours to obtain maximum epoxide yields. The percent yield range when epoxidizing citronellyl pivalate using the synthesized catalysts was between 28 to 45%, while the percent yield range epoxidizing citronellol was between 30 to 51% (Table 11).

61

Table 11: Results from the epoxidation of citronellol and citronellyl pivalate.

Substrate Product Catalyst Yield (%) Selectivity

Nitro 45 % 50:50

Dibromo 40 % 50:50

Bromo 30 % 50:50

Di tert-butyl 48 % 50:50

Methyl 49 % 50:50

Ethoxy 51 % 50:50

Methoxy 49 % 50:50

Nitro 30 % 50:50

Dibromo 32 % 50:50

Bromo 28 % 50:50

Di tert-butyl 33 % 50:50

Methyl 45 % 50:50

Ethoxy 31 % 50:50

Methoxy 43 % 50:50

A typical method to obtained diastereostereomeric ratios involve using the

GC/MS. By strategically varying the temperature gradient, the peak corresponding to

62 diastereomers splits into two peaks, which can then be used to calculate diastereomeric ratios. Unfortunately, after multiple attempts, separation of these 6,7-epoxycitronellyl pivalate compounds (Figure 27) via GC/MS was not attainable; therefore efforts to achieve separation via GC/MS were abandoned and attention was directed toward other separation methods.

Figure 27: Possible diastereomers produced after epoxidation using citronellyl pivalate.

The method that can distinguish diastereomers reliably is NMR spectroscopy. 1H

NMR spectroscopy can be used to obtain diastereomeric ratios. Unfortunately, proton signals on the chiral carbon of the epoxides (Figure 27) overlap and are not resolved.

Due to this, the signals cannot be integrated and used to calculate diastereomeric excess.

Since 1H NMR spectroscopy cannot determine the ratios, 13C NMR spectroscopy was utilized in hopes to resolve the diastereomers. In Figure 28, the 13C NMR spectrum of the 6,7-epoxycitronellylpivalate show the presence of two diastereomers. In the expanded region of 33.0-35.6 ppm, there are four signals for carbons (H) and (E), with two signals corresponding to each of the two diastereomers. Although the ratio cannot be exactly determined due to the variable relaxation times from carbon to carbon and the nuclear

63

Overhauser Effect,54 it can still be estimated. By utilizing peak heights from carbons (H) and (E) on the 13C NMR spectrum, the diastereomeric ratio is roughly 1:1.

Figure 28: 13C NMR spectrum of epoxy-citronellyl pivalate from the epoxidation of

citronellyl pivalate using nitro catalyst.

The diastereomeric ratios of all other epoxidation reaction using citronellyl pivalate were obtained by using 13C NMR spectroscopy. In addition, the diastereomeric ratio of citronellol was obtained by using chiral shift reagent. The results are shown in

Table 11. Based upon these results, there was no preference in diastereomers, which is inconsistent with what was observed with other substrates. Using the stepwise approach to explain the outcome, the difference in product outcomes may be attributed to resonance stabilization of the radical when using substrates such as

64 cis-β-methyl styrene or trans-stilbene. The stabilization may allow for more time for the lower energy transition state to occur, which gives a higher diastereomeric excess.

The final category of substrates tested in the catalytic epoxidation was the allylic alcohols. Two acyclic allylic alcohols were tested to see if stereoselectivity was observed.

The first acyclic allylic alcohol studied was geraniol using the oxovanadium (IV) salen catalysts. The results from the catalytic epoxidation of geraniol are shown Table 12. The percent yields of epoxide from these reactions were between 90-98% with only two hours of reaction time. An interesting observation to note when epoxidizing allylic alcohols is that the only byproduct observed is tert-butyl alcohol. The product isolated from these reactions were highly regioselective, with only the 2,3-epoxy product produced and no trace of the 6,7-epoxy product obtained. An possible explanation that attributes to this outcome is the direct bonding of the hydroxyl group of the allylic alcohol to the vanadium complex. When TBHP is introduced, tert-butyl hydroperoxide bonds to vanadium allowing for the alkene in the 2,3 position to be in closer proximity to the oxygen source. Because this is a very similar observation to the Sharpless-vanadium epoxidation, these reactions may follow the Sharpless mechanism.

65

Table 12: Results from the catalytic epoxidation of geraniol using the synthesized

oxovanadyl (IV) salen catalyst.

Substrate Product Catalyst Yield (%) Selectivity

Nitro 98 % 50:50

Dibromo 98 % 51:49

Bromo 92 % 50:50

Di tert-butyl 98 % 50:50

Methyl 98 % 51:49

Ethoxy 90 % 51:49

Methoxy 91 % 50:50

Of the 2,3-epoxy products obtained, there are two enantiomers that can be generated from this reaction (Figure 29). These enantiomers cannot be distinguished by

1H NMR spectroscopy alone, and therefore a chiral shift reagent was introduced to test for enantioselectivity of these compounds.

Figure 29: 2 possible enantiomers from the epoxidation of geraniol using the oxovanadyl

(IV) salen catalyst.

66

Upon adding the chiral shift reagent, the signal for hydrogen (d) splits into two broad signals (Figure 30). Line broadening occurs due to the paramagnetic nature of the europium chiral shift reagent. The split signals were integrated, which showed 50:50 mixture of diastereomers, which in turn, shows a 50:50 mixture of enantiomers.

Figure 30: Example of 1H NMR spectra of the chiral shift study of 2,3-epoxygeraniol

using di-tert-butyl catalyst. Top spectrum (Red) indicates the diastereomers observed

upon the addition of an chiral shift reagent. Bottom spectrum (Blue) indicates pure

epoxygeraniol without chiral shift reagent.

Enantioselectivity of other epoxidation reactions using geraniol was obtained by utilizing the chiral shift reagent. The results are shown in Table 12. Because there was no

67 preference for one of the 2,3-epoxy products, it can be concluded that the electronics of the catalyst do not influence the stereoselectivity of epoxide.

Initial studies with styrene showed that lowering the temperature does not change the enantioselectivity of styrene oxide, however, an additional study was carried out in the same manner using an allylic alcohol since it is believed that the allylic alcohol may follow a different mechanistic pathway. Epoxidation of geraniol using the di tert-butyl catalyst at 25oC required a longer reaction time, 20 hours, for geraniol to be completely consumed. The purified product was subjected to the chiral shift reagent and saw little to no change in the preference of enantiomers, which suggests that lower temperature cannot change the enantioselectivity in epoxidation with oxovanadyl (IV) salen catalysts.

The epoxidation of geraniol using the synthesized catalyst produced racemic mixtures, so another acyclic alcohol, trans-hex-2-en-1-ol, was used to test if stereoselectivity changes with a different substrate. With only two hours of reaction time for this allylic alcohol, the percent yield ranged from 87-99% (Table 13).

68

Table 13: Results from the epoxidation of trans-hex-2-en-1-ol using oxovanadium (IV)

salen catalysts.

Substrate Product Catalyst Yield Selectivity

(%)

Nitro 91 % 50:50

Dibromo 86 % 50:50

Bromo 95 % 51:49

Di tert-butyl 88 % 50:50

Methyl 95 % 50:50

Ethoxy 85 % 51:49

Methoxy 86 % 51:49

The trans structure of the epoxide product is confirmed in the 1H NMR spectrum.

Hydrogen (f) and (g) are assigned to the corresponding signals at ~3.91 and ~3.62 ppm respectively, which are furthest downfield due to their proximity to the alcohol and epoxide. These hydrogens are non-equivalent (diastereotopic) and can be seen as two distinct signals (Figure 31). The 3J coupling value for the signals at ~3.91 and ~3.62 ppm are 2.6 and 4.1 Hz respectively. The former coupling value correlates to syn coupling between hydrogen (f) and (e), and the latter value corresponds to the coupling between hydrogen (g) and (e). The 3J coupling values for hydrogens (d) and (e) are both 2.4 Hz,

69 which is consistent with 3J coupling constant for trans-coupling of epoxides.54 Hydrogens

(b) and (c) are assigned to the signals at 1.44-1.59 ppm which is considered a multiplet due to complex second order spitting of neighboring protons. The triplet peak at 0.96 ppm is assigned to hydrogen (a) and a broad single is assigned to hydrogen (h).

Figure 31: 1H NMR spectrum of the epoxide product from the epoxidation of

trans-hex-2-en-1-ol.

When utilizing mCPBA in an epoxidation reaction, the stereochemistry is retained, which can help in identification of whether the product is a cis- or trans- isomer.

Therefore, an epoxidation of trans-hex-2-en-1-ol using mCPBA was carried out to compare the results from the epoxidation using the oxovanadyl (IV) salen catalyst. All signals between the catalytic epoxidation reaction using the vanadium catalyst and

70 epoxidation using mCPBA, including chemical shift values, splitting pattern, and J coupling constants were compared and matched identically to one another (Figure 32).

The values on the 1H NMR spectrum also matched literature values for a trans- isomer.55

Figure 32: Top Spectrum (Red): 1H NMR spectrum of trans-2,3-epoxyhexan-1-ol from

catalytic epoxidation. Bottom Spectrum (Blue): 1H NMR spectrum of trans-2,3-

epoxyhexan-1-ol using mCPBA.

Even though the catalytic epoxidation of trans-hex-2-en-1-ol using the chiral vanadium catalyst produced only the trans- epoxide, there are still two possible enantiomers that can be generated from the reaction. The two enantiomers that can be produced are shown in Figure 33.

71

Figure 33: Possible enantiomers of trans-2,3-epoxyhexan-1-ol.

In order to calculate enantioselectivity, the chiral shift reagent was used. It is important to introduce the chiral shift reagent slowly since signals often broaden and can lead to indistinguishable peaks if not careful. In Figure 34, there are five overlapping 1H

NMR spectra to show the gradual progression of signals splitting to indicate enantiomers of trans-2,3-epoxyhexan-1-ol. The results indicate the reaction mixture is racemic by

’ using the integration of Hc and Hc.

72

Figure 34: Overlapping expanded region from 2.2-6.0 ppm of 1H NMR spectra upon

gradual addition of chiral shift reagent to trans-2,3-epoxyhexan-1-ol the epoxidation of

(3-propyloxiran-2-yl)methanol using dibromo vanadium catalyst.

Enantioselectivity was determined in the same manner as shown in Figure 34 for all other epoxidation reactions using trans-hex-2-en-1-ol. The results from the chiral shift study are listed in Table 13. Because the results showed a lack of enantioselectivity, the electronic effects of the catalyst did not influence the stereoselectivity in the epoxidation reactions. This is further confirmed by observing same diastereoselectivity in all the reactions.

73

The last allylic alcohol used in this study was 3,5,5 trimethylcyclohex-2-en-1-ol, which is an achiral allylic alcohol. The percent yield in these epoxidation reactions using the synthesized catalysts ranged from 87 to 99% (with only two hours of reaction time.

Because this is an achiral allylic alcohol, syn and/or anti products can be produced when epoxidized (Figure 35).

Figure 35: Possible epoxides that can be produced when epoxidizing 3,5,5-

trimethylcyclohex-2-en-1-ol.

The syn and anti epoxides can be distinguished using 1H NMR spectroscopy.

These compounds can be distinguished by looking at the chemical shift value for hydrogen (a). According to literature,55 hydrogen (a) corresponds to the signal at ~4.06 ppm for the syn epoxide, while hydrogen (a’) for the anti epoxide gives signal at ~4.21 ppm (Figure 36). It is understood there are two possible syn epoxides and two possible anti epoxides that can produced from the epoxidation reaction. There are two specific diastereomers shown in Figure 36, however the two diastereomers are a just representation of a syn and anti epoxide to illustrate the difference between the two compounds when discussing the 1H NMR spectrum. It should be noted that the

74 enantiomers of the syn epoxide and anti epoxide are just as likely when looking at Figure

36, however it was clear that only the syn epoxides were produced and not the anti epoxides.

Figure 36: Expanded region from 2.9-4.3 ppm of 1H NMR spectrum from the product of

the epoxidation of 3,5,5-trimethylcyclohex-2-en-1-ol using di-tert-butyl vanadium

catalyst.

The diastereomeric ratio was obtained using the same method discussed here for all other epoxidation reaction using 3,5,5 trimethylcyclohex-2-en-1-ol. The results are listed in Table 14. Regardless of the electronics of the oxovanadyl (IV) salen catalyst, stereoselectivity was the same for all reactions. All epoxidation reactions were completely selective to the syn epoxides.

75

Table 14: Results from the epoxidation of 3,5,5-trimethylcyclohexen-1-ol using

oxovanadium (IV) salen catalysts.

Substrate Product Catalyst Yield (%) Selectivity

Nitro 99 % 100% syn

Dibromo 99 % 100% syn

Bromo 87 % 100% syn

Di tert-butyl 98 % 100% syn

Methyl 97 % 100% syn

Ethoxy 96 % 100% syn

Methoxy 96 % 100% syn

After analyzing for diastereoselectivity, the issue of enantioselectivity was also studied. The possible syn enantiomers are shown in Figure 37.

Figure 37: Possible syn enantiomers produced from the epoxidation of 3,5,5-

trimethylcyclohex-2-en-1-ol.

76

Chiral shift studies were performed to examine the enantioselectivity of syn epoxides produced from the epoxidation reaction using the synthesized catalysts. By using the chiral shift reagent, a racemic mixture was observed on the 1H NMR spectrum

(Figure 38). Therefore, the reaction is diastereoselective, but not enantioselective. This indicates that regardless of the oxovanadium (IV) salen catalysts used in this study, the electronic effects of the catalysts do not play a role in the catalytic epoxidation reactions.

Figure 38: Top Spectrum (Red): 1H NMR spectrum of (1R, 2R, 3S)-2,3-epoxy-3,5,5-

trimethylcyclohexan-1-ol with addition of the chiral shift reagent. Bottom Spectrum

(Blue): 1H NMR spectrum of (1R, 2R, 3S)-2,3-epoxy-3,5,5-trimethylcyclohexan-1-ol

without chiral shift reagent

77

3.3 Mechanism

The mechanism of the reaction between the catalyst, alkene substrate, and TBHP is still controversial. There are many proposed pathways, including the Sharpless-type mechanism, the formation of a five-membered metallocyclic intermediate, and the biradical mechanism.56 All approaches for these reactions are equally possible. It has been challenging to determine one appropriate mechanism for all substrates due to the varying results in this project compared to that of former graduate students.11 It is believed that certain substrates can alter the pathway to favor a particular transition state and lead to the epoxide product. The idea here is not to give one possible mechanism for all substrates, but to try and understand how certain substrates can change the mechanistic pathway to lead to the results seen in lab.

The initial thought of synthesizing these catalysts was that the reaction would follow similarly to the Jacobsen’s epoxidation, which would give epoxides that are enantioselective. From this study, there was a lack of enantioselectivity observed in the catalytic epoxidation using catalysts containing electron donating substituents and electron withdrawing substituents. Similarly, Martin found that adding steric bulk to the chiral component of the ligand did not affect enantioselectivity either (Figure 39).11

78

Figure 39: Oxovanadyl (IV) salen catalyst used in the epoxidation of various alkenes.11

It was initially hypothesized that the chiral component of the catalyst dictates enantioselectivity since it was believed that the catalyst will follow the Jacobsen’s epoxidation. In order for the alkene to interact with the oxidant, the alkene must come from the area where the diamine bridge is located on the catalys due to the steric effects from the salen ligand of the catalyst. Since poor enantioselectivity is observed, it is believed that there is a change in geometry of the catalyst as TBHP is introduced to negate the effect of the chiral ligand.

Before discussing the proposed routes that suggest a lack of enantioselectivity, the geometry of the oxovanadyl (IV) salen catalysts should be examined. Figure 40 shows a

X-ray crystal structure of the naphthyl oxovanadyl (IV) salen catalyst. This particular catalyst was characterized by X-ray crystallography since it has not been cited in literature. The X-ray data of the synthesized catalyst is presented in Appendix D.

79

Figure 40: X-ray Crystallography structure of the naphthyl oxovanadyl (IV) salen

catalyst.

In order to understand poor enantioselectivity, assumptions of the interactions between the catalyst and TBHP must be made. The following analysis of this work is based upon density functional theory (DFT) studies of oxovanadium (IV) salan catalyst using hydrogen peroxide and ethylene. Effort has been made to align the DFT studies from Kuznetsov57 with the work in this project.

When TBHP is introduced into the system, the geometry of the catalyst will change to accommodate the interaction between TBHP and oxo group (Scheme 14).57

The geometry of the catalyst changes from square pyramidal to a distorted octahedron, where N1 and N2 are now in a different cis conformation. The rather drastic change in

80 position is due to the interaction between the oxo bond and TBHP in order to attach the peroxy group to vanadium while the oxygen (O2) is merely coordinating with vanadium due to electrostatic interaction. Altering the conformation of the catalyst consequently distorts the cyclohexane ring away from the active oxygen, thereby rendering the chiral component useless for enantioselectivity.

Scheme 14: Conformational change and oxidation of the oxovanadium (IV) salen

catalyst when TBHP is introduced.

There is speculation that the oxo group is not necessarily being reduced, rather it is one of the vanadium-oxygen (V-O) bond breaking to add a peroxy group to vanadium

(Scheme 15).57,58 If this does occur, it requires liberation of V-O bond to produce a hydroxyl group. Liberation of a V-O bond can provide a larger area for epoxidation reactions; however, the position of attack from the substrate will come from the less sterically hindered pathway (away from the cyclohexane ring), which consequently produces racemic mixtures.

81

Scheme 15: Liberation of the V-O bond to form a hydroxyl group on the oxovanadium

(IV) salen catalyst after TBHP is introduced.

Both proposed routes to explain the lack enantioselectivity suggest vanadium complexes may not retain their square pyramidal geometry in solution. The difference between the Jacobsen’s catalyst and the vanadium complexes is the active oxygen being transferred to the substrate. In the Jacobsen’s epoxidation, the catalyst only becomes active when the oxidant, NaOCl, is introduced. The addition of the oxidant creates an oxo bond, which is used in the epoxidation of all substrates (Figure 6). As seen in Figure 40, the vanadium complex resembles the active Manganese complex of the Jacobsen’s epoxidation. Because of this, it may seem that the catalyst is already in its active form, which then can be utilized in epoxidation reactions. An experiment was carried out by epoxidizing styrene without TBHP, and with just catalyst alone. It is expected that if that the oxo vanadium bond is the oxygen source, then a oxidation reaction will occur, however full recovery of the starting material was obtained.

The experiment presented may not seem like enough evidence to indicate that the oxo group is in fact not part of the epoxidation reaction, however, these results are

82 parallel with experiments done previously by Sharpless and co-workers to confirm what is seen here. There has been a study that investigated whether TBHP is responsible for oxygen transfer to the alkene using the vanadium and manganese complexes. By utilizing

18O-enriched water in their experiment, it was found that an intact alkyl hydroperoxide formed on vanadium was required for the epoxidation to occur with any substrate.59 In addition, there have been a number of computational studies, in recent years, that have shown that the oxygen comes from added oxygen source, and not the oxygen from the oxo bond of the catalyst.57,60 Finally, if the oxo group was the oxygen source for the epoxidation reactions, then increasing the amount of catalyst should (1) increase yield and (2) provide a faster reaction time. When incorporating 10 mol percent of catalyst into the epoxidation reactions, the amount of epoxide formation decreased. From the gathered evidence, the oxygen from the peroxy group is used in the epoxidation reaction and therefore the postulated mechanisms will utilize the proposed intermediates in either

Scheme 14 or Scheme 15 to explain the diastereoselectivity observed in aromatic alkenes.

Because the proposed intermediates both show a significant distortion or change of the catalyst, it is now reasonable to see why there is an absence of enantioselectivity seen in epoxidation of alkenes. Therefore, optically active oxovanadium (IV) salen complexes may not be suitable for enantioselective epoxidations; it may however, be useful in diastereoselective epoxidations.

Similar to the Jacobsen’s epoxidation, the substituents of the substrates, the

83 electronic effects and steric bulk of the catalyst play a role in changing the pathway to lower the activation energy of the reaction and obtain the desired product. The substrates are categorized based upon the production of byproducts seen when epoxidizing certain types of alkenes. The substrates will be grouped as follows: (1) nonfunctionalized alkenes and (2) allylic alcohols.

In all epoxidation reactions, it is clear from the 1H NMR spectra that tert-butyl alcohol was produced. However, when epoxidizing aromatic alkenes, formation of peroxy compounds was inevitable. It is well known that tert-butyl hydroperoxide can form peroxy radicals, but it has not been stated experimentally in literature that peroxy compounds are produced when trying to epoxidize alkenes with vanadium complexes.

The byproducts produced suggest a stepwise biradical mechanism when epoxidizing aromatic alkenes. The substrate, cis-β-methyl styrene, is used to show a proposed mechanism for these types of reactions (Scheme 16).

84

Scheme 16: Postulated mechanism of the epoxidation of cis-β-methyl styrene to produce

trans-2-methyl-3-phenyoxirane.

The oxidant, TBHP, initially coordinates with the catalyst bringing the two groups in proximity to one another. The addition of TBHP to vanadium occurs while simultaneously breaking the π bond of the oxo group to form a σ bond between the oxygen and hydrogen (Step 1). This produces the intermediate A. The substrate, cis-β- methylstyrene, is incorporated and homolytic cleavage between the O1 and vanadium bond and between C1 and C2 occurs, leaving a radical on C1 and on vanadium (Step 3).

A free radical on C1 can be stabilization due to resonance stabilization. Cleavage of the π bond in the alkene provides free rotation along the C1 and C2 bond (Step 4). The rotation

85 occurs due to steric interactions between the bromo and methyl group. The final step to regenerate the catalyst involves the production of tert-butyl alcohol. This compound can be produced by hydrogen abstraction from the hydroxyl group. As this occurs, bond re- formation of C1 and O1 follows, along with the formation of oxo bond on the vanadium, which regenerates the catalyst (Step 5). This postulated mechanism involved the intermediate provided in Scheme 14 to produce the trans-epoxide, however the same results can be obtained when utilizing the intermediate in Scheme 15. The rationalization of step 4 is due to steric interactions, however it may also be suggested that there is intrinsic stabilization for trans-product versus the cis-product that drives the reaction forward to a trans-epoxide.

Reactions involving radicals can be difficult to control. As seen in Scheme 17, the peroxide is attached to the metal and directly used to epoxidize cis-β-methyl styrene.

However, after the peroxide attaches to the metal, the weak peroxy bond can undergo homolytic cleavage forming a tert-butoxy radical intermediate.47 The intermediate can potentially react with another TBHP molecule, which is shown in Scheme 17, path B.

Homolytic bond cleavage occurs on hydroxyl group of TBHP while simultaneously forming a bond with the tert-butoxy radical. This creates a very reactive tert-butylperoxy radical. Two peroxy compounds can then be formed from path A and path B, which may be used for oxidation reactions.

86

Scheme 16: Two postulated compounds (red box) produced when a homolytic cleavage

occurs on the peroxy bond.

The production of tert-butyl peroxy radicals can be used to explain the simultaneous formation of an organic bisperoxide and styrene oxide in the catalytic epoxidation of styrene. A catalytic cycle of the epoxidation of styrene using TBHP and an oxovanadyl (IV) salen catalyst is shown in Scheme 18. When TBHP is incorporated to the vanadium catalyst, a α bond of the hydroxyl group of TBHP and the π bond the oxo bond break forming a hydroxyl group on the vanadium catalyst while attaching the tert- peroxy compound (Intermediate I). Incorporation of styrene leads to a simultaneously homolytic cleavage between C1 and C2 and between V and O while forming a sigma bond between C1 and O1 (Intermediate II) leaving radicals on V and C2 and thus producing intermediate III. There are two paths to explain the simultaneous formation of both organic bisperoxide and styrene oxide. For the formation of the epoxide, path A is considered. For the formation of the organic bisperoxide, path B is considered. Path A

87 leads to simultaneous homolytic cleavages and bond formation (Intermediate IV) to produce styrene oxide, tertbutyl alcohol, and regenerate the catalyst. In path B, the radical on vanadium can potentially react with a free tertbutylperoxy radical forming an peroxy vanadium compound. It should be noted that in path B, substrate was omitted for simplicity and that it can still coordinate to the vanadium complex. The substrate shown in intermediate III, can react again to the peroxy group on vanadium, which leads to the formation of the organic bisperoxide.

88

Scheme 17: Catalytic cycle in the epoxidation of styrene showing two pathways to

produce styrene oxide and [1,2-bis(tert-butylperoxy)ethyl]benzene.

When employing cis-β-methyl styrene, the trans-epoxide was strongly favored over the cis-epoxide, with up to 76% diastereomeric excess. When epoxidizing trans- stilbene with any of the developed catalysts, it was completely selective for the trans- epoxide. A difference in selectivity was observed when Martin epoxidized trans-stilbene

89 using a polymer supported vanadium catalyst (Catalyst C, Figure 39).11 The results from that project were that the cis-isomer was slightly favored in 22 % diastereomeric excess.

When epoxidizing cis-stilbene using Catalyst C, Martin observed full selectivity to the cis-epoxide.11 Providing steric bulk to the chiral component gave opposite selectivity when compared to adding substituents on the aromatic ring of the ligand. It can become quite difficult to see how steric effects play role in giving the opposite diastereoselectivity even though experimental results show this. So, to better understand how the bulkiness of the catalyst affects selectivity of this product, computational studies must be done in future work.

The epoxidations of allylic alcohols were extraordinarily successful with fast reaction times in comparison to the non-functionalized alkenes. In particular, when epoxidizing 3,5,5-trimethylcyclohex-2-en-1-ol, only the syn epoxide was produced. As discussed with aromatic alkenes, the proposed mechanism follows a stepwise biradical approach due to organic bisperoxides formed. When epoxidizing allylic alcohols, there was full conversion of the starting material to epoxide while the only byproduct observed was tert-butyl alcohol. This suggests a Sharpless-type concerted approach rather than a stepwise biradical mechanism.

When Catalyst A (Figure 39) was used to epoxidize 3,5,5-trimethylcyclohex-2- en-1-ol, greater than 95% selectivity for the anti epoxide. A 50:50 diastereomeric mixture was observed when employing Catalyst B (Figure 39).11 By modifying the chiral ligand of catalyst, the anti epoxide was favored. While changing the exterior portion of the

90 catalyst, only syn epoxide was observed. Altering both areas of the ligands results in a mixture of diastereomers.

The opposite stereoselectivity between the two systems pose an interesting question as to how this can occur. In order to explain such selectivity between the two reactions, the Felkin Anh model was utilized (Figure 41).61

Figure 41: Proposed transition states to obtain the anti and syn products after epoxidizing

3,5,5-trimethylcyclohex-en-1-ol. Model I is used to explain formation of syn products,

while Model II is used to explain formation of anti products.

The most important factor that will determine the stereochemistry of the epoxidation is the stereoelectronic arrangement between the olefinic π orbital and the hydroxyl group anchoring the oxidizing species. The dihedral angles of allylic alcohols shown in Figure 41 are symbolic rather than realistic values to rationalize the stereochemical outcome. One notable difference between Model I and Model II is that the

TBHP is not directly bonded to the vanadium, rather the oxygen is merely coordinating

91 with the vanadium complex.61 This benzyl group towering over the catalyst (Catalyst A and B in Figure 39) attributes to the steric hinderance against the coordination of TBHP to vanadium. In addition, bulkiness of the benzyl group causes a rotational conformation change from Model II to Model I. This consequently affects the yield of epoxide formation, which lowers the yield to roughly 50%.11 The catalyst used in this project did not have such bulk in proximity to the active site, which required minimal conformation change, and therefore gave the syn-epoxide in greater than 90% yield. When adding steric bulk to the exterior portion and the chiral component of the entire catalyst (Catalyst B), then there may be competing effects between the two transition states creating a mixture of diastereomers.

3.4 Other Reactions Tested

As seen in this project, TBHP is a very strong oxidizing agent. It is now known that TBHP can produce peroxy radicals and form peroxy compounds when trying to oxidize styrene. Because peroxy compounds are produced, there have been safety concerns surrounding this issue. In Chapter 2, it has been shown that epoxidizing styrene with oxygen gas in 1,2-dichlorethane was not successful. Epoxidation of cyclohexene with O2 in acetonitrile or dimethylformamide (DMF) will has been reported in literature.62 Therefore a similar epoxidation reaction with styrene using vanadium system was carried out (Scheme 19).

92

Scheme 18: Reaction conditions for the epoxidation of styrene to styrene oxide using

molecular oxygen.

Epoxidation did not occur using acetonitrile and minimal benzaldehyde formation was observed. Catalytic epoxidation of styrene using the same conditions in DMF showed epoxide (24% conversion) and benzaldehyde (38% conversion) formed after 24 hours. After 48 hours, there was a decrease in epoxide (21% conversion), but an increase in benzaldehyde (55% conversion) formation. Half the amount of epoxide was produced in the catalytic epoxidation with DMF and molecular oxygen, which may not necessarily be as efficient as using TBHP. It was therefore determined that research in catalytic epoxidation with TBHP is quite preferable, and problems will not arise if proper precautions are taken when using TBHP.

93

CHAPTER FOUR

CONCLUSIONS AND FUTURE WORK

Eight oxovanadyl (IV) salen catalyst were successfully synthesized. Seven of the oxovanadium (IV) salen catalyst were used to study the catalytic epoxidation of a variety of alkenes. The experimental data found here, along with previous data from other group members marks an extensive amount of work and effort towards synthesizing several unique oxovanadium (IV) salen based catalysts and investigating the effects of the catalyst in epoxidation reactions. It was found that stereoselectivity in the catalytic epoxidation of aromatic alkenes and allylic alcohols using these catalysts was observed.

Although great for diastereoselective epoxidations, reactions with these vanadium complexes may not be suitable for enantioselective epoxidations. Regardless of how the catalyst was modified, enantioselectivity in any reaction was not observed. As a result, future investigations into this work should include:

1.) Computational studies of transition states of the interactions between alkenes,

TBHP and the oxovanadium (IV) salen catalyst,

2.) Kinetic studies of the synthesized catalysts to provide insight on the rate of

ligand exchange and the mechanism of how TBHP, catalyst, and alkene

interact,

3.) Isolating intermediates of the reactions to study the proposed mechanism

stated in this work,

4.) Examining catalytic reactivity in other oxidized products rather than epoxides

94

to expand the possibility of how these catalysts can be used,

5.) Develop and synthesize different ligands other than salen based catalyst and

attaching it to vanadium metal to investigate catalytic epoxidations,

6.) Incorporating different metals in the chiral ligands (i.e. Fe, Cu, Mn, Pd, Mo,

Ti, etc) and test catalytic reactivity in epoxidation reactions.

95

CHAPTER FIVE

EXPERIMENTAL

Reactions were performed in oven-dried glassware under inert atmosphere of nitrogen.

Commercially available reagents were used without further purification. 1H NMR and 13C

NMR spectra were recorded at ambient temperature on a Bruker 300 and 500 MHz spectrometer in CDCl3. All chemical shifts are reported in ppm relative to TMS or CDCl3 on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint

= quintet, dd = doublet of doublets, ddd = doublet of doublet of doublets, qd = quartet of doublets, td = triplet of doublets, and m = multiplet), coupling constants in Hz. IR spectra were obtained on a Thermo Scientific Nicolet IS-50 FTIR spectrometer equipped with

OMNIC software and Smart ATR Optical Bench. ES refers to electrospray ionization and

HRMS refers to high resolution mass spectra. ESMS data were obtained on a Hitachi

NanoFrontier eLD linear ion trap coupled with Time-of-Flight mass analyzer equipped with NanoFrontier eLD Data Processing software. Crystal Structure was obtained at UC

Davis by Dr. James Fettinger on a Bruker AXS X-ray diffractometer equipped with

SHELXTL software. In the epoxidation section, the procedure described are very general.

Since each epoxidation reaction was performed with seven of eight catalysts synthesized, only equivalency of the reagents will be provided. Percent Yields by 1H NMR spectroscopy of the epoxides for each reaction is shown in Chapter 3.

96

A. LIGANDS

(R,R)-(-)-N,N’-Bis(3-methylsalicylidene)-1,2-cyclohexanediamine: A round bottom flask was charged with (1R,2R)-(-)-1,2-diaminocyclohexane (0.2538 g, 2.223 mmol) and

3-methyl-2-hydroxybenzaldehyde (0.6096 g, 4.477 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol to afford the product as a yellow solid (0.6740 g, 86%).

1 H NMR (500 MHz, CDCl3) δ 13.60 (br s, 2H), 8.26 (s, 2H), 7.11 (m, 2H), 7.00 (dd, J =

7.62, 1.19 Hz, 2H), 6.71 (t, J = 7.62 Hz, 2H), 3.32-3.41 (m, 2H), 2.23 (s, 6H), 1.89-1.97

13 (m, 4H), 1.44-1.72 (t, 4H); C NMR (125 MHz, CDCl3) δ 164.85, 159.27, 133.19, 129.13,

125.68, 118.06, 117.84, 75.53, 33.17, 24.16, 15.41.

97

(R,R)-(-)-N,N’-Bis(5-methoxysalicylidene)-1,2-cyclohexanediamine: A round bottom flask was charged with (1R,2R)-(-)-1,2-diaminocyclohexane (0.2254 g, 1.974 mmol) and

5-methoxy-salicyaldehyde (0.6100 g, 4.009 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol to afford the product as a yellow solid (0.7039 g, 93%).

1 H NMR (300 MHz, CDCl3) δ 12.82 (br s, 2H), 8.21 (s, 2H), 6.86 (m, 4H), 6.85 (m, 2H),

6.66 (m, 2H), 3.72 (s, 6H), 3.30-3.31 (m, 2H),1.80-1.99 (m, 4H), 1.46-1.77 (m, 4H); 13C

NMR (75 MHz, CDCl3) δ 164.46, 155.06, 151.96, 119.39, 118.23, 117.46, 114.81, 72.76,

55.88, 33.05, 24.16.

98

(R,R)-(-)-N,N’-Bis(5-bromosalicylidene)-1,2-cyclohexanediamine: A round bottom flask was charged with (1R,2R)-(-)-1,2-diaminocyclohexane (0.2687 g, 2.353 mmol) and

5-bromosalicyaldehyde (0.9567 g, 4.759 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol to afford the product as a yellow solid (1.0212 g, 90 %). 1H

NMR (500 MHz, CDCl3) δ 13.28 (br s, 2H), 8.17 (s, 2H), 7.33 (dd, J = 8.58, 2.37 Hz, 2H),

7.26 (d, J = 2.19, 2H), 6.79 (d, J = 8.92 Hz, 2H), 3.31-3.33 (m, 2H), 1.88-1.95 (m, 4H),

13 1.46-1.73 (m, 4H); C NMR (125 MHz, CDCl3) δ 163.47, 159.97, 134.95, 133.51, 119.89,

118.87, 110.12, 72.67, 32.92, 24.05.

99

1,1'-(1E,1'E)-((1R,2R)-cyclohexane-1,2-diylbis(azanylylidene))bis(methanylylidene)

bis(naphthalen-2-ol): A round bottom flask was charged with (1R,2R)-(-)-1,2- diaminocyclohexane (0.2354 g, 2.061 mmol) and 2-hydroxyl-1-naphthaldehyde (0.7095 g,

4.121 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol.

Recrystallization of the crude solid with ethanol was performed to afford the product as a

1 yellow solid (0.5648 g, 64 %). H NMR (300 MHz, CDCl3) δ 14.53 (br s, 2H), 8.78 (s,

2H), 7.73 (d, J = 8.46 Hz, 2H), 7.52 (d, j = 9.52 Hz, 2H), 7.45 (dd, J = 7.94, 1.06 Hz, 2H),

7.30 (td, J = 7.03, 1.29 Hz, 2H), 7.14 (td, J = 8.01, 0.98 Hz, 2H), 6.87 (m, 2H), 3.45-3.49

13 (m, 2H), 1.95-2.24 (m, 4H), 1.49-1.82 (m, 4H); C NMR (75 MHz, CDCl3) δ 172.20,

159.22, 136.46, 133.18, 128.84, 127.80, 126.55, 122.81, 12.80, 118.39, 107.15, 69.11,

32.70, 24.27.

100

(R,R)-(-)-N,N’-Bis(5-nitrosalicylidene)-1,2-cyclohexanediamine: A round bottom flask was charged with (1R,2R)-(-)-1,2-diaminocyclohexane (0.2476 g, 2.168 mmol) and 5- nitrosalicylahyde (0.7512 g, 4.495 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol to afford the product as a yellow solid (0.8287 g, 89 %). 1H NMR (500 MHz,

CDCl3) δ 14.27 (br s, 2H), 8.35 (s, 2H), 8.16 (m, 2H), 8.15 (m, 2H), 6.96 (d, J= 9.92 Hz,

2H), 3.45-3.48 (m, 2H), 1.94-2.04 (m, 4H), 1.52-1.77 (m, 4H); 13C NMR (125 MHz,

CDCl3) δ 167.27, 163.66, 139.54, 128.13, 127.86, 118.32, 117.08, 71.96, 32.70, 23.92.

101

(R,R)-(-)-N,N’-Bis(3,5-dibromosalicylidene)-1,2-cyclohexanediamine: A round bottom flask was charged with (1R,2R)-(-)-1,2-diaminocyclohexane (0.2438 g, 2.135 mmol) and

3,5-dibromosalicylahyde (1.2231 g, 4.370 mmol) dissolved in ethanol and heated to reflux for four hours under nitrogen. Upon completion, the solution was cooled, and vacuum filtered using cold ethanol. Recrystallization of the crude solid with ethanol was performed

1 to afford the product as a yellow solid (0.7795 g, 57%). H NMR (500 MHz, CDCl3) δ

14.32 (s, 2H), 8.15 (s, 2H), 7.66 (d, J = 2.45 Hz, 2H), 7.25 (d, J = 1.92 Hz, 2H), 3.32-3.41

13 (m, 2H), 1.89-1.97 (m, 4H), 1.44-1.72 (m, 4H); C NMR (125 MHz, CDCl3) δ 162.20,

157.73, 137.76, 132.90, 119.63, 112.10, 109.75, 72.03, 32.84, 23.87.

102

B. Metal Complexes

(1R,2R)-N,N’-bis(3-ethoxysalicylidenato)-1,2 cyclohexane diamine oxovanadium (IV)

(Ethoxy Catalyst): A capped round bottom flask with a magnetic stir bar was charged with

(1R,2R)-N,N’-bis(3-ethoxysalicylidene)-1,2-cyclohexanediamine (0.7207 g, 1.756 mmol) and vanadyl acetylacetonate (0.3165 g, 1.194 mmol) dissolved in methanol at room temperature for twenty-four hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected as a pastel green precipitate (0.4537 g, 80 %). A

200 ppm solution of Ethoxy catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive

+ ion mode, m/z calcd for C24H28N2O5V1 [M+H] is 476.1510, found 476.1509 m/z. The data obtained resulted in a mean error less than 5 ppm within an 95% confidence interval. FT-

IR (thin film, cm-1) 2934, 1615, 1595, 1553, 1308, 1050, 1028, 982, 740.

103

(1R,2R)-N,N’-bis(3-methylsalicylidenato)-1,2 cyclohexane diamine oxovanadium (IV)

(Methyl Catalyst): A capped round bottom flask with a magnetic stir bar was charged with

(1R,2R)-N,N’-bis(3-methylsalicylidene)-1,2-cyclohexanediamine (0.4224 g, 1.210 mmol) and vanadyl acetylacetonate (0.4210 g, 1.588 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected in as a green precipitate (0.4748 g, 56 %). A 200 ppm solution of Methyl catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive ion mode,

+ m/z calcd for C22H24N2O3V1 [M+H] is 416.1299, found 416.1307 m/z. The data obtained resulted in a mean error less than 5 ppm within an 95% confidence interval. FT-IR (thin film, cm-1) 2946, 1606, 1549, 1452, 1314, 985, 1028, 977, 763.

104

1,1'-(1E,1'E)-((1R,2R)-cyclohexane-1,2diylbis(azanylylidene))bis(methanylylidene) bis(naphthalenolato) oxovanadium (IV) (Naphthyl Catalyst): A capped round bottom flask with a magnetic stir bar was charged with 1,1'-((1E,1'E)-((1R,2R)-cyclohexane-1,2- diylbis(azanylylidene))bis(methanylylidene)) bis(naphthalen-2-ol) (0.5423 g, 1.283 mmol) and vanadyl acetylacetonate (0.4515 g, 1.703 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected as a green precipitate (0.5854 g, 93%) A 200 ppm solution of Naphthyl catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive ion mode,

+ m/z calcd for C28H24N2O3V1 [M+H] is 488.1305, found 488.1527 m/z. The data obtained resulted in a mean error greater than 5 ppm within an 95% confidence interval. FT-IR (thin film, cm-1) 2946, 1606, 1549, 1452, 1342, 985, 1028, 977, 763. Recrystallization was performed using a mixture DMF and methanol. The mixture was placed in an NMR tube for crystals to form. Crystals were characterized by X-ray crystallography.

105

(1R,2R)-N,N’-bis(5-nitrosalicylidenato)-1,2 cyclohexane diamine oxovanadium (IV)

(Nitro Catalyst): A capped round bottom flask with a magnetic stir bar was charged with

(1R,2R)-N,N’-bis(5-nitrosalicylidene)-1,2-cyclohexanediamine (0.7150 g, 1.734 mmol) and vanadyl acetylacetonate (0.6198 g, 2.334 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected as a pastel orange precipitate (0.7915 g, 95%). A 200 ppm solution of Nitro catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive ion mode,

+ m/z calcd for C20H18N4O7V1 [M+H] is 478.0687, found 416.06925 m/z. The data obtained resulted in a mean error less than 5 ppm within an 95% confidence interval. FT-IR (thin film, cm-1) 2934, 1653, 1597, 1552, 1491, 1309, 944, 873, 656.

106

(1R,2R)-N,N’-bis(5-bromosalicylidenato)-1,2 cyclohexane diamine oxovanadium (IV)

(Bromo Catalyst): A capped round bottom flask with a magnetic stir bar was charged with

(1R,2R)-N,N’-bis(5-bromosalicylidene)-1,2-cyclohexanediamine (0.9774 g, 2.035 mmol) and vanadyl acetylacetonate (0.7710 g, 2.908 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected as a green precipitate (1.074, 97 %). A 200 ppm solution of Bromo catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive ion mode,

+ m/z calcd for C20H18Br2N2O3V1 [M+H+2] is 545.9176, found 545.9160 m/z. The data obtained resulted in a mean error less than 5 ppm within an 90% confidence interval. FT-

IR (thin film, cm-1) 2930, 1621, 1590, 1529, 1454, 1304, 1281, 1180, 990, 838, 827.

107

(1R,2R)-N,N’-bis(5-methoxysalicylidenato)-1,2 cyclohexane diamine oxovanadium

(IV) (Methoxy Catalyst): A capped round bottom flask with a magnetic stir bar was charged with (1R,2R)-N,N’-bis(5-methoxysalicylidene)-1,2-cyclohexanediamine (0.6380 g, 1.668 mmol) and vanadyl acetylacetonate (0.6030 g, 2.274 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected in as a bright green precipitate (0.5530 g, 74 %).

A 200 ppm solution of Methoxy catalyst was made using ACN, and spiked with TBA, reserpine, ultramark, and sodium acetate-acetic acid buffer. HR-MS (ESMS) in positive

+ ion mode, m/z calcd for C22H24N2O5V1 [M+H] is 448.1197, found 448.1201 m/z. The data obtained resulted in a mean error less than 5 ppm within an 95% confidence interval. FT-

IR (thin film, cm-1) 2920, 1626, 1606, 1541, 1465, 1284, 1028, 987, 817, 789.

108

(1R,2R)-N,N’-bis(3,5-dibromosalicylidenato)-1,2 cyclohexane diamine oxovanadium

(IV) (Dibromo Catalyst): A capped round bottom flask with a magnetic stir bar was charged with (1R,2R)-N,N’-bis(3,5-dibromosalicylidene)-1,2-cyclohexanediamine

(0.6775 g, 1.062 mmol) and vanadyl acetylacetonate (0.3722 g, 1.404 mmol) dissolved in methanol at room temperature for 24 hours under nitrogen. The resulting solid was vacuum filtered and washed with cold methanol, then rinsed with petroleum ether to remove any remaining free ligand. The compound was collected as a pastel orange precipitate (0.5876 g, 78 %). FT-IR (thin film, cm-1) 2933, 1627, 1580, 1512, 1434, 1159, 868, 748, 719. HR-

+ MS (ESMS) in positive ion mode, m/z calcd for C20H16Br4N2O3V1 [M+H] is 699.7407.

Data could not be retrieved for this compound due to very low solubility in solvents.

Solvents tested were water, methanol, ethanol, and acetonitrile. Typical solvents for the

HR-ESI-MS did not dissolve compound well enough to give good resolution, therefore MS data was not obtained.

109

C. Epoxidation Reactions

(2RS)-Styrene oxide: A three-neck round bottom flask was charged with one mol equivalent of styrene and five mmol equivalent of oxovandyl (IV) salen catalyst, and 1,2,4- trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of

70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using

1,2,4-trimethoxybenzene as an internal standard. The solution was heated for four hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography (5% EtOAc/Pet Ether) to afford a light-yellow oil. Enantioselectivity was determined using the europium tri[3- heptafluoropropylhydroxymethylene)-(+)-camphorate in the chiral shift study. 1H NMR

(500 MHz, CDCl3) δ 7.23-7.32 (m, 5H), 3.80 (m, 1H), 3.08 (dd, J = 5.40, 4.30 Hz, 1H),

2.74 (dd, J= 5.57, 2.63 Hz, 1H)

110

α-methylstyrene oxide: A three-neck round bottom flask was charged with one mol equivalent α-methylstyrene and five mmol equivalent of oxovandyl (IV) salen catalyst, and

1,2,4-trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for six hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography (5%

1 EtOAc/Pet Ether) to afford a light-yellow oil. H NMR (500 MHz, CDCl3) δ 7.32-7.41 (m,

5H), 3.00 (d, J = 5.39 Hz, 1H), 2.83 (d, J = 4.99 Hz, 1H), 1.75 (s, 3H)

111

cis-β-methylstyrene oxide: A round bottom flask with a magnetic stir bar was charged with cis-β-methylstyrene (0.1004 g, 0.8500 mmol) and NaHCO3 (0.0789, 0.939 mmol) dissolved in dichloromethane (5 mL) and cooled to 0 oC. To the solution, mCPBA (0.2094 g, 1.213 mmol) and dichloromethane (10 mL) was added dropwise ensuring temperature did not increase, followed by two more hours at 0 oC. The solution was then allowed to stir overnight at ambient temperature before being quenched with NaHCO3 and diluted with

CH2Cl2. The organic layer was washed with Na2SO3 (2 x 15 mL), then brine (2 x 15 mL).

The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo

1 to afford a colorless oil (0.0903 g, 79 %). H NMR (500 MHz, CDCl3) δ 7.28-7.31 (m,

5H), 4.07 (d, J = 4.66 Hz, 1H), 3.33-3.37 (qd, J = 5.43, 4.54 Hz, 1H), 1.09 (d, J = 5.43 Hz,

1H)

112

trans-β-methylstyrene oxide: A three-neck round bottom flask was charged with one mol equivalent citronellyl pivalate and 5 mmol equivalent of oxovandyl (IV) salen catalyst, and

1,2,4-trimethoxybenzene dissolved in 1,2-dichloroethane (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for six hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over Mg2SO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography (10%

1 EtOAc/Pet Ether) to afford a light-yellow oil. H NMR (500 MHz, CDCl3) δ 7.26-7.36 (m,

5H), 3.60 (d, J = 2.04 Hz, 1H), 3.03-3.06 (qd, J = 4.86, 2.06 Hz, 1H), 1.46 (d, J = 5.40 Hz,

3H)

113

trans-stilbene oxide: A three-neck round bottom flask was charged with one mol equivalent trans-stilbene and five mmol equivalent of oxovandyl (IV) salen catalyst, and

1,2,4-trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for thirteen hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green crude product was purified by flash chromatography (30% EtOAc/Pet Ether) to afford a white solid. 1H NMR (500 MHz,

CDCl3) δ 7.36-7.41 (m, 10H), 3.89 (s, 2H)

114

(3S, 6-RS)-6,7-epoxycitronellol: A three-neck round bottom flask was charged with one mol equivalent citronellol and five mmol equivalent of oxovandyl (IV) salen catalyst, and

1,2,4-trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for eight hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography

1 (20% EtOAc/Pet Ether) to afford a colorless oil. H NMR (500 MHz, CDCl3) δ 3.69-3.76

(m, 2H), 2.73 (t, 1H), 1.56-1.67 (m, 7H), 1.33 (s, 3H), 1.29 (s, 3H), 0.95 (d, J= 6.49 Hz,

3H)

115

(3S, 6-RS)-6,7-epoxycitronellyl pivalate: A three-neck round bottom flask was charged with one mol equivalent citronellyl pivalate and 5 mmol equivalent of oxovandyl (IV) salen catalyst, and 1,2,4-trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for eight hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography

1 (20% EtOAc/Pet Ether) to afford a light-yellow oil. H NMR (500 MHz, CDCl3) δ 4.10-

4.13 (m, 2H), 2.71 (t, J = 5.55 Hz, 1H), 1.53-1.72 (m, 7H), 1.33 (s, 3H), 1.29 (s, 3H), 1.21

(s, 9H), 0.96 (d, J = 6.63 Hz, 3H)

116

trans-2,3-epoxyhexanol: A three-neck round bottom flask was charged with one mol equivalent citronellol and five mmol equivalent of oxovandyl (IV) salen catalyst, and 1,2,4- trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of

70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using

1,2,4-trimethoxybenzene as an internal standard. The solution was heated for two hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography (30% EtOAc/Pet

1 Ether) to afford a colorless oil. H NMR (500 MHz, CDCl3) δ 3.83 (dd, J = 12.56, 2.46 Hz,

1H), 3.53 (dd, J = 12.65, 4.58 Hz, 1H), 2.86-2.91 (m, 2H), 1.38-1.51 (m, 4H), 0.90 (t, J =

6.96Hz, 3H)

117

(2RS)-2,3-epoxygeraniol: A three-neck round bottom flask was charged with one mol equivalent citronellol and 5 mmol equivalent of oxovandyl (IV) salen catalyst, and 1,2,4- trimethoxybenzene dissolved in DCE (5 mL) and heated to 75 oC. Two mol equivalents of

70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H NMR spectroscopy and yield of epoxide was calculated by using

1,2,4-trimethoxybenzene as an internal standard. The solution was heated for two hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting green oil was purified by flash chromatography (30% EtOAc/Pet

1 Ether) to afford a colorless oil. H NMR (500 MHz, CDCl3) δ 5.10 (t, J = 6.73 Hz, 1H),

3.83-3.87 (m, 1H), 3.69-3.3 (m, 1H), 3.00 (dd, J = 6.73 Hz, 4.25Hz, 1H), 2.11 (q, J = 7.35

Hz, 2H), 1.71 (s, 3H), 1.69-1.74 (m, 1H), 1.63 (s, 3H), 1.47-1.53 (m, 1H), 1.32 (s, 3H)

118

Syn-3,5,5-trimethyl-2,3-epoxycyclohexanol: A three-neck round bottom flask was charged with one mol equivalent 3,5,5-trimethylcyclohex-2-en-1-ol and 5 mmol equivalent of oxovandyl (IV) salen catalyst, and 1,2,4-trimethoxybenzene dissolved in 1,2- dichloroethane (5 mL) and heated to 75 oC. Two mol equivalents of 70% TBHP was added slowly over a period of fifteen minutes to the solution. The mixture was monitored by 1H

NMR spectroscopy and yield of epoxide was calculated by using 1,2,4-trimethoxybenzene as an internal standard. The solution was heated for two hours before being quenched with a saturated solution of Na2S2O3 and diluted with Et2O. The organic layer was washed with brine, dried over Mg2SO4, filtered and concentrated in vacuo. The resulting green oil was

1 purified by silica plug to remove catalyst. H NMR (500 MHz, CDCl3) δ 4.05-4.14 (m,

1H), 3.16 (d, J = 1.92 Hz, 1H), 1.64 (d, J =14.62 Hz, 1H), 1.51 (ddd, J = 12.65, 5.98, 2.35

Hz, 1H) 1.45 (dd, J = 15.07, 2.27 Hz, 1H), 1.37 (s, 3H), 1.20 (dd, J = 12.31, 10.82 Hz, 1H),

0.92 (s, 3H), 0.88 (s, 3H)

119

APPENDIX A. Characterization of ligands

The following characterization includes 1H NMR

and 13C NMR spectra of ligands synthesized.

120

Spectra of (1R,2R)-N,N’-bis(3-methyl-salicylidene)-1,2-cyclohexanediamine

1 H NMR spectrum (CDCl3, 500 MHz)

121

13 C NMR spectrum (CDCl3, 125 MHz)

122

Spectra of (1R,2R)-N,N’-bis(methoxy-salicylidene)-1,2-cyclohexanediamine

1 H NMR spectrum (CDCl3, 300 MHz)

123

13 C NMR spectrum (CDCl3, 75 MHz)

124

Spectra of (1R,2R)-N,N’-bis(5-bromo-salicylidene)-1,2-cyclohexanediamine

1 H NMR spectrum (CDCl3, 500 MHz)

125

13 C NMR spectrum (CDCl3, 125 MHz)

126

Spectra of 1,1’[(1R,2R)-1,-cyclohexanediylbis[(E)-nitrilomethyllidyne]]bis-2-

naphthalenol

1 H NMR spectrum (CDCl3, 300 MHz)

127

13 C NMR spectrum (CDCl3, 75 MHz)

128

Spectra of (1R,2R)-N,N’-bis(nitro-salicylidene)-1,2-cyclohexanediamine

1 H NMR spectrum (CDCl3, 500MHz)

..

129

13 C NMR spectrum (CDCl3, 125 MHz)

130

Spectra of (1R,2R)-N,N’-bis(3,5-dibromo-salicylidene)-1,2-cyclohexanediamine

1 H NMR spectrum (CDCl3, 500 MHz)

131

13 C NMR spectrum (CDCl3, 125 MHz)

132

APPENDIX B. Characterization of Catalysts

The following characterization includes IR spectra

and HR-ESI-MS for catalysts synthesized.

133

IR Spectra and Mass Spectrometry Data of Methyl Catalyst

IR spectrum

747.76 762.88

783.02

800.28

871.01

918.67

959.09

977.75 985.23

1048.31

1088.33

1131.00 100 0

1162.47

1224.48

1245.47

1291.88

1313.72

1365.64

1381.17 1348.15

1396.01

1422.90

1452.42

1548.76

1606.51

1623.03 150 0

200 0

250 0 Wavenumbers(cm-1)

2945.72

300 0

350 0

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96 98

%T

134

762.88

783.02

800

800.28

850

871.01

900 918.67

959.09

950

977.75

985.23

100 0

1048.31 Wavenumbers(cm-1)

105 0

1088.33

110 0

1131.00

1162.47

115 0

120 0

1224.48

1245.47

125 0

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92 94

%T 135

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

136

Expected Data for catalyst

Vanadium (Methyl Complex) Compound C22H24N2O3V1 M+ [M+H]+ [M+H+1]+ [2M+H]+ mass 415.1221 416.1299 417.1333 831.2514

Representative Spectrum

137

Summary of Results

95% m/z Name 1 2 3 4 avg sd CI furthest 242.3 TBA -1.82 1.48 2.27 1.52 0.86 1.82 2.90 3.77 + 415.1 M 4.17 6.74 4.17 2.70 4.44 1.68 2.68 7.12 + 416.1 [M+H] 0.97 1.40 2.51 2.44 1.83 0.76 1.21 3.04 + 417.1 [M+1] 0.78 2.96 4.28 2.74 2.69 1.44 2.30 4.99 + 609.3 Reserpine [M+H] -0.55 -1.85 3.57 3.77 1.23 2.86 4.55 5.78 Reserpine 610.3 [M+H+1]+ -3.24 -0.03 -0.14 3.27 -0.03 2.66 4.23 -4.26 + 831.3 [2M+H] -0.55 0.40 1.65 0.26 0.44 0.91 1.45 1.89 ultramark 1022.0 (C20H19O6N3P3F28) 1.55 -1.38 1.91 -4.06 -0.50 2.80 4.45 -4.94 ultramark 1122.0 (C22H19O6N3P3F32) 0.30 -1.00 1.94 3.03 1.07 1.78 2.83 3.90 ultramark 1222.0 (C24H19O6N3P3F36) -0.18 1.51 0.92 1.72 0.99 0.85 1.36 2.35 ultramark 1322.0 (C26H19O6N3P3F40) 1.15 -1.44 3.18 0.32 0.80 1.92 3.05 3.85 ultramark 1422.0 (C28H19O6N3P3F44) 0.32 0.50 1.18 2.64 1.16 1.06 1.68 2.84 ultramark 1522.0 (C30H19O6N3P3F48) 2.10 0.01 2.50 2.25 1.71 1.15 1.82 3.54 ultramark 1622.0 (C32H19O6N3P3F52) 1.23 -0.95 1.46 2.66 1.10 1.50 2.39 3.50 ultramark 1722.0 (C34H19O6N3P3F56) 1.33 3.17 1.05 0.69 1.56 1.11 1.76 3.32 ultramark 1822.0 (C36H19O6N3P3F60) -1.54 4.76 1.88 0.94 1.51 2.60 4.14 5.66

138

Data

True SPECTRUM 1 value Error Centroid Index Mass amu amu ppm TBA 2 242.2838 242.2842 -0.000441 -1.82 M+ 10 415.1238 415.1221 0.001729 4.17 [M+H]+ 11 416.1303 416.1299 0.000404 0.97 [M+1]+ 12 417.1336 417.1333 0.000324 0.78 Reserpine [M+H]+ 15 609.2803 609.2806 -0.000336 -0.55 Reserpine [M+H+1]+ 16 610.2820 610.2840 -0.001976 -3.24 [2M+H]+ 25 831.2521 831.2525 -0.000456 -0.55 ultramark (C20H19O6N3P3F28) 28 1022.0056 1022.0040 0.001580 1.55 ultramark (C22H19O6N3P3F32) 30 1121.9979 1121.9976 0.000340 0.30 ultramark (C24H19O6N3P3F36) 32 1221.9910 1221.9912 -0.000220 -0.18 ultramark (C26H19O6N3P3F40) 41 1321.9863 1321.9848 0.001520 1.15 ultramark (C28H19O6N3P3F44) 43 1421.9789 1421.9784 0.000460 0.32 ultramark (C30H19O6N3P3F48) 44 1521.9752 1521.9720 0.003190 2.10 ultramark (C32H19O6N3P3F52) 47 1621.9677 1621.9657 0.002000 1.23 ultramark (C34H19O6N3P3F56) 49 1721.9616 1721.9593 0.002290 1.33 ultramark (C36H19O6N3P3F60) 51 1821.9501 1821.9529 -0.002800 -1.54 ultramark (C38H19O6N3P3F64) 52 1921.9556 1921.9465 0.009090 4.73

SPECTRUM 1 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.14282 229.1 229.2 0 3275 11.14 17609.1 2 242.28378 242.24 242.88 1 9216 31.35 53669 3 243.28735 243.24 243.35 1 1642 5.59 8549.25 4 246.16966 246.12 246.23 0 1325 4.51 6434.75 5 337.0795 337.02 337.91 0 1117 3.8 7089 6 351.20697 351.14 352.11 0 911 3.1 5869 7 412.12125 412.01 413.02 1 14595 49.66 108195 8 413.125 413.05 414.01 1 3341 11.37 25365 9 414.11996 414.04 414.27 1 6631 22.56 50503.5 10 415.12381 415.04 415.62 1 3695 12.57 27478

139

11 416.13031 416.04 417.02 1 29392 100 216384 12 417.13358 417.05 417.26 1 6932 23.59 51796.4 13 418.13821 418.06 418.3 1 849 2.89 6157 14 519.07782 518.98 519.97 0 725 2.47 5120 15 609.28027 609.11 610.14 1 1703 5.79 13816 16 610.28198 610.18 611.18 1 637 2.17 4417 17 823.23474 823.08 824.03 1 4132 14.06 42592.8 18 824.23846 824.09 825.01 1 1974 6.72 18623 19 825.23206 825.08 826.04 1 4157 14.14 41908 20 826.23364 826.1 826.99 1 1955 6.65 18494 21 827.24261 827.06 828.03 1 10184 34.65 103237 22 828.2453 828.09 829.03 1 4803 16.34 45591 23 829.2439 829.09 830.01 1 5135 17.47 51219 24 830.24573 830.07 831.01 1 6000 20.41 58762 25 831.25208 831.08 832.05 1 16356 55.65 167754 26 832.25555 832.11 833.05 1 7294 24.82 71813 27 833.25787 833.12 834.07 1 1808 6.15 16702 28 1022.00555 1021.84 1022.8 0 1067 3.63 11355.9 29 1024.40308 1024.22 1024.74 0 581 1.98 5703 30 1121.99792 1121.69 1122.73 1 2260 7.69 25555 31 1123 1122.83 1123.76 1 400 1.36 3656 32 1221.99097 1221.74 1222.71 1 3176 10.81 37983 33 1222.99304 1222.81 1223.75 1 717 2.44 7672 34 1229.37598 1229.17 1230.1 1 411 1.4 4207 35 1230.37964 1230.21 1230.8 1 316 1.07 2821 36 1234.36316 1234.14 1235.11 0 317 1.08 3080 37 1242.36365 1242.16 1243.08 1 462 1.57 5140 38 1243.37122 1243.19 1243.74 1 321 1.09 3242 39 1246.37268 1246.15 1247.08 1 1102 3.75 12432 40 1247.37646 1247.19 1248.04 1 745 2.54 8120 41 1321.98633 1321.63 1322.67 1 3731 12.69 47055 42 1322.98718 1322.78 1323.72 1 807 2.75 8942 43 1421.97888 1421.38 1422.64 1 3542 12.05 47907 44 1422.98352 1422.75 1423.67 1 911 3.1 10511 45 1521.97522 1521.52 1522.61 1 3102 10.56 42791.5 46 1522.97339 1522.72 1523.65 1 855 2.91 9982

140

47 1621.96765 1621.46 1622.6 1 2344 7.97 32794 48 1622.97083 1622.72 1623.58 1 693 2.36 8690 49 1721.96155 1721.4 1722.57 1 1440 4.9 20727 50 1722.96619 1722.72 1723.66 1 437 1.49 5322 51 1821.95007 1821.5 1822.52 0 724 2.46 10682 52 1921.95557 1921.61 1922.47 0 327 1.11 4346

SPECTRUM 2 True value Error Centroid Index Mass amu amu ppm TBA 2 242.2846 242.2842 0.000359 1.48 M+ 10 415.1249 415.1221 0.002799 6.74 [M+H]+ 11 416.1305 416.1299 0.000584 1.40 [M+1]+ 12 417.1345 417.1333 0.001234 2.96 Reserpine [M+H]+ 16 609.2795 609.2806 -0.001126 -1.85 Reserpine [M+H+1]+ 17 610.2839 610.2840 -0.000016 -0.03 [2M+H]+ 26 831.2529 831.2525 0.000334 0.40 ultramark (C20H19O6N3P3F28) 29 1022.0026 1022.0040 -0.001410 -1.38 ultramark (C22H19O6N3P3F32) 32 1121.9965 1121.9976 -0.001120 -1.00 ultramark (C24H19O6N3P3F36) 34 1221.9930 1221.9912 0.001850 1.51 ultramark (C26H19O6N3P3F40) 40 1321.9829 1321.9848 -0.001900 -1.44 ultramark (C28H19O6N3P3F44) 42 1421.9791 1421.9784 0.000710 0.50 ultramark (C30H19O6N3P3F48) 44 1521.9721 1521.9720 0.000020 0.01 ultramark (C32H19O6N3P3F52) 46 1621.9641 1621.9657 -0.001540 -0.95 ultramark (C34H19O6N3P3F56) 48 1721.9647 1721.9593 0.005460 3.17 ultramark (C36H19O6N3P3F60) 50 1821.9616 1821.9529 0.008680 4.76

141

SPECTRUM 2 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.144 229.1 229.2 0 3534 12.35 18391.5 2 242.285 242.24 242.34 1 9336 32.62 51032.6 3 243.287 243.24 243.34 1 1747 6.1 9460.06 4 246.17 246.13 246.23 0 1449 5.06 7022.75 5 337.079 337.02 338.01 0 977 3.42 6147 6 351.206 351.14 351.28 0 923 3.23 4983.31 7 412.121 412.01 412.27 1 14763 51.58 106422 8 413.124 413.05 414 1 3867 13.51 27880 9 414.12 414.03 414.88 1 6701 23.42 49858 10 415.125 415.04 415.91 1 3650 12.75 26329 11 416.130 416.05 417.01 1 28619 100 209955 12 417.134 417.04 417.94 1 6963 24.33 50455 13 418.136 418.04 419.06 1 834 2.91 5142.94 14 519.076 518.98 519.2 0 701 2.45 4905 15 521.072 520.99 521.97 0 334 1.17 2288 16 609.279 609.17 610.14 1 1582 5.53 12992 17 610.284 610.18 610.42 1 588 2.05 4320 18 823.234 823.06 824.04 1 4131 14.43 40697 19 824.237 824.1 825.01 1 2003 7 18186 20 825.234 825.08 826.04 1 4329 15.13 43485 21 826.234 826.1 826.97 1 1870 6.54 17292 22 827.243 827.04 828.03 1 9912 34.63 99492 23 828.247 828.09 829.02 1 4563 15.94 44161 24 829.244 829.08 830.01 1 5016 17.53 49963 25 830.246 830.07 831.02 1 6071 21.21 60204 26 831.253 831.09 832.04 1 16213 56.65 163740 27 832.256 832.1 833.05 1 7327 25.6 69645 28 833.258 833.12 833.46 1 1900 6.64 16733.7 29 1022 1021.78 1022.8 0 1022 3.57 10883 30 1024.41 1024.24 1025.18 1 549 1.92 5527 31 1025.41 1025.25 1026.21 1 350 1.22 3447 32 1122 1121.8 1122.74 1 2276 7.95 25834 33 1123 1122.84 1123.7 1 404 1.41 3848

142

34 1221.99 1221.6 1222.7 1 3032 10.59 36922 35 1222.99 1222.8 1223.76 1 712 2.49 7044 36 1229.37 1229.19 1230.09 0 359 1.25 3653 37 1242.36 1242.18 1243.07 0 488 1.7 4849 38 1246.37 1246.15 1247.07 1 1135 3.97 12687 39 1247.38 1247.17 1248.08 1 719 2.51 7523 40 1321.98 1321.58 1322.69 1 3771 13.18 46495 41 1322.99 1322.8 1323.73 1 790 2.76 8056 42 1421.98 1421.7 1422.67 1 3553 12.41 46337 43 1422.98 1422.78 1423.69 1 872 3.05 9675 44 1521.97 1521.68 1522.64 1 3116 10.89 41503 45 1522.98 1522.75 1523.68 1 817 2.85 9205 46 1621.96 1621.61 1622.61 1 2335 8.16 31763 47 1622.97 1622.73 1623.6 1 667 2.33 7841 48 1721.96 1721.65 1722.55 1 1437 5.02 20698 49 1722.96 1722.71 1723.61 1 424 1.48 4934 50 1821.96 1821.64 1822.52 0 718 2.51 10741

143

True SPECTRUM 3 value Error Centroid Index Mass amu amu ppm TBA 2 242.2848 242.2842 0.0005 2.27 M+ 10 415.1238 415.1221 0.0017 4.17 [M+H]+ 11 416.1310 416.1299 0.0010 2.51 [M+1]+ 12 417.1350 417.1333 0.0018 4.28 Reserpine [M+H]+ 15 609.2828 609.2806 0.0022 3.57 Reserpine [M+H+1]+ 16 610.2839 610.2840 -0.0001 -0.14 [2M+H]+ 25 831.2539 831.2525 0.00137 1.65 ultramark (C20H19O6N3P3F28) 28 1022.0059 1022.0040 0.0019 1.91 ultramark (C22H19O6N3P3F32) 31 1121.9998 1121.9976 0.0022 1.94 ultramark (C24H19O6N3P3F36) 33 1221.9923 1221.9912 0.0011 0.92 ultramark (C26H19O6N3P3F40) 40 1321.9890 1321.9848 0.0042 3.18 ultramark (C28H19O6N3P3F44) 42 1421.9801 1421.9784 0.0017 1.18 ultramark (C30H19O6N3P3F48) 44 1521.9758 1521.9720 0.0038 2.50 ultramark (C32H19O6N3P3F52) 46 1621.9680 1621.9657 0.0024 1.46 ultramark (C34H19O6N3P3F56) 48 1721.9611 1721.9593 0.0018 1.05 ultramark (C36H19O6N3P3F60) 50 1821.9563 1821.9529 0.0034 1.88

SPECTRUM 3 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.144 229.1 229.2 0 3248 11 17037 2 242.285 242.21 242.34 1 9259 31.36 48973.2 3 243.288 243.24 243.35 1 1582 5.36 8859.38 4 246.171 246.13 246.81 0 1519 5.15 8156 5 337.081 337.02 338.02 0 1314 4.45 7818 6 351.207 351.14 351.91 0 1001 3.39 6129 7 412.122 412.01 412.94 1 14551 49.29 108827 8 413.125 413.05 414 1 3554 12.04 25632 9 414.121 414.03 414.82 1 7247 24.55 53412 10 415.124 415.04 415.93 1 3751 12.7 27876

144

11 416.131 416.03 417.02 1 29522 100 216546 12 417.135 417.05 417.88 1 7008 23.74 52090 13 418.137 418.07 418.91 1 915 3.1 6154 14 519.08 518.98 519.15 0 625 2.12 4235.45 15 609.283 609.16 610.12 1 1626 5.51 14121 16 610.284 610.16 611.13 1 557 1.89 4348 17 823.234 823 824.03 1 4104 13.9 41864.6 18 824.24 824.09 824.99 1 2035 6.89 19292 19 825.234 825.06 826.03 1 4265 14.45 41435 20 826.237 826.09 827.02 1 1906 6.45 18109 21 827.244 827.08 828.04 1 9547 32.34 98639 22 828.248 828.1 829.03 1 4684 15.87 45063 23 829.246 829.09 830.02 1 4756 16.11 48259 24 830.244 830.09 831.02 1 5904 20 57883 25 831.254 831.09 832.04 1 16060 54.4 165291 26 832.256 832.1 833.05 1 7409 25.1 71374 27 833.257 833.12 834.08 1 1793 6.07 16398 28 1022.01 1021.79 1022.78 0 1044 3.53 10859 29 1024.4 1024.2 1024.77 1 555 1.88 5997.58 30 1025.41 1025.22 1025.64 1 300 1.02 2896.88 31 1122 1121.78 1122.28 1 2306 7.81 26126.7 32 1123 1122.83 1123.8 1 410 1.39 3745 33 1221.99 1221.74 1222.71 1 3013 10.2 37229.1 34 1222.99 1222.81 1223.75 1 711 2.41 7104 35 1229.38 1229.21 1230.11 0 404 1.37 4224 36 1242.36 1242.17 1243.1 0 444 1.51 4907 37 1244.36 1244.19 1244.94 0 301 1.02 2827 38 1246.37 1246.1 1247.04 1 1033 3.5 11662 39 1247.38 1247.15 1248.12 1 709 2.4 7736 40 1321.99 1321.72 1322.65 1 3420 11.58 44564 41 1322.99 1322.76 1323.73 1 928 3.14 10235 42 1421.98 1421.66 1422.65 1 3618 12.25 48014.7 43 1422.98 1422.76 1423.67 1 955 3.24 10729 44 1521.98 1521.7 1522.62 1 3103 10.51 41772.7 45 1522.98 1522.74 1523.66 1 851 2.88 9740

145

46 1621.97 1621.64 1622.6 1 2169 7.35 30367 47 1622.98 1622.72 1623.64 1 654 2.21 7652 48 1721.96 1721.51 1722.55 1 1497 5.07 20670 49 1722.97 1722.71 1723.58 1 452 1.53 5363 50 1821.96 1821.51 1822.52 0 790 2.68 10889

True SPECTRUM 4 value Error Centroid Index Mass amu amu ppm TBA 3 242.2846 242.2842 0.0004 1.52 M+ 11 415.1232 415.1221 0.0011 2.67 [M+H]+ 12 416.1309 416.1299 0.0010 2.44 [M+1]+ 13 417.1344 417.1333 0.0011 2.74 Reserpine [M+H]+ 16 609.2829 609.2806 0.0023 3.77 Reserpine [M+H+1]+ 17 610.2860 610.2840 0.0020 3.27 [2M+H]+ 26 831.2528 831.2525 0.0002 0.26 ultramark (C20H19O6N3P3F28) 29 1021.9998 1022.0040 -0.0041 -4.06 ultramark (C22H19O6N3P3F32) 32 1122.0010 1121.9976 0.0034 3.03 ultramark (C24H19O6N3P3F36) 34 1221.9933 1221.9912 0.0021 1.72 ultramark (C26H19O6N3P3F40) 42 1321.9852 1321.9848 0.0004 0.32 ultramark (C28H19O6N3P3F44) 44 1421.9822 1421.9784 0.0038 2.64 ultramark (C30H19O6N3P3F48) 46 1521.9755 1521.9720 0.0034 2.25 ultramark (C32H19O6N3P3F52) 48 1621.9700 1621.9657 0.0043 2.66 ultramark (C34H19O6N3P3F56) 50 1721.9605 1721.9593 0.0012 0.69 ultramark (C36H19O6N3P3F60) 52 1821.9546 1821.9529 0.0017 0.94

146

SPECTRUM 4 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.144 229.1 229.2 1 3114 11.02 15932.4 2 230.149 230.11 231.01 1 456 1.61 2150 3 242.285 242.24 242.34 1 9465 33.5 51753.4 4 243.287 243.24 243.34 1 1497 5.3 8647.66 5 246.17 246.12 247.11 0 1354 4.79 7185 6 337.08 337.02 338 0 1048 3.71 6686 7 351.208 351.14 352.14 0 937 3.32 5560 8 412.122 412.02 412.87 1 14424 51.06 106694 9 413.125 413.05 413.28 1 3424 12.12 25192.5 10 414.121 413.99 414.88 1 6507 23.03 49378.2 11 415.123 415.04 415.75 1 3652 12.93 27923 12 416.131 415.91 416.95 1 28252 100 212426 13 417.134 417.06 417.94 1 7021 24.85 51006 14 418.134 418.06 418.23 1 953 3.37 6019.51 15 519.079 518.98 519.2 0 641 2.27 4924 16 609.283 609.16 610.16 1 1542 5.46 12891 17 610.286 610.2 610.5 1 580 2.05 4035 18 823.235 823.02 824.03 1 4102 14.52 42177 19 824.238 824.09 825 1 1919 6.79 18833 20 825.235 825.07 826.03 1 4412 15.62 43386 21 826.236 826.09 827.02 1 1966 6.96 18103 22 827.244 827.08 828.04 1 9716 34.39 99555 23 828.244 828.1 829.03 1 4707 16.66 45579 24 829.244 829.09 830.02 1 4953 17.53 49377 25 830.246 830.09 831.02 1 5466 19.35 54983 26 831.253 831.09 832.04 1 15569 55.11 159360 27 832.257 832.1 833.05 1 6978 24.7 68639 28 833.258 833.12 834.08 1 1825 6.46 16919 29 1022 1021.79 1022.78 0 1041 3.69 10645.1 30 1024.41 1024.17 1024.88 1 602 2.13 6032.98 31 1025.41 1025.25 1025.62 1 322 1.14 2842 32 1122 1121.78 1122.74 1 2357 8.34 26422

147

33 1123.01 1122.84 1123.28 1 344 1.22 3456 34 1221.99 1221.71 1222.72 1 3148 11.14 37904.5 36 1229.38 1229.21 1230.1 1 367 1.3 3983 37 1230.38 1230.21 1231.13 1 317 1.12 3015 38 1242.37 1242.17 1243.07 1 512 1.81 5648 39 1243.38 1243.18 1243.74 1 290 1.03 2884 40 1246.37 1246.17 1247.08 1 1159 4.1 12428 41 1247.38 1247.19 1248.1 1 646 2.29 6908 42 1321.99 1321.64 1322.68 1 3618 12.81 45811 43 1322.99 1322.79 1323.7 1 823 2.91 9049 44 1421.98 1421.59 1422.62 1 3607 12.77 48356 45 1422.98 1422.74 1423.69 1 928 3.29 11052 46 1521.98 1521.68 1522.61 1 3021 10.69 41669.7 47 1522.98 1522.72 1523.65 1 927 3.28 11064 48 1621.97 1621.64 1622.6 1 2258 7.99 32233 49 1622.97 1622.72 1623.67 1 686 2.43 7984 50 1721.96 1721.63 1722.55 1 1401 4.96 20452 51 1722.96 1722.71 1723.64 1 390 1.38 4527 52 1821.95 1821.64 1822.54 0 735 2.6 10576

148

IR Spectra and Mass Spectrometry Data of Methoxy Catalyst IR Spectrum

149

150

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

151

Expected Data

Vanadium(Methoxy) Complex C22H24N2O5V1 M+ [M+H]+ [M+H+1]+ [2M+H]+ [3M+H]+ [3M+H+1]+ mass 447.1119 448.1197 449.1231 895.2322 1342.3435 1343.3498

Representative Spectrum

152

Summary of Results error Nominal SPECTRUM 95% m/z Name 1 2 3 4 avg sd CI furthest 242.3 TBA -3.39 -0.79 4.95 -1.28 -0.13 3.57 5.68 -5.80 447.1 M+ -1.48 6.91 5.61 2.55 3.40 3.73 5.93 9.33 448.1 [M+H]+ -1.51 2.11 1.41 0.32 0.58 1.58 2.51 3.09 449.1 [M+1]+ -3.26 1.17 3.26 1.23 0.60 2.75 4.38 4.98 609.3 Reserpine [M+H]+ -0.04 -1.75 -0.34 1.86 -0.07 1.49 2.36 -2.43 895.2 [2M+H]+ -2.41 1.54 -0.16 -0.16 -0.30 1.62 2.58 -2.88 ultramark 1022.0 (C20H19O6N3P3F28) -5.44 4.30 3.94 0.60 0.85 4.51 7.18 8.03 ultramark 1122.0 (C22H19O6N3P3F32) -3.40 0.42 1.61 -1.21 -0.64 2.17 3.45 -4.10 ultramark 1222.0 (C24H19O6N3P3F36) -2.08 0.52 -0.48 -1.68 -0.93 1.18 1.88 -2.81 ultramark 1322.0 (C26H19O6N3P3F40) -1.62 3.64 -1.35 1.52 0.55 2.50 3.98 4.53 1342.3 [3M+H]+ -0.47 -0.38 1.44 -1.02 -0.11 1.07 1.70 -1.81 1343.4 [3M+H+1]+ -4.96 -1.69 -2.41 -2.78 -2.96 1.41 2.24 -5.20 ultramark 1422.0 (C28H19O6N3P3F44) -5.77 0.93 3.93 -1.39 -0.58 4.09 6.51 -7.09 ultramark 1522.0 (C30H19O6N3P3F48) -1.35 -0.87 4.98 -0.39 0.59 2.95 4.70 5.29 ultramark 1622.0 (C32H19O6N3P3F52) -2.45 0.41 0.10 -2.15 -1.02 1.49 2.37 -3.39 ultramark 1722.0 (C34H19O6N3P3F56) -3.21 0.41 1.75 1.05 0.00 2.21 3.51 -3.51

153

Data

SPECTRUM 1 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2834 242.2842 -0.00082 -3.39 M+ 12 447.1112 447.1119 -0.00066 -1.48 [M+H]+ 13 448.1191 448.1197 -0.00068 -1.51 [M+H+1]+ 14 449.1216 449.1231 -0.00147 -3.26 Reserpine [M+H]+ 17 609.2806 609.2806 -2.6E-05 -0.04 [2M+H]+ 29 895.2300 895.2322 -0.0022 -2.41 ultramark (C20H19O6N3P3F28) 35 1021.9984 1022.0040 -0.0056 -5.44 ultramark (C22H19O6N3P3F32) 38 1121.9938 1121.9976 -0.0038 -3.40 ultramark (C24H19O6N3P3F36) 40 1221.9887 1221.9912 -0.0025 -2.08 ultramark (C26H19O6N3P3F40) 42 1321.9827 1321.9848 -0.0021 -1.62 [3M+H]+ 50 1342.3440 1342.3446 -0.00064 -0.47 [3M+H+1]+ 51 1343.3442 1343.3509 -0.00666 -4.96 ultramark (C28H19O6N3P3F44) 55 1421.9702 1421.9784 -0.00821 -5.77 ultramark (C30H19O6N3P3F48) 57 1521.9700 1521.9720 -0.00206 -1.35 ultramark (C32H19O6N3P3F52) 59 1621.9617 1621.9657 -0.00398 -2.45 ultramark (C34H19O6N3P3F56) 61 1721.9537 1721.9593 -0.00552 -3.21

SPECTRUM 1 *Only peaks and areas >1% of BP shown* Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 229.14233 229.1 229.2 1 2337 7.27 12318.46 2 230.14764 230.11 231.11 1 304 0.94 1546 3 242.2834 242.24 242.34 1 5061 15.74 27762.45 4 243.28696 243.25 244.25 1 809 2.52 4261 5 246.16936 246.12 246.23 0 935 2.91 4583.01 6 328.08005 328.03 328.52 0 199 0.62 1074 7 337.07809 337.02 338.01 1 590 1.84 3343 8 338.08301 338.04 338.14 1 207 0.64 975.6 9 444.10938 444.03 445.03 1 1680 5.23 11765

154

10 445.11554 445.06 445.83 1 307 0.95 1911 11 446.10864 446.03 446.26 1 716 2.23 5521 12 447.11124 447.03 447.89 1 1232 3.83 8138 13 448.11905 447.92 448.99 1 32153 100 248409 14 449.12161 449.02 449.96 1 8131 25.29 58508 15 450.12665 450.05 451 1 1195 3.72 8169.05 16 470.10074 470.03 471.02 0 649 2.02 3797 17 609.28058 609.17 609.86 1 734 2.28 5810 18 610.27869 610.19 610.39 1 302 0.94 2071.34 19 757.18378 757.07 758.03 0 192 0.6 1338 20 759.18396 759.07 759.36 0 96 0.3 639 21 887.2124 887.07 888.02 1 518 1.61 4649 22 888.20898 888.09 888.99 1 298 0.93 2491 23 889.2146 889.06 889.66 1 683 2.12 6447 24 890.21576 890.08 890.36 1 236 0.73 2093.54 25 891.21954 891.05 892 1 4391 13.66 45078 26 892.22705 892.07 892.99 1 2137 6.64 20452 27 893.22223 893.05 893.99 1 2525 7.85 25233 28 894.22418 894.06 894.88 1 3806 11.84 38075 29 895.23004 894.94 896.01 1 18361 57.1 190464 30 896.23315 896.08 897.01 1 8743 27.19 85787 31 897.23737 897.07 898.05 1 2273 7.07 21744 32 898.24548 898.12 898.47 1 416 1.29 3742 33 917.21625 917.08 918.03 1 321 1 2588 34 918.21838 918.1 921.84 1 91 0.28 696 35 1021.99841 1021.79 1022.2 0 424 1.32 3999.87 36 1056.39099 1056.2 1057.14 1 470 1.46 4852 37 1057.40344 1057.21 1058.13 1 221 0.69 2304 38 1121.99377 1121.8 1122.77 1 934 2.9 10275 39 1123.0011 1122.87 1123.79 1 121 0.38 1012 40 1221.98865 1221.74 1222.72 1 1090 3.39 12294 41 1222.99451 1222.83 1223.81 1 275 0.86 2415 42 1321.98267 1321.72 1322.69 1 1192 3.71 14618 43 1322.9834 1322.8 1323.74 1 277 0.86 2680 44 1325.32178 1325.12 1326 1 198 0.62 1881 45 1326.34656 1326.1 1326.67 1 126 0.39 1335

155

46 1338.33325 1338.11 1339 1 439 1.37 4780 47 1339.32874 1339.11 1340.02 1 273 0.85 2777 48 1340.32935 1340.12 1341.01 1 289 0.9 3004 49 1341.33044 1341.11 1341.78 1 401 1.25 3906 50 1342.34399 1342.09 1343 1 4643 14.44 59161.99 51 1343.34424 1343.11 1344.02 1 3145 9.78 36538 52 1344.34961 1344.13 1344.98 1 1068 3.32 12048 53 1345.34485 1345.09 1345.61 1 293 0.91 3095 54 1364.33167 1364.13 1365.05 0 83 0.26 749 55 1421.97021 1421.55 1422.65 1 1080 3.36 12990 56 1422.97498 1422.76 1423.73 1 286 0.89 2874 57 1521.96997 1521.71 1522.63 1 832 2.59 10153 58 1522.9668 1522.75 1524.69 1 233 0.73 2223 59 1621.96167 1621.66 1622.61 1 535 1.66 6729 60 1622.96558 1622.73 1623.7 1 127 0.4 1334 61 1721.95374 1721.66 1722.58 0 274 0.85 3342 62 1789.45447 1789.12 1789.96 1 435 1.35 5810 63 1790.453 1790.12 1791.03 1 409 1.27 4843 64 1791.45386 1791.18 1792.14 1 180 0.56 2058

156

SPECTRUM 2 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2840 242.2842 -0.0002 -0.79 M+ 12 447.1150 447.1119 0.0031 6.91 [M+H]+ 13 448.1207 448.1197 0.0009 2.11 [M+H+1]+ 14 449.1236 449.1231 0.0005 1.17 Reserpine [M+H]+ 17 609.2795 609.2806 -0.0011 -1.75 [2M+H]+ 28 895.2336 895.2322 0.0014 1.54 ultramark (C20H19O6N3P3F28) 34 1022.0084 1022.0040 0.0044 4.30 ultramark (C22H19O6N3P3F32) 37 1121.9981 1121.9976 0.0005 0.42 ultramark (C24H19O6N3P3F36) 39 1221.9918 1221.9912 0.0006 0.52 ultramark (C26H19O6N3P3F40) 41 1321.9896 1321.9848 0.0048 3.64 [3M+H]+ 49 1342.3441 1342.3446 -0.0005 -0.38 [3M+H+1]+ 50 1343.3486 1343.3509 -0.0023 -1.69 ultramark (C28H19O6N3P3F44) 54 1421.9797 1421.9784 0.0013 0.93 ultramark (C30H19O6N3P3F48) 56 1521.9707 1521.9720 -0.0013 -0.87 ultramark (C32H19O6N3P3F52) 58 1621.9663 1621.9657 0.0007 0.41 ultramark (C34H19O6N3P3F56) 60 1721.9600 1721.9593 0.0007 0.41

SPECTRUM 2 *Only peaks and areas >1% of BP shown* Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.144 229.1 229.2 1 2261 7.18 11735.5 2 230.145 230.11 230.99 1 260 0.83 1192 3 242.284 242.23 242.35 1 5344 16.98 28804.3 4 243.288 243.25 243.32 1 821 2.61 3725.84 5 246.17 246.13 247.11 0 838 2.66 4319 6 328.088 328.03 329.19 0 240 0.76 1133 7 337.078 337.02 338.01 1 499 1.59 2930 8 338.083 338.04 338.9 1 134 0.43 622 9 444.112 444.03 445.01 1 1592 5.06 11797

157

10 445.111 445.04 445.66 1 340 1.08 2164 11 446.109 446.03 446.76 1 789 2.51 5141 12 447.115 447.03 447.69 1 1200 3.81 8901 13 448.121 447.95 449.01 1 31471 100 244831 14 449.124 449.04 449.28 1 7776 24.71 59114.6 15 450.126 450.05 450.93 1 1194 3.8 7759 16 470.102 470.03 471.02 0 526 1.67 3409 17 609.28 609.17 610.13 1 771 2.45 6144 18 610.286 610.17 611.19 1 226 0.72 1455 19 757.19 757.04 758.03 0 171 0.54 1199 20 887.213 887.04 888.03 1 663 2.11 5969 21 888.221 888.1 888.99 1 240 0.76 1955 22 889.22 889.06 890.02 1 583 1.85 5522 23 890.216 890.09 890.96 1 245 0.78 2217 24 891.225 891.03 892 1 4426 14.06 45171 25 892.225 892.07 893 1 2198 6.99 21198 26 893.223 893.06 894 1 2594 8.24 25248 27 894.226 894.07 894.98 1 3899 12.39 39605 28 895.234 895.04 896.01 1 18544 58.92 195407 29 896.236 896.08 897.03 1 8412 26.73 86327 30 897.241 897.1 898.03 1 2282 7.25 21736 31 898.238 898.09 898.36 1 391 1.24 3208.75 32 917.215 917.08 918.03 1 335 1.06 2898 33 918.215 918.1 919.08 1 88 0.28 632 34 1022.01 1021.84 1022.82 0 441 1.4 4382 35 1056.4 1056.22 1057.15 1 428 1.36 4366 36 1057.4 1057.22 1058.21 1 266 0.85 2434 37 1122 1121.79 1122.73 1 884 2.81 9563 38 1123 1122.83 1123.31 1 127 0.4 1041 39 1221.99 1221.75 1222.71 1 1176 3.74 13274 40 1222.99 1222.81 1223.75 1 209 0.66 1893 41 1321.99 1321.72 1322.68 1 1157 3.68 14178 42 1322.99 1322.79 1323.23 1 285 0.91 2627 43 1325.34 1325.15 1325.78 1 165 0.52 1462 44 1326.34 1326.13 1327.05 1 110 0.35 967 45 1338.34 1338.11 1338.65 1 490 1.56 5339.74

158

46 1339.35 1339.15 1340.03 1 311 0.99 3185 47 1340.34 1340.14 1340.99 1 316 1 3211 48 1341.34 1341.1 1341.97 1 428 1.36 4634 49 1342.34 1342.08 1343 1 4822 15.32 60783 50 1343.35 1343.11 1344.02 1 3329 10.58 38875 51 1344.36 1344.13 1345.04 1 1177 3.74 13461 52 1345.36 1345.14 1345.61 1 239 0.76 2561.05 53 1364.32 1364.13 1365.05 0 95 0.3 969 54 1421.98 1421.73 1422.65 1 1033 3.28 12676 55 1422.98 1422.76 1423.66 1 257 0.82 2557 56 1521.97 1521.71 1522.65 1 836 2.66 10571 57 1522.97 1522.77 1523.7 1 175 0.56 1761 58 1621.97 1621.69 1622.61 1 501 1.59 6630 59 1622.97 1622.73 1623.64 1 82 0.26 938 60 1721.96 1721.63 1722.58 0 271 0.86 3312 61 1789.46 1789.15 1789.99 1 455 1.44 6214 62 1790.46 1790.15 1791.04 1 352 1.12 4426 63 1791.48 1791.2 1792.11 1 133 0.42 1458 64 1821.95 1821.62 1822.65 0 87 0.28 1064.61

159

SPECTRUM 3 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2854 242.2842 0.0012 4.95 M+ 11 447.1144 447.1119 0.00251 5.61 [M+H]+ 12 448.1204 448.1197 0.00063 1.41 [M+H+1]+ 13 449.1245 449.1231 0.00146 3.26 Reserpine [M+H]+ 16 609.2804 609.2806 -0.0002 -0.34 [2M+H]+ 27 895.2321 895.2322 -0.0001 -0.16 ultramark (C20H19O6N3P3F28) 32 1022.0080 1022.0040 0.00403 3.94 ultramark (C22H19O6N3P3F32) 35 1121.9994 1121.9976 0.00181 1.61 ultramark (C24H19O6N3P3F36) 37 1221.9906 1221.9912 -0.0006 -0.48 ultramark (C26H19O6N3P3F40) 39 1321.9830 1321.9848 -0.0018 -1.35 [3M+H]+ 47 1342.3466 1342.3446 0.00193 1.44 [3M+H+1]+ 48 1343.3477 1343.3509 -0.0032 -2.41 ultramark (C28H19O6N3P3F44) 52 1421.9840 1421.9784 0.00559 3.93 ultramark (C30H19O6N3P3F48) 54 1521.9796 1521.9720 0.00758 4.98 ultramark (C32H19O6N3P3F52) 56 1621.9658 1621.9657 0.00017 0.10 ultramark (C34H19O6N3P3F56) 58 1721.9623 1721.9593 0.00302 1.75

SPECTRUM 3 *Only peaks and areas >1% of BP shown* Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 229.14368 229.1 230.1 1 2247 6.87 12535 2 230.14883 230.11 231.19 1 254 0.78 1309 3 242.28542 242.23 242.34 1 5320 16.26 28723.18 4 243.28876 243.24 243.35 1 815 2.49 4274.79 5 246.1714 246.13 247.13 0 921 2.82 4876 6 328.08652 328.03 330.03 0 268 0.82 1328 7 337.07843 337.02 338.02 0 554 1.69 3221 8 444.11316 444.03 444.69 1 1548 4.73 11119 9 445.11469 445.04 446 1 407 1.24 2543

160

10 446.10983 446.03 446.24 1 666 2.03 4288.9 11 447.11441 447.01 447.26 1 1304 3.99 9242 12 448.12036 447.96 448.31 1 32711 100 254474.19 13 449.12454 449.04 449.99 1 8185 25.02 61091 14 450.12994 450.02 450.24 1 1167 3.57 8443.45 15 470.10593 470.04 471.02 0 525 1.61 3472 16 609.2804 609.18 610.15 1 736 2.25 5742 17 610.28235 610.19 611.18 1 253 0.77 1757 18 757.18982 757.05 758.04 0 194 0.59 1579 19 887.21002 887.06 887.38 1 566 1.73 5232.42 20 888.22217 888.1 888.99 1 301 0.92 2480 21 889.21826 889.06 890.01 1 690 2.11 6464 22 890.21576 890.08 890.81 1 295 0.9 2521 23 891.22351 891.05 891.99 1 4596 14.05 47123 24 892.22742 892.06 893 1 2185 6.68 21098 25 893.22375 893.06 893.99 1 2397 7.33 24819 26 894.22601 894.06 894.99 1 3925 12 40403 27 895.23206 895.06 896.01 1 18210 55.67 192255 28 896.23602 896.08 897.02 1 8217 25.12 83705 29 897.23883 897.08 897.84 1 2370 7.25 23173 30 898.24567 898.08 898.6 1 397 1.21 3695 31 917.21497 917.08 918.03 0 365 1.12 2929 32 1022.008 1021.84 1022.82 0 393 1.2 4526 33 1056.39075 1056.19 1056.99 1 414 1.26 4348 34 1057.39282 1057.22 1058.2 1 246 0.75 2369.98 35 1121.99939 1121.8 1122.73 1 800 2.44 9135 36 1122.99084 1122.83 1123.76 1 89 0.27 877 37 1221.9906 1221.79 1222.71 1 1041 3.18 12270 38 1222.98242 1222.81 1223.12 1 180 0.55 1604.69 39 1321.98303 1321.72 1322.68 1 1255 3.84 14758 40 1322.98779 1322.79 1323.81 1 271 0.83 2650 41 1325.34387 1325.13 1325.97 1 152 0.47 1422 42 1326.34424 1326.08 1326.68 1 104 0.32 912 43 1338.33435 1338.11 1339.01 1 415 1.27 4328 44 1339.3313 1339.12 1340.03 1 311 0.95 3300

161

45 1340.33923 1340.14 1341.02 1 301 0.92 3172 46 1341.33386 1341.13 1341.97 0 443 1.35 4564 47 1342.34656 1342.08 1343 1 4720 14.43 59459 48 1343.34766 1343.11 1343.99 1 3166 9.68 37633 49 1344.35083 1344.1 1345.05 1 1200 3.67 13488 50 1345.35095 1345.16 1346.07 1 330 1.01 3252 51 1364.32202 1364.16 1365.05 0 131 0.4 1160 52 1421.98401 1421.72 1422.67 1 1082 3.31 13424 53 1422.97583 1422.78 1423.78 1 228 0.7 2274 54 1521.97961 1521.68 1522.61 1 840 2.57 11180 55 1522.97729 1522.72 1524.75 1 168 0.51 1943 56 1621.96582 1621.61 1622.61 1 538 1.64 6905 57 1622.96594 1622.73 1623.7 1 122 0.37 1290 58 1721.96228 1721.71 1722.58 0 279 0.85 3355 59 1789.45923 1789.15 1789.99 1 439 1.34 5818 60 1790.45532 1790.15 1791.04 1 403 1.23 5062 61 1791.45789 1791.2 1792.05 1 136 0.42 1535 62 1821.9502 1821.7 1822.57 0 107 0.33 1205

162

SPECTRUM 4 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2839 242.2842 -0.0003 -1.28 M+ 11 447.1130 447.1119 0.0011 2.55 [M+H]+ 12 448.1199 448.1197 0.0001 0.32 [M+H+1]+ 13 449.1236 449.1231 0.0006 1.23 Reserpine [M+H]+ 17 609.2817 609.2806 0.0011 1.86 [2M+H]+ 28 895.2321 895.2322 -0.0001 -0.16 ultramark (C20H19O6N3P3F28) 33 1022.0046 1022.0040 0.0006 0.60 ultramark (C22H19O6N3P3F32) 36 1121.9962 1121.9976 -0.0014 -1.21 ultramark (C24H19O6N3P3F36) 38 1221.9891 1221.9912 -0.00205 -1.68 ultramark (C26H19O6N3P3F40) 40 1321.9868 1321.9848 0.00201 1.52 [3M+H]+ 48 1342.3433 1342.3446 -0.0014 -1.02 [3M+H+1]+ 49 1343.3472 1343.3509 -0.0037 -2.78 ultramark (C28H19O6N3P3F44) 53 1421.9764 1421.9784 -0.00198 -1.39 ultramark (C30H19O6N3P3F48) 55 1521.9714 1521.9720 -0.00059 -0.39 ultramark (C32H19O6N3P3F52) 57 1621.9622 1621.9657 -0.00349 -2.15 ultramark (C34H19O6N3P3F56) 58 1721.9611 1721.9593 0.0018 1.05

*Only pea SPECTRUM 4 ks and areas >1% of BP shown* Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.1431 229.1 229.21 0 2448 7.82 12052.5 2 230.14557 230.11 234.89 0 182 0.58 856 3 242.28391 242.24 242.34 1 5422 17.32 28163.9 4 243.28783 243.25 243.33 1 892 2.85 3963.36 5 246.17043 246.13 247.13 0 901 2.88 4846 6 328.08829 328.04 329.06 0 177 0.57 802 7 337.07733 337.02 337.13 0 537 1.71 2742.42 8 444.11026 444.03 445.02 1 1584 5.06 11100 9 445.11203 445.05 446 1 434 1.39 2521

163

10 446.10901 446.03 446.69 1 768 2.46 5025 11 447.11304 447.01 447.88 1 1143 3.65 8170 12 448.11987 447.97 448.99 1 31302 100 243706 13 449.12363 449.02 450.02 1 8001 25.56 59512 14 450.12582 450.05 450.28 1 1192 3.81 8071.45 15 470.10419 470.03 471.02 0 567 1.81 3801 16 551.06488 551 551.13 0 119 0.38 626.09 17 609.28174 609.18 610.16 1 803 2.57 6381 18 610.28674 610.2 610.35 1 217 0.69 1308.31 19 757.18158 757.07 758.03 0 208 0.67 1684 20 887.21155 887.07 887.38 1 692 2.21 5908 21 888.21655 888.09 888.44 1 282 0.9 2256.45 22 889.21094 889.07 890.02 1 620 1.98 5458 23 890.21802 890.09 890.98 1 243 0.78 2038 24 891.22302 891.05 892.01 1 4545 14.52 46555 25 892.22491 892.08 893 1 2126 6.79 20175 26 893.22345 893.06 893.46 1 2466 7.88 24776 27 894.22333 894.05 894.99 1 3948 12.61 38927 28 895.23206 895.06 896.01 1 18173 58.06 189021 29 896.23682 896.08 897.03 1 8151 26.04 81866 30 897.23834 897.1 898.03 1 2326 7.43 21863 31 898.23761 898.09 898.46 1 359 1.15 3186 32 917.20752 917.08 918.02 0 316 1.01 2454 33 1022.00458 1021.81 1022.8 0 390 1.24 3940 34 1056.39587 1056.22 1057.15 1 455 1.45 4769 35 1057.40283 1057.22 1058.2 1 260 0.83 2144 36 1121.99622 1121.79 1122.77 1 862 2.75 9786 37 1122.99866 1122.87 1123.76 1 134 0.43 1069 38 1221.98914 1221.77 1222.71 1 1085 3.47 12467 39 1222.99133 1222.81 1223.77 1 170 0.54 1717 40 1321.98682 1321.72 1322.68 1 1176 3.76 14250 41 1322.98523 1322.79 1323.7 1 248 0.79 2698 42 1325.34436 1325.12 1326.05 1 154 0.49 1346 43 1326.35779 1326.16 1326.78 1 95 0.3 806 44 1338.32751 1338.09 1339.05 1 427 1.36 4412

164

45 1339.33911 1339.16 1340.04 1 303 0.97 2910 46 1340.34033 1340.15 1340.98 1 255 0.81 2641 47 1341.33313 1341.09 1341.67 0 435 1.39 4830 48 1342.34326 1342.08 1343 1 4783 15.28 59857 49 1343.34717 1343.11 1344.02 1 3304 10.55 39063 50 1344.34863 1344.13 1345 1 1245 3.98 13209 51 1345.35706 1345.1 1346.1 1 301 0.96 3299 52 1364.32788 1364.16 1365.07 0 115 0.37 1041 53 1421.97644 1421.7 1422.65 1 983 3.14 12259 54 1422.98169 1422.76 1423.73 1 181 0.58 1877 55 1521.97144 1521.7 1522.63 1 835 2.67 10568 56 1522.96326 1522.75 1524.18 1 168 0.54 1667 57 1621.96216 1621.69 1622.61 0 535 1.71 7178 58 1721.96106 1721.68 1722.6 0 277 0.89 3800 59 1789.45618 1789.08 1790.01 1 405 1.29 5202 60 1790.45215 1790.16 1791.06 1 366 1.17 4445 61 1791.44763 1791.21 1792.06 1 146 0.47 1636

165

IR Spectra and Mass Spectrometry Data of Ethoxy Catalyst

IR673.02 Spectrum

739.74

795.38

853.56

862.26

891.54 903.38

944.77

981.71

1028.03

1067.33

1050.72

1084.24 100 0

1166.01

1228.07 1242.17

1287.87

1307.91

1352.97 1398.28

1437.33

1465.19

1553.52

1595.54

1615.88 150 0

1979.34

200 0

2160.99

250 0 Wavenumbers(cm-1)

2860.56

2930.31

2975.61

300 0

350 0

40

45

50

55

60

65

70

75

80

85

90 95

%T

166

739.74

795.38

800

853.56

862.26

891.54

903.38

900

944.77

981.71

100 0

1028.03

1067.33

1050.72

1084.24

110 0

1166.01

Wavenumbers(cm-1)

1228.07 120 0

1242.17

1287.87

1307.91

130 0

1352.97

1398.28

140 0 1437.33

1465.19

150 0

40

45

50

55

60

65

70

75

80

85 90 %T

167

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

168

Expected Data

Vanadium (Ethoxy) Complex C24H28N2O5V1 + + + + + M [M+H] [M+H+1] [2M+H] [2M+NH4] mass 475.1432 476.1510 477.1544 951.2948 968.3208

Representative Spectrum

169

Summary of Results

error nominal SPECTRUM 95 % m/z Name 1 2 3 4 avg sd CI furthest 242.3 TBA -5.16 1.48 -0.91 -1.57 -1.54 2.75 4.37 -5.91 475.1 M+ 6.33 3.58 5.30 6.84 5.51 1.44 2.29 7.80 476.2 [M+H]+ -1.27 0.13 -0.62 0.53 -0.31 0.80 1.28 -1.58 477.2 [M+H+1]+ -0.81 1.18 1.31 2.96 1.16 1.54 2.46 3.62 Reserpine 609.3 [M+H+]+ -0.95 3.45 1.35 -1.55 0.58 2.29 3.64 4.22 Reserpine 610.3 [M+H+1]+ 3.46 -3.24 -7.94 2.87 -1.21 5.41 8.61 -9.82 951.3 [2M+H]+ 0.34 0.34 0.99 1.24 0.73 0.46 0.73 1.46 968.3 [2M+NH4]+ 0.53 1.22 0.21 1.41 0.85 0.57 0.90 1.75 ultramark 1022.0 (C20H19O6N3P3F28) 0.66 -0.24 -1.67 1.14 -0.03 1.23 1.96 -2.00 ultramark 1122.0 (C22H19O6N3P3F32) 1.51 1.94 1.07 1.61 1.53 0.36 0.57 2.11 ultramark 1222.0 (C24H19O6N3P3F36) 0.11 2.51 1.11 -0.18 0.89 1.21 1.93 2.82 ultramark 1322.0 (C26H19O6N3P3F40) 2.81 1.06 -1.07 0.60 0.85 1.60 2.54 3.39 ultramark 1422.0 (C28H19O6N3P3F44) 1.36 0.58 1.27 0.24 0.86 0.54 0.86 1.72 ultramark 1522.0 (C30H19O6N3P3F48) 0.49 1.05 1.37 2.58 1.37 0.88 1.40 2.77 ultramark 1622.0 (C32H19O6N3P3F52) 2.14 0.18 3.04 0.33 1.42 1.40 2.22 3.65 ultramark 1722.0 (C34H19O6N3P3F56) 0.12 1.47 0.91 1.33 0.96 0.61 0.96 1.92 ultramark 1822.0 (C36H19O6N3P3F60) 2.55 0.21 3.29 2.68 2.18 1.35 2.16 4.34 ultramark 1921.9 (C38H19O6N3P3F64) 7.08 1.61 -5.88 -2.51 0.07 5.58 8.88 8.96

170

Data

True SPECTRUM 1 value Error Centroid Index Mass amu amu ppm TBA 3 242.2830 242.2842 -0.00125 -5.16 M+ 11 475.1462 475.1432 0.00301 6.33 [M+H]+ 12 476.1504 476.1510 -0.00061 -1.27 [M+H+1]+ 13 477.1540 477.1544 -0.00039 -0.81 Reserpine [M+H+]+ 20 609.2800 609.2806 -0.00058 -0.95 Reserpine [M+H+1]+ 21 610.2861 610.2840 0.00211 3.46 [2M+H]+ 31 951.2951 951.2948 0.00032 0.34 [2M+NH4]+ 43 968.3213 968.3208 0.00052 0.53 ultramark (C20H19O6N3P3F28) 48 1022.0046 1022.0040 0.0008 0.66 ultramark (C22H19O6N3P3F32) 50 1121.9993 1121.9976 0.0017 1.51 ultramark (C24H19O6N3P3F36) 52 1221.9913 1221.9912 0.00014 0.11 ultramark (C26H19O6N3P3F40) 54 1321.9885 1321.9848 0.0037 2.81 ultramark (C28H19O6N3P3F44) 57 1421.9804 1421.9784 0.0019 1.36 ultramark (C30H19O6N3P3F48) 65 1521.9728 1521.9720 0.0008 0.49 ultramark (C32H19O6N3P3F52) 68 1621.9691 1621.9657 0.0035 2.14 ultramark (C34H19O6N3P3F56) 70 1721.9595 1721.9593 0.0002 0.12 ultramark (C36H19O6N3P3F60) 72 1821.9575 1821.9529 0.0047 2.55 ultramark (C38H19O6N3P3F64) 76 1921.9601 1921.9465 0.0136 7.08

SPECTRUM 1 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.142 229.1 229.21 0 3819 5.32 19511.9 2 230.144 230.11 230.18 0 366 0.51 1588.45 3 242.283 242.24 242.35 1 8233 11.46 43274.2 4 243.287 243.24 243.39 1 1517 2.11 7834

171

5 246.169 246.13 246.24 0 1660 2.31 8364 6 337.079 337.02 337.88 1 2425 3.38 14944 7 338.083 338.03 338.14 1 471 0.66 2645.02 8 472.141 472.02 473.02 1 5310 7.39 38864 9 473.145 473.05 473.21 1 1402 1.95 8405.31 10 474.139 474.02 474.88 1 2628 3.66 19099 11 475.146 475.07 475.29 1 1113 1.55 8003.64 12 476.15 475.98 477.03 1 71820 100 547455 13 477.154 477.06 477.3 1 19307 26.88 146720 14 478.158 478.06 478.3 1 3301 4.6 25393.6 15 479.162 479.09 479.29 1 337 0.47 1989 16 493.178 493.1 494.04 1 3248 4.52 23697 17 494.169 494.07 495.05 1 1894 2.64 14670 18 495.166 495.08 498.01 1 308 0.43 2043 19 498.131 498.05 499.04 0 810 1.13 5066 20 609.28 609.11 610.14 1 1693 2.36 13797 21 610.286 610.18 610.4 1 562 0.78 3836.93 22 922.007 921.77 922.84 0 288 0.4 2422 23 943.279 943.14 944.08 1 468 0.65 3947 24 944.278 944.15 945.06 1 227 0.32 1908 25 945.277 945.13 946.08 1 509 0.71 4496 26 946.282 946.15 946.77 1 255 0.35 2122 27 947.286 947.1 948.07 1 7578 10.55 78603 28 948.288 948.13 949.06 1 4050 5.64 39354 29 949.286 949.13 950.06 1 4370 6.08 44219 30 950.287 950.13 951.04 1 2170 3.02 21202 31 951.295 951.11 952.06 1 9614 13.39 99884 32 952.298 952.13 953.08 1 4847 6.75 48978 33 953.301 953.15 954.07 1 1361 1.9 13058 34 954.304 954.14 954.9 1 210 0.29 1633 35 960.306 960.13 961.09 1 1811 2.52 17734 36 961.307 961.16 962.07 1 1016 1.41 8882 37 962.303 962.14 963.08 1 1918 2.67 19441 38 963.308 963.15 964.07 1 1001 1.39 8961 39 964.312 964.14 965.07 1 6709 9.34 70802

172

40 965.315 965.14 966.09 1 3411 4.75 33981 41 966.313 966.16 967.09 1 3627 5.05 36049 42 967.317 967.16 967.63 1 1922 2.68 18538 43 968.321 968.02 969.09 1 53024 73.83 564143 44 969.325 969.16 970.08 1 28548 39.75 293027 45 970.328 970.15 971.06 1 8708 12.12 84881 46 971.327 971.13 972.03 1 1649 2.3 16683 47 973.279 973.13 974.1 0 455 0.63 3602 48 1022 1021.84 1022.81 0 1046 1.46 9237 49 1084.42 1084.18 1085.21 0 190 0.26 1509 50 1122 1121.68 1122.73 1 2310 3.22 27092 51 1123 1122.83 1123.32 1 476 0.66 4449 52 1221.99 1221.65 1222.7 1 3468 4.83 41065 53 1222.99 1222.8 1223.74 1 720 1 7113 54 1321.99 1321.67 1322.68 1 3802 5.29 48403 55 1322.99 1322.79 1323.67 1 974 1.36 10275 56 1324.94 1324.69 1325.23 0 200 0.28 2466.53 57 1421.98 1421.66 1422.33 1 3669 5.11 46216.2 58 1422.99 1422.75 1423.7 1 894 1.24 10348 59 1426.44 1426.12 1426.71 1 378 0.53 3875 60 1427.44 1427.24 1427.78 1 193 0.27 2106 61 1439.46 1439.27 1440.17 0 201 0.28 2055 62 1443.47 1443.22 1443.78 1 1450 2.02 17523 63 1444.47 1444.23 1445.16 1 1151 1.6 13347 64 1445.47 1445.27 1446.14 1 416 0.58 4441 65 1521.97 1521.7 1522.64 1 3105 4.32 40544.6 66 1522.98 1522.75 1523.71 1 816 1.14 9252 67 1524.93 1524.69 1525.21 0 213 0.3 2213 68 1621.97 1621.48 1622.6 1 2282 3.18 31569 69 1622.98 1622.72 1623.63 1 696 0.97 8317 70 1721.96 1721.66 1722.57 1 1562 2.17 20622.8 71 1722.96 1722.72 1723.57 1 389 0.54 4805 72 1821.96 1821.62 1822.54 1 661 0.92 9414 73 1822.96 1822.7 1823.65 1 203 0.28 2352 74 1918.61 1918.33 1919.19 1 245 0.34 2849

173

75 1919.61 1919.35 1920.2 1 213 0.3 2549 76 1921.96 1921.72 1922.55 0 233 0.32 2743.54

SPECTRUM 2 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2846 242.2842 0.00036 1.48 M+ 11 475.1449 475.1432 0.00170 3.58 [M+H]+ 12 476.1511 476.1510 0.00006 0.13 [M+H+1]+ 13 477.1549 477.1544 0.00056 1.18 Reserpine [M+H+]+ 20 609.2827 609.2806 0.00210 3.45 Reserpine [M+H+1]+ 21 610.2820 610.2840 -0.00198 -3.24 [2M+H]+ 31 951.2951 951.2948 0.00032 0.34 [2M+NH4]+ 43 968.3220 968.3208 0.00119 1.22 ultramark (C20H19O6N3P3F28) 48 1022.0037 1022.0040 -0.00025 -0.24 ultramark (C22H19O6N3P3F32) 50 1121.9998 1121.9976 0.00218 1.94 ultramark (C24H19O6N3P3F36) 52 1221.9943 1221.9912 0.00307 2.51 ultramark (C26H19O6N3P3F40) 54 1321.9862 1321.9848 0.00140 1.06 ultramark (C28H19O6N3P3F44) 57 1421.9793 1421.9784 0.00083 0.58 ultramark (C30H19O6N3P3F48) 66 1521.9736 1521.9720 0.00160 1.05 ultramark (C32H19O6N3P3F52) 69 1621.96594 1621.9657 0.00029 0.18 ultramark (C34H19O6N3P3F56) 71 1721.9618 1721.9593 0.00253 1.47 ultramark (C36H19O6N3P3F60) 73 1821.9533 1821.9529 0.00038 0.21 ultramark (C38H19O6N3P3F64) 76 1921.9496 1921.9465 0.00310 1.61

SPECTRUM 2 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.14334 229.1 229.2 1 3583 5.21 19198.3 2 230.14644 230.11 230.48 1 396 0.58 1931 3 242.28458 242.24 242.34 1 8324 12.12 42685 4 243.28769 243.24 244.25 1 1321 1.92 7436

174

5 246.16931 246.13 246.21 0 1556 2.27 7678.77 6 337.07953 337.02 337.2 1 2343 3.41 15060.6 7 338.08136 338.03 338.29 1 474 0.69 2723 8 472.14203 472.05 472.29 1 5126 7.46 38840.9 9 473.14542 473.06 474.02 1 1430 2.08 9794 10 474.13943 474.05 474.82 1 2603 3.79 19739 11 475.1449 475.06 475.31 1 1035 1.51 7382 12 476.15109 475.92 477.03 1 68709 100 526974 13 477.15494 477.06 477.31 1 19058 27.74 141381 14 478.15967 478.06 479.06 1 2994 4.36 23699 15 479.16183 479.09 479.3 0 261 0.38 1691 16 493.17825 493.09 494.05 1 3289 4.79 24168 17 494.16977 494.08 495.07 1 2104 3.06 16112 18 495.16855 495.1 498.02 1 293 0.43 1814 19 498.13165 498.05 499.04 0 799 1.16 5058 20 609.28271 609.18 609.96 1 1625 2.36 13729.7 21 610.28198 610.17 610.48 1 565 0.82 4343 22 922.01538 921.86 922.24 0 260 0.38 2124.79 23 943.27643 943.11 943.44 1 513 0.75 4668.04 24 944.28058 944.15 944.51 1 237 0.35 1773 25 945.28265 945.13 946.08 1 447 0.65 4128 26 946.27985 946.15 946.49 1 259 0.38 2171.03 27 947.28754 947.11 948.07 1 7299 10.62 76638 28 948.29016 948.13 949.05 1 3864 5.62 38701 29 949.28564 949.12 950.06 1 4088 5.95 42622 30 950.29041 950.13 951 1 2283 3.32 22183 31 951.2951 951.07 952.07 1 9461 13.77 99195 32 952.29828 952.14 953.09 1 4707 6.85 46837 33 953.30127 953.16 953.73 1 1274 1.85 12271 34 954.315 954.16 955.15 1 205 0.3 1726 35 960.30054 960.13 961.1 1 1939 2.82 18889 36 961.30426 961.17 962.07 1 938 1.37 8702 37 962.30334 962.14 963.1 1 1868 2.72 19252 38 963.30505 963.17 964.06 1 975 1.42 8702 39 964.31232 964.13 965.09 1 6604 9.61 69763

175

40 965.31464 965.15 966.07 1 3329 4.84 33614 41 966.31268 966.14 967.09 1 3672 5.34 37119 42 967.3161 967.16 967.97 1 1885 2.74 18051 43 968.32196 968.04 969.09 1 51356 74.74 554210 44 969.32593 969.16 970.08 1 27338 39.79 284462 45 970.32843 970.15 971.1 1 8430 12.27 85575 46 971.3299 971.17 971.54 1 1842 2.68 17745.3 47 973.28351 973.12 974.09 0 501 0.73 4512 48 1022.00372 1021.83 1022.82 0 993 1.45 9201 49 1084.43298 1084.2 1085.21 0 196 0.29 1661 50 1121.99976 1121.72 1122.72 1 2409 3.51 27785 51 1123.00403 1122.82 1123.75 1 550 0.8 5246 52 1221.99426 1221.74 1222.71 1 3314 4.82 41095.5 53 1222.99353 1222.82 1223.71 1 715 1.04 7474 54 1321.98621 1321.55 1322.67 1 3830 5.57 47394 55 1322.98743 1322.78 1323.71 1 899 1.31 8869 56 1324.94006 1324.73 1325.19 0 183 0.27 2152.08 57 1421.97925 1421.7 1422.3 1 3640 5.3 47020.3 58 1422.98633 1422.75 1423.28 1 853 1.24 9711 59 1424.93433 1424.71 1425.22 0 211 0.31 2362 60 1426.43738 1426.23 1426.75 1 363 0.53 4101.64 61 1427.44226 1427.11 1428.15 1 279 0.41 2711 62 1439.46069 1439.25 1440.15 0 231 0.34 2340 63 1443.46228 1443.2 1443.78 1 1555 2.26 18709 64 1444.47449 1444.24 1445.14 1 1204 1.75 13906 65 1445.4696 1445.26 1446.14 1 389 0.57 3943 66 1521.97363 1521.68 1522.64 1 3022 4.4 40258 67 1522.97754 1522.75 1523.68 1 865 1.26 10273 68 1524.93896 1524.7 1525.27 0 172 0.25 1954.94 69 1621.96594 1621.69 1622.6 1 2150 3.13 29220.7 70 1622.9707 1622.72 1623.66 1 655 0.95 7673 71 1721.96179 1721.62 1722.55 1 1369 1.99 19215 72 1722.95813 1722.71 1723.55 1 432 0.63 4979 73 1821.95325 1821.62 1822.55 1 715 1.04 9853.12 74 1822.95557 1822.71 1823.57 1 213 0.31 2340 75 1919.61841 1919.27 1920.07 0 188 0.27 2320

176

76 1921.94958 1921.72 1922.31 0 201 0.29 2363.38

True SPECTRUM 3 value Error Centroid Index Mass amu amu ppm TBA 3 242.2840 242.2842 -0.00022 -0.91 M+ 11 475.1457 475.1432 0.00252 5.30 [M+H]+ 12 476.1507 476.1510 -0.00030 -0.62 [M+H+1]+ 13 477.1550 477.1544 0.00062 1.31 Reserpine [M+H+]+ 20 609.2814 609.2806 0.00082 1.35 Reserpine [M+H+1]+ 21 610.2791 610.2840 -0.00485 -7.94 [2M+H]+ 31 951.2957 951.2948 0.00094 0.99 [2M+NH4]+ 43 968.3210 968.3208 0.00021 0.21 ultramark (C20H19O6N3P3F28) 49 1022.0023 1022.0040 -0.00171 -1.67 ultramark (C22H19O6N3P3F32) 51 1121.9988 1121.9976 0.00120 1.07 ultramark (C24H19O6N3P3F36) 53 1221.9926 1221.9912 0.00136 1.11 ultramark (C26H19O6N3P3F40) 55 1321.9834 1321.9848 -0.00141 -1.07 ultramark (C28H19O6N3P3F44) 58 1421.9802 1421.9784 0.00180 1.27 ultramark (C30H19O6N3P3F48) 67 1521.9741 1521.9720 0.00209 1.37 ultramark (C32H19O6N3P3F52) 69 1621.97058 1621.9657 0.00493 3.04 ultramark (C34H19O6N3P3F56) 71 1721.9608 1721.9593 0.00156 0.91 ultramark (C36H19O6N3P3F60) 73 1821.9589 1821.9529 0.00599 3.29 ultramark (C38H19O6N3P3F64) 77 1921.9352 1921.9465 -0.01130 -5.88

SPECTRUM 3 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.143 229.08 229.2 1 3941 5.59 19838 2 230.148 230.11 230.62 1 434 0.62 2112 3 242.284 242.24 243.04 1 8459 12 47589 4 243.286 243.24 243.34 1 1557 2.21 7507.02

177

5 246.17 246.12 246.61 0 1597 2.27 8237 6 337.08 337.02 337.82 1 2303 3.27 13609 7 338.084 338.03 338.18 1 455 0.65 2360 8 472.142 472.05 472.29 1 5126 7.27 38717.5 9 473.145 473.05 473.88 1 1571 2.23 10365 10 474.141 474.05 474.92 1 2351 3.34 18414.2 11 475.146 475.07 475.73 1 989 1.4 7527 12 476.151 475.96 477.03 1 70483 100 542750 13 477.155 477.06 477.34 1 18846 26.74 141848 14 478.159 478.05 478.8 1 3279 4.65 23405 15 479.16 479.09 479.31 1 437 0.62 2577 16 493.178 493.09 494.05 1 3284 4.66 23738 17 494.168 494.08 495.07 1 2183 3.1 16313 18 495.168 495.1 498.02 1 333 0.47 2115 19 498.134 498.05 499.04 0 810 1.15 5715 20 609.281 609.18 610.03 1 1821 2.58 14422.2 21 610.279 610.17 610.46 1 532 0.76 4135.42 22 922.014 921.82 922.43 0 330 0.47 2769 23 943.273 943.09 943.51 1 525 0.75 4593 24 944.281 944.14 944.77 1 223 0.32 1967 25 945.278 945.12 946.07 1 574 0.81 5278 26 946.28 946.14 946.66 1 208 0.29 1750 27 947.285 946.95 948.06 1 7663 10.87 79443 28 948.289 948.12 949.05 1 3760 5.34 37379 29 949.287 949.12 950.06 1 4199 5.96 43885 30 950.29 950.13 950.58 1 2164 3.07 21698.4 31 951.296 951.11 952.07 1 9625 13.66 100618 32 952.299 952.14 953.08 1 4787 6.79 47592 33 953.303 953.15 954.11 1 1304 1.85 12956 34 954.305 954.18 954.63 1 268 0.38 2128 35 960.303 960.15 961.1 1 1870 2.65 19052 36 961.304 961.17 962.07 1 1031 1.46 9044 37 962.305 962.14 963.1 1 2085 2.96 20401 38 963.307 963.17 964.07 1 859 1.22 7576 39 964.313 964.14 965.09 1 6790 9.63 71287

178

40 965.314 965.15 966.09 1 3539 5.02 36082 41 966.313 966.16 967.08 1 3742 5.31 37253 42 967.316 967.15 967.56 1 1860 2.64 18264 43 968.321 968.04 969.09 1 51919 73.66 557077 44 969.325 969.16 970.08 1 27935 39.63 288519 45 970.329 970.15 971.1 1 8386 11.9 84643 46 971.329 971.17 971.55 1 1920 2.72 19302 47 972.323 972.17 972.53 1 234 0.33 1920 48 973.277 973.13 974.1 0 547 0.78 4925 49 1022 1021.84 1022.82 0 1018 1.44 9541 50 1084.43 1084.24 1085.23 0 204 0.29 1801 51 1122 1121.8 1122.73 1 2405 3.41 27162.6 52 1123 1122.83 1123.25 1 520 0.74 4579 53 1221.99 1221.75 1222.71 1 3293 4.67 39532.3 54 1223 1222.82 1223.74 1 746 1.06 7783 55 1321.98 1321.65 1322.67 1 3812 5.41 46700.5 56 1322.98 1322.78 1323.73 1 975 1.38 10345 57 1324.94 1324.7 1325.7 0 224 0.32 2504 58 1421.98 1421.58 1422.32 1 3801 5.39 48043.9 59 1422.98 1422.76 1423.24 1 939 1.33 10144 60 1424.94 1424.71 1425.27 0 256 0.36 2635 61 1426.43 1426.2 1426.75 1 339 0.48 3704 62 1427.44 1427.22 1428.16 1 241 0.34 2250.67 63 1439.45 1439.2 1440.09 0 197 0.28 2294 64 1443.46 1443.22 1443.78 1 1480 2.1 18094 65 1444.47 1444.22 1444.79 1 1092 1.55 12506 66 1445.48 1445.26 1446.2 1 355 0.5 3762 67 1521.97 1521.68 1522.64 1 3142 4.46 41074 68 1522.98 1522.75 1523.63 1 809 1.15 8763 69 1621.97 1621.55 1622.6 1 2286 3.24 31193 70 1622.97 1622.72 1623.61 1 597 0.85 6943 71 1721.96 1721.62 1722.55 1 1507 2.14 19872 72 1722.96 1722.71 1723.63 1 431 0.61 4888 73 1821.96 1821.64 1822.54 1 699 0.99 9332.42 74 1822.97 1822.7 1823.3 1 249 0.35 2977 75 1918.62 1918.3 1919.18 1 188 0.27 2439

179

76 1919.61 1919.34 1920.21 1 236 0.33 2807 77 1921.94 1921.67 1922.36 0 193 0.27 2233.01

True SPECTRUM 4 value Error Centroid Index Mass amu amu ppm TBA 3 242.2838 242.2842 -0.00038 -1.57 M+ 11 475.1465 475.1432 0.00325 6.84 [M+H]+ 12 476.1513 476.1510 0.00025 0.53 [M+H+1]+ 13 477.1558 477.1544 0.00141 2.96 Reserpine [M+H+]+ 20 609.2797 609.2806 -0.00095 -1.55 Reserpine [M+H+1]+ 21 610.2857 610.2840 0.00175 2.87 [2M+H]+ 31 951.2960 951.2948 0.00118 1.24 [2M+NH4]+ 43 968.3221 968.3208 0.00137 1.41 ultramark (C20H19O6N3P3F28) 48 1022.0051 1022.0040 0.00116 1.14 ultramark (C22H19O6N3P3F32) 50 1121.9994 1121.9976 0.00181 1.61 ultramark (C24H19O6N3P3F36) 52 1221.9910 1221.9912 -0.00022 -0.18 ultramark (C26H19O6N3P3F40) 54 1321.9856 1321.9848 0.00079 0.60 ultramark (C28H19O6N3P3F44) 57 1421.9788 1421.9784 0.00034 0.24 ultramark (C30H19O6N3P3F48) 65 1521.9760 1521.9720 0.00392 2.58 ultramark (C32H19O6N3P3F52) 67 1621.96619 1621.9657 0.00054 0.33 ultramark (C34H19O6N3P3F56) 69 1721.9616 1721.9593 0.00229 1.33 ultramark (C36H19O6N3P3F60) 71 1821.9578 1821.9529 0.00489 2.68 ultramark (C38H19O6N3P3F64) 75 1921.9417 1921.9465 -0.00483 -2.51

180

SPECTRUM 4 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 229.143 229.1 229.97 1 3545 5.14 19906 2 230.145 230.11 230.64 1 482 0.7 2212 3 242.284 242.24 242.78 1 8588 12.45 47713 4 243.288 243.25 243.35 1 1647 2.39 8029.81 5 246.169 246.13 246.25 0 1376 1.99 7300.31 6 337.08 337.02 338 1 2133 3.09 13277 7 338.087 338.03 338.28 1 405 0.59 2661 8 472.142 472.04 472.31 1 5369 7.78 40386.59 9 473.149 473.05 474.02 1 1588 2.3 10979 10 474.141 474.05 475.03 1 2498 3.62 19373 11 475.146 475.06 475.47 1 1035 1.5 7428 12 476.151 475.96 477.03 1 69004 100 530828.31 13 477.156 477.07 477.83 1 19333 28.02 144636 14 478.157 478.08 479.06 1 3301 4.78 23633 15 479.165 479.09 479.24 0 311 0.45 1939 16 493.178 493.09 494.05 1 3346 4.85 23750 17 494.169 494.09 495.07 1 1994 2.89 14818 18 495.165 495.1 498.02 1 348 0.5 1956 19 498.135 498.05 499.05 0 899 1.3 5369 20 609.28 609.16 610.08 1 1683 2.44 14061 21 610.286 610.12 611.16 1 535 0.78 3960 22 922.003 921.89 922.84 0 254 0.37 2135 23 943.278 943.09 944.08 1 534 0.77 5042 24 944.276 944.15 945.06 1 243 0.35 1949 25 945.28 945.13 945.57 1 458 0.66 4814 26 946.281 946.15 947.03 1 259 0.37 2361 27 947.287 947.1 948.07 1 7507 10.88 79924 28 948.292 948.13 949.05 1 4019 5.82 40064 29 949.287 949.12 950.06 1 4220 6.12 43541 30 950.291 950.13 951.04 1 2363 3.42 23747 31 951.296 951.11 952.06 1 9384 13.6 97796 32 952.3 952.13 953.08 1 4821 6.99 48424

181

33 953.303 953.15 954.07 1 1233 1.79 11877 34 954.306 954.14 954.53 1 215 0.31 1795 35 960.306 960.15 961.1 1 1977 2.86 18761 36 961.305 961.17 962.07 1 933 1.35 8237 37 962.303 962.14 963.1 1 1897 2.75 18932 38 963.306 963.17 964.06 1 992 1.44 8681 39 964.313 964.13 965.09 1 6805 9.86 71961 40 965.317 965.15 966.09 1 3645 5.28 34960 41 966.316 966.16 967.08 1 3772 5.47 38856 42 967.315 967.15 967.93 1 1942 2.81 18857 43 968.322 968 969.09 1 52238 75.7 561202 44 969.326 969.16 970.1 1 27837 40.34 288867.06 45 970.329 970.17 971.1 1 8390 12.16 84765 46 971.329 971.17 971.55 1 1714 2.48 17216.45 47 973.276 973.13 974.1 0 499 0.72 3992 48 1022.01 1021.83 1022.82 0 929 1.35 9365 49 1084.43 1084.18 1085.01 0 211 0.31 1752 50 1122 1121.8 1122.73 1 2356 3.41 27149 51 1123 1122.83 1123.69 1 509 0.74 5173 52 1221.99 1221.73 1222.71 1 3324 4.82 40392.44 53 1223 1222.82 1223.7 1 727 1.05 7541 54 1321.99 1321.74 1322.68 1 3710 5.38 46678.52 55 1322.99 1322.79 1323.72 1 969 1.4 9892 56 1324.95 1324.7 1325.69 0 199 0.29 2216 57 1421.98 1421.69 1422.33 1 3703 5.37 47631 58 1422.98 1422.75 1423.23 1 1006 1.46 10726 59 1426.45 1426.22 1426.72 1 341 0.49 3571 60 1427.44 1427.22 1428.13 1 202 0.29 2050 61 1439.47 1439.27 1440 0 224 0.32 2290 62 1443.47 1443.22 1443.82 1 1493 2.16 17780 63 1444.47 1444.22 1444.83 1 1146 1.66 13073.04 64 1445.47 1445.26 1446.17 1 389 0.56 4333 65 1521.98 1521.58 1522.64 1 3094 4.48 41074 66 1522.98 1522.75 1523.68 1 875 1.27 9932 67 1621.97 1621.64 1622.6 1 2248 3.26 30525

182

68 1622.97 1622.72 1623.66 1 641 0.93 7646 69 1721.96 1721.62 1722.55 1 1324 1.92 18373 70 1722.96 1722.71 1723.63 1 377 0.55 4447 Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 71 1821.96 1821.64 1822.55 1 685 0.99 9030 72 1822.96 1822.71 1823.3 1 189 0.27 2347 73 1918.61 1918.3 1919.18 1 202 0.29 2473 74 1919.62 1919.34 1920.21 1 213 0.31 2498 75 1921.94 1921.43 1922.55 0 214 0.31 2893

183

IR Spectra and Mass Spectrometry Data of Di-tert-butyl Catalyst

IR Spectrum

A IR spectrum of this catalyst can be seen in Chapter 2, Section 1.

HR-ESI-MS data

The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data.

isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

184

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 + + + [M+H] [M+H+1] [M+Na] mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

Expected Data

Vanadium(di-tert-butyl) Complex C36H52N2O3V1 M+ [M+H]+ [M+H+1]+ [2M+H]+ mass 611.3412 612.3490 613.3553 1223.6907

Representative Spectrum

A representative spectrum of this data can be seen in Chapter 2, Section 1.

185

Summary of Results error nominal SPECTRUM 95% m/z Name 1 2 3 4 avg sd CI furthest 609.3 Reserpine 4.78 8.88 4.48 6.17 6.08 2.01 3.20 9.27 + 611.3 M 2.70 2.91 1.81 5.40 3.20 1.54 2.44 5.65 + 612.3 [M+H] 4.31 3.81 1.62 5.50 3.81 1.63 2.59 6.40 + 613.4 [M+1] -8.45 -5.46 -4.18 -5.76 -5.96 1.79 2.85 -8.82 ultramark 1022.0 (C20H19O6N3P3F28) -3.58 -1.98 -3.52 -0.24 -2.33 1.58 2.51 -4.84 ultramark 1122.0 (C22H19O6N3P3F32) -1.76 -0.56 -2.52 0.20 -1.16 1.21 1.93 -3.09 ultramark 1222.0 (C24H19O6N3P3F36) -1.08 -0.58 -2.38 2.01 -0.51 1.84 2.93 -3.44 ultramark 1322.0 (C26H19O6N3P3F40) -0.42 -0.70 -1.72 2.44 -0.10 1.78 2.84 -2.94 ultramark 1422.0 (C28H19O6N3P3F44) 0.32 0.32 -0.45 3.16 0.84 1.59 2.53 3.37 ultramark 1522.0 (C30H19O6N3P3F48) 3.14 1.22 -0.79 3.70 1.82 2.04 3.24 5.06 ultramark 1622.0 (C32H19O6N3P3F52) 2.14 2.29 0.48 5.07 2.50 1.90 3.03 5.53 ultramark 1722.0 (C34H19O6N3P3F56) 2.89 2.89 2.39 5.65 3.45 1.48 2.36 5.81 ultramark 1822.0 (C36H19O6N3P3F60) 4.76 4.56 1.75 7.04 4.53 2.17 3.45 7.98 ultramark 1921.9 (C38H19O6N3P3F64) 3.96 5.17 3.52 7.27 4.98 1.68 2.67 7.65

186

Data

SPECTRUM 1 True value Error Centroid Index Mass amu amu ppm Reserpine 11 609.2835 609.2806 0.0029 4.78 M+ 13 611.3428 611.3412 0.0016 2.70 [M+H]+ 14 612.3477 612.3451 0.0026 4.31 [M+1]+ 15 613.3501 613.3553 -0.0052 -8.45 ultramark (C20H19O6N3P3F28) 25 1022.0003 1022.0040 -0.0037 -3.58 ultramark (C22H19O6N3P3F32) 33 1121.9956 1121.9976 -0.0020 -1.76 ultramark (C24H19O6N3P3F36) 41 1221.9899 1221.9912 -0.0013 -1.08 ultramark (C26H19O6N3P3F40) 52 1321.9843 1321.9848 -0.0006 -0.42 ultramark (C28H19O6N3P3F44) 60 1421.9789 1421.9784 0.0005 0.32 ultramark (C30H19O6N3P3F48) 67 1521.9768 1521.9720 0.0048 3.14 ultramark (C32H19O6N3P3F52) 73 1621.9691 1621.9657 0.0035 2.14 ultramark (C34H19O6N3P3F56) 80 1721.9642 1721.9593 0.0050 2.89 ultramark (C36H19O6N3P3F60) 85 1821.9616 1821.9529 0.0087 4.76 ultramark (C38H19O6N3P3F64) 88 1921.9541 1921.9465 0.0076 3.96

SPECTRUM 1 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 279.09689 279.06 279.13 0 637 0.79 3243 2 338.34457 338.31 338.38 0 827 1.02 4021 3 469.35446 469.28 469.4 0 382 0.47 2786 4 471.10797 471.05 471.22 1 3986 4.92 27607 5 472.11639 472.06 472.16 1 1097 1.35 6753 6 473.10361 473.05 473.2 1 2169 2.68 18347 7 474.11176 474.05 474.16 1 747 0.92 4012 8 547.42419 547.33 547.53 1 1942 2.4 18290

187

9 548.43195 548.37 548.53 1 877 1.08 6295 10 608.34778 608.29 608.39 0 480 0.59 3158.03 11 609.28351 609.21 609.45 1 3358 4.15 32399 12 610.29688 610.22 610.42 1 1586 1.96 14433 13 611.34283 611.26 611.5 1 75946 93.75 695982 15 613.3501 613.28 613.51 1 8570 10.58 76084 16 614.3551 614.24 614.45 1 1282 1.58 11026.1 17 836.03143 835.96 836.57 0 426 0.53 2740 18 908.00018 907.89 908.08 0 747 0.92 6542 19 922.00946 921.89 922.19 1 13599 16.79 145672 20 923.01331 922.93 923.76 1 2434 3 22703 21 924.03619 923.94 924.14 1 455 0.56 2959 22 936.02881 935.88 936.17 0 1330 1.64 11506 23 946.00964 945.91 946.12 0 872 1.08 7944 24 1007.98584 1007.87 1008.14 0 1440 1.78 12975 25 1022.00031 1021.86 1022.21 1 37621 46.44 442731 26 1023.00861 1022.89 1023.18 1 8280 10.22 83035 27 1024.01367 1023.91 1024.08 1 1585 1.96 11326.8 28 1036.01672 1035.9 1036.18 1 2183 2.69 23694 29 1037.02161 1036.95 1037.13 1 623 0.77 3102 30 1046.00146 1045.89 1046.15 1 1475 1.82 15551 31 1047.01501 1046.92 1047.09 1 435 0.54 2762 32 1107.98596 1107.85 1108.13 0 1550 1.91 15549 33 1121.99561 1121.84 1122.22 1 67005 82.71 823511 34 1123.00562 1122.89 1123.2 1 15915 19.65 163927 35 1124.01099 1123.88 1124.22 1 2801 3.46 31783 36 1125.01526 1124.92 1125.11 1 494 0.61 5040 37 1136.01294 1130.79 1136.16 0 2786 3.44 29087 38 1145.99792 1145.87 1146.15 0 1803 2.23 18084 39 1207.98254 1207.85 1208.18 0 1253 1.55 13660 40 1221.77222 1221.52 1221.82 0 578 0.71 4544 41 1221.98987 1221.82 1222.24 1 80383 99.22 1032262 42 1222.99854 1222.87 1223.73 1 19169 23.66 222795 43 1224.00525 1223.88 1224.27 1 3759 4.64 38605 44 1224.69324 1224.58 1224.84 1 1150 1.42 7039.43

188

45 1225.02441 1224.84 1225.18 1 761 0.94 8299.2 46 1225.71301 1225.56 1225.86 1 386 0.48 3377 47 1236.00781 1235.89 1236.18 0 2529 3.12 28027 48 1245.9939 1245.87 1246.13 0 1267 1.56 13453 49 1272.01245 1271.87 1272.09 0 537 0.66 4786 51 1321.7594 1321.61 1321.8 0 749 0.92 4424.1 52 1321.98425 1321.8 1322.24 1 81011 100 1094752 53 1322.9917 1322.86 1323.22 1 21300 26.29 242146 54 1323.99695 1323.86 1324.32 1 3847 4.75 46362 55 1325.00696 1324.82 1325.19 1 890 1.1 9252.31 56 1336.00439 1335.87 1336.17 0 2242 2.77 22957 57 1345.99963 1342.06 1346.13 0 964 1.19 7950 58 1371.99475 1371.85 1372.09 0 741 0.91 6000 59 1407.9801 1407.84 1408.1 0 553 0.68 4977 60 1421.97888 1421.51 1422.25 1 72236 89.17 1012988 61 1422.98828 1422.84 1423.2 1 19393 23.94 238783 62 1423.99561 1423.85 1424.25 1 3706 4.57 41076 63 1425.00598 1424.76 1425.08 1 1431 1.77 7624.6 64 1425.1134 1425.08 1425.3 0 671 0.83 3722.48 65 1435.98816 1435.85 1436.13 0 1097 1.35 12544 66 1471.98657 1471.86 1472.14 0 777 0.96 6738 67 1521.97681 1521.78 1522.26 1 57878 71.44 828202 68 1522.98633 1522.82 1523.21 1 16982 20.96 208879 69 1523.99475 1523.85 1524.25 1 3353 4.14 36548 70 1525.01404 1524.69 1525.19 1 884 1.09 11161.1 71 1536.00769 1535.86 1536.15 0 681 0.84 6180 72 1571.97681 1571.83 1572.12 0 519 0.64 4951 73 1621.96912 1621.61 1622.28 1 40320 49.77 606389 74 1622.97742 1622.82 1623.19 1 12694 15.67 160252 75 1623.98511 1623.83 1624.4 1 2654 3.28 27211 76 1624.98279 1624.76 1625.1 1 733 0.9 7762 77 1628.97815 1628.86 1630.03 0 378 0.47 3843 78 1672.00452 1671.83 1672.15 0 617 0.76 4072 79 1721.46033 1721.31 1721.68 0 238 0.29 3499.49 80 1721.96423 1721.68 1722.28 1 24716 30.51 393197 81 1722.97632 1722.8 1723.21 1 8895 10.98 107533

189

82 1723.97815 1723.85 1724.16 1 1754 2.17 16513 83 1724.98792 1724.78 1725.15 1 535 0.66 4715 84 1729.01685 1728.83 1729.15 0 461 0.57 3436 85 1821.96155 1821.57 1822.3 1 13673 16.88 215177 86 1822.96362 1822.77 1823.18 1 4870 6.01 63686 87 1824.0116 1823.85 1824.2 1 979 1.21 9399 88 1921.9541 1921.72 1922.3 1 6000 7.41 93682 89 1922.9585 1922.78 1923.22 1 2150 2.65 28332 90 1924.03711 1923.83 1924.19 1 439 0.54 4420

SPECTRUM 2 True value Error Centroid Index Mass amu amu ppm Reserpine 10 609.2860 609.2806 0.0054 8.88 M+ 12 611.3430 611.3412 0.0018 2.91 [M+H]+ 13 612.3474 612.3451 0.0023 3.81 [M+1]+ 14 613.3519 613.3553 -0.0034 -5.46 ultramark (C20H19O6N3P3F28) 23 1022.0020 1022.0040 -0.0020 -1.98 ultramark (C22H19O6N3P3F32) 29 1121.9970 1121.9976 -0.0006 -0.56 ultramark (C24H19O6N3P3F36) 38 1221.9905 1221.9912 -0.0007 -0.58 ultramark (C26H19O6N3P3F40) 48 1321.9839 1321.9848 -0.0009 -0.70 ultramark (C28H19O6N3P3F44) 57 1421.9789 1421.9784 0.0005 0.32 ultramark (C30H19O6N3P3F48) 64 1521.9739 1521.9720 0.0019 1.22 ultramark (C32H19O6N3P3F52) 71 1621.9694 1621.9657 0.0037 2.29 ultramark (C34H19O6N3P3F56) 77 1721.9642 1721.9593 0.0050 2.89 ultramark (C36H19O6N3P3F60) 82 1821.9612 1821.9529 0.0083 4.56 ultramark (C38H19O6N3P3F64) 85 1921.9564 1921.9465 0.0099 5.17

190

SPECTRUM 2 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 338.34 338.31 338.4 0 732 0.88 4504 2 469.358 469.29 469.45 0 613 0.74 3090 3 471.106 471.05 471.21 1 3640 4.39 28596 4 472.111 472.05 472.17 1 1032 1.25 6502.98 5 473.102 473.05 473.2 1 2611 3.15 18922 6 474.103 474.06 474.16 1 596 0.72 3706 7 547.426 547.36 547.52 1 2064 2.49 16649 8 548.428 548.21 548.5 1 852 1.03 5752.51 9 608.354 608.29 608.43 0 500 0.6 3359.01 10 609.286 609.21 609.43 1 2413 2.91 26316 11 610.305 610.17 610.42 1 1064 1.28 11092.65 12 611.343 611.25 611.5 1 72823 87.92 671372 13 612.347 612.26 612.5 1 33159 40.03 303392 14 613.352 613.27 613.49 1 7532 9.09 72100 15 614.36 614.28 614.43 1 1388 1.68 11144.5 16 907.975 907.9 908.13 0 758 0.92 7130 17 922.007 921.84 922.19 1 13342 16.11 140235 18 923.014 922.93 923.13 1 2397 2.89 24046 19 924.036 923.93 924.17 1 483 0.58 3533 20 936.023 935.93 936.17 0 1116 1.35 10977 21 946.013 945.9 946.16 0 795 0.96 8074 22 1007.98 1007.87 1008.16 0 1220 1.47 13172 23 1022 1021.85 1022.22 1 38389 46.35 442973 24 1023.01 1022.89 1023.18 1 8130 9.82 80291 25 1024.02 1023.9 1024.13 1 1715 2.07 16327.99 26 1036.02 1035.9 1036.18 0 2572 3.11 23981 27 1046 1045.89 1046.13 0 1557 1.88 16737 28 1107.98 1107.85 1108.17 0 1592 1.92 16844 29 1122 1121.84 1122.23 1 66861 80.72 823337 30 1123 1122.89 1123.19 1 15918 19.22 163229 31 1124.01 1123.9 1124.29 1 2982 3.6 33141 32 1124.92 1124.87 1125.11 1 655 0.79 6593.99

191

33 1136.01 1135.88 1136.16 1 2814 3.4 30186 34 1137.02 1136.93 1137.1 1 470 0.57 2838 35 1146 1145.86 1146.14 0 1591 1.92 17484 36 1207.98 1207.85 1208.13 0 1335 1.61 14296 37 1221.66 1221.32 1221.73 0 426 0.51 5416.29 38 1221.99 1221.73 1222.24 1 79430 95.9 1046804 39 1223 1222.87 1223.18 1 19518 23.56 220790 41 1224.7 1224.56 1224.87 0 804 0.97 8996 42 1225.02 1224.87 1225.29 1 969 1.17 11847 43 1236 1235.88 1236.16 1 2820 3.4 29116 44 1237.01 1236.92 1237.11 1 395 0.48 3153 45 1246 1245.87 1246.12 0 1327 1.6 13608 46 1271.96 1271.86 1272.1 0 460 0.56 4906 47 1307.97 1307.84 1308.16 0 1043 1.26 9820 48 1321.98 1321.65 1322.26 1 82827 100 1111206.13 49 1322.99 1322.86 1323.19 1 22094 26.67 245769 50 1324 1323.86 1324.23 1 4159 5.02 44621 51 1325.01 1324.75 1325.24 1 954 1.15 16807 52 1325.31 1325.24 1325.46 0 451 0.54 3807 53 1336 1335.87 1336.17 0 2169 2.62 22527 54 1346 1345.87 1346.13 0 907 1.1 8124 55 1371.99 1371.85 1372.08 0 693 0.84 6044 56 1407.96 1407.84 1408.13 0 612 0.74 5345 57 1421.98 1421.79 1422.25 1 72033 86.97 1004584.94 58 1422.99 1422.84 1423.19 1 19379 23.4 237436 59 1423.99 1423.85 1424.21 1 4155 5.02 43108 60 1425.01 1424.77 1425.13 1 1132 1.37 13211 61 1436 1435.87 1436.15 0 1355 1.64 14202 62 1445.94 1445.85 1446.09 0 401 0.48 2865 63 1471.99 1471.83 1472.13 0 819 0.99 6963 64 1521.97 1521.56 1522.27 1 57390 69.29 844725.88 65 1522.98 1522.82 1523.21 1 16922 20.43 205542 66 1523.99 1523.85 1524.22 1 3381 4.08 34841 67 1524.99 1524.77 1525.12 1 929 1.12 7064.16 68 1536 1535.86 1536.15 0 652 0.79 6465 69 1572.01 1571.8 1572.13 0 644 0.78 5509

192

70 1621.62 1621.41 1621.71 0 410 0.5 2797.5 71 1621.97 1621.71 1622.26 1 40952 49.44 615592.81 72 1622.98 1622.82 1623.21 1 12304 14.86 157196 73 1623.98 1623.83 1624.25 1 2110 2.55 25284 74 1625.01 1624.8 1625.28 1 860 1.04 9206 75 1629 1628.86 1629.1 0 489 0.59 3471 76 1671.96 1671.83 1672.12 0 362 0.44 3911 77 1721.96 1721.67 1722.28 1 25865 31.23 403346 78 1722.97 1722.8 1723.21 1 8542 10.31 109752 79 1724 1723.82 1724.13 1 1748 2.11 17799 80 1725.01 1724.84 1725.08 1 459 0.55 4097 81 1728.93 1728.83 1729.08 0 315 0.38 2974 82 1821.96 1821.63 1822.3 1 13800 16.66 223512 83 1822.97 1822.77 1823.22 1 4789 5.78 61685 84 1824 1823.82 1824.2 1 1245 1.5 11576 85 1921.96 1921.72 1922.27 1 6381 7.7 95419 86 1922.97 1922.78 1923.22 1 2388 2.88 26510 87 1923.98 1923.87 1924.19 1 374 0.45 3364 89 1922.96 1922.78 1923.22 1 2150 2.65 28332 90 1924.04 1923.83 1924.19 1 439 0.54 4420

193

True SPECTRUM 3 value Error Centroid Index Mass amu amu ppm Reserpine 10 609.2833 609.2806 0.0027 4.48 M+ 12 611.3423 611.3412 0.0011 1.81 [M+H]+ 13 612.3461 612.3451 0.0010 1.62 [M+1]+ 14 613.3527 613.3553 -0.0026 -4.18 ultramark (C20H19O6N3P3F28) 23 1022.0004 1022.0040 -0.0036 -3.52 ultramark (C22H19O6N3P3F32) 30 1121.9948 1121.9976 -0.0028 -2.52 ultramark (C24H19O6N3P3F36) 38 1221.9883 1221.9912 -0.0029 -2.38 ultramark (C26H19O6N3P3F40) 50 1321.9825 1321.9848 -0.0023 -1.72 ultramark (C28H19O6N3P3F44) 58 1421.9778 1421.9784 -0.0006 -0.45 ultramark (C30H19O6N3P3F48) 65 1521.9708 1521.9720 -0.0012 -0.79 ultramark (C32H19O6N3P3F52) 73 1621.9664 1621.9657 0.0008 0.48 ultramark (C34H19O6N3P3F56) 79 1721.9634 1721.9593 0.0041 2.39 ultramark (C36H19O6N3P3F60) 84 1821.9561 1821.9529 0.0032 1.75 ultramark (C38H19O6N3P3F64) 87 1921.9533 1921.9465 0.0068 3.52

SPECTRUM 3 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 279.094 279.06 279.13 0 463 0.6 2597 2 338.343 338.31 338.39 0 575 0.75 3405 3 469.356 468.27 469.42 0 374 0.49 3050 4 471.108 471.05 471.32 1 3340 4.33 26967 5 472.109 472.05 472.3 1 915 1.19 7382 6 473.107 473.05 473.16 1 2294 2.98 15035 7 474.102 474.05 474.16 1 629 0.82 3612 8 547.429 547.36 547.53 1 2035 2.64 15720 9 548.425 548.36 548.54 1 881 1.14 5968 10 609.283 609.21 609.45 1 2804 3.64 22745

194

11 610.289 610.21 610.32 1 995 1.29 2760.79 12 611.342 611.19 611.5 1 70283 91.2 642069 13 612.346 612.27 613.16 1 32548 42.23 288691 14 613.353 613.27 613.49 1 7710 10 68460 15 614.353 614.27 614.42 1 1156 1.5 7685.53 16 907.985 907.5 908.19 0 682 0.88 5994 17 922.007 921.89 922.2 1 12452 16.16 132390 18 923.008 922.9 923.15 1 2405 3.12 21828 19 924.014 923.94 924.08 1 423 0.55 2795 20 936.028 935.92 936.12 0 1255 1.63 11247 21 946.007 945.9 946.14 0 763 0.99 7278 22 1007.98 1007.87 1008.14 0 1159 1.5 11990 23 1022 1021.86 1022.21 1 35945 46.64 414297 24 1023 1022.89 1023.18 1 7615 9.88 75603 25 1024.01 1023.9 1024.22 1 1452 1.88 14261 26 1036.01 1035.9 1036.18 1 2299 2.98 22594 27 1037.02 1036.94 1037.94 1 467 0.61 2617 28 1046 1045.88 1046.13 0 1418 1.84 14671 29 1107.98 1107.86 1108.12 0 1266 1.64 14184 30 1121.99 1121.82 1122.22 1 62858 81.56 762553 31 1123 1122.89 1123.19 1 14681 19.05 155011 32 1124 1123.88 1124.27 1 2297 2.98 28922 33 1125.02 1124.84 1125.21 1 571 0.74 6771 34 1136.01 1134 1136.18 1 2698 3.5 28272 35 1137.02 1136.95 1137.1 1 653 0.85 2853 36 1145.99 1145.87 1146.16 0 1441 1.87 15237 37 1207.99 1206.94 1208.16 0 1051 1.36 13104 38 1221.99 1221.52 1222.24 1 75064 97.4 971875 39 1222.99 1222.87 1223.18 1 18312 23.76 202699 40 1224 1223.88 1224.22 1 3631 4.71 38041 41 1224.74 1224.61 1224.82 1 942 1.22 7247 42 1224.98 1224.82 1225.21 1 796 1.03 9825 43 1225.7 1225.44 1225.8 1 332 0.43 3531 44 1236.01 1227.34 1236.16 1 2840 3.69 28235 45 1237.01 1236.92 1237.1 1 358 0.46 2883

195

46 1245.99 1245.86 1246.13 0 1292 1.68 13149 47 1272.01 1271.86 1272.09 0 482 0.63 4146 48 1307.97 1307.83 1308.12 0 964 1.25 8870 49 1321.77 1321.6 1321.8 0 663 0.86 3589.79 50 1321.98 1321.8 1322.24 1 77067 100 1029426 51 1322.99 1322.86 1323.19 1 19954 25.89 230326 52 1323.99 1323.86 1324.3 1 3902 5.06 45519 53 1325.01 1324.81 1325.19 1 1196 1.55 12712 54 1336 1335.87 1336.17 0 1820 2.36 19450 55 1345.99 1345.87 1346.11 0 942 1.22 7888 56 1371.99 1371.85 1372.09 0 573 0.74 5109 57 1407.98 1407.84 1408.12 0 542 0.7 5199 58 1421.98 1421.47 1422.25 1 66916 86.83 946431 59 1422.99 1422.84 1423.19 1 18505 24.01 221965 60 1424 1423.86 1424.24 1 3736 4.85 37075 61 1425.05 1424.83 1425.13 1 1118 1.45 11833 62 1436 1435.85 1436.93 0 1269 1.65 14397 63 1445.98 1445.88 1446.07 0 345 0.45 2884 64 1471.98 1471.84 1472.13 0 653 0.85 6298 65 1521.97 1521.69 1522.26 1 53749 69.74 771867 66 1522.98 1522.82 1523.21 1 15976 20.73 193791 67 1523.99 1523.85 1524.21 1 2849 3.7 31679 68 1524.93 1524.83 1525.21 1 873 1.13 10721 69 1525.92 1525.82 1526.14 1 387 0.5 2934 70 1529.04 1528.86 1529.11 0 450 0.58 2583 71 1536 1529.99 1536.11 0 794 1.03 5533 72 1571.99 1571.84 1572.09 0 554 0.72 4498 73 1621.97 1621.71 1622.26 1 38465 49.91 569641 74 1622.98 1622.82 1623.21 1 11718 15.2 146701 75 1623.98 1623.83 1624.31 1 2206 2.86 26813 76 1624.99 1624.8 1625.09 1 635 0.82 6208 77 1628.95 1628.5 1629.22 0 467 0.61 3486 78 1671.98 1671.83 1672.1 0 447 0.58 4412 79 1721.96 1721.6 1722.28 1 24411 31.68 373344 81 1723.99 1723.82 1724.28 1 1765 2.29 17977 82 1724.99 1724.78 1725.21 1 509 0.66 5281

196

83 1728.99 1728.83 1729.09 0 511 0.66 2921 84 1821.96 1821.66 1822.28 1 12928 16.78 203811 85 1822.97 1822.77 1823.22 1 4340 5.63 57620 86 1823.96 1823.82 1824.29 1 1152 1.49 10439 87 1921.95 1921.72 1922.24 1 5971 7.75 85885 88 1922.95 1922.76 1923.17 1 2289 2.97 26772 89 1923.98 1923.83 1924.13 1 601 0.78 4156

SPECTRUM 4 True value Error Centroid Index Mass amu amu ppm Reserpine 9 609.2844 609.2806 0.0038 6.17 M+ 11 611.3445 611.3412 0.0033 5.40 [M+H]+ 12 612.3485 612.3451 0.0034 5.50 [M+1]+ 13 613.3518 613.3553 -0.0035 -5.76 ultramark (C20H19O6N3P3F28) 22 1022.0037 1022.0040 -0.0002 -0.24 ultramark (C22H19O6N3P3F32) 28 1121.9978 1121.9976 0.0002 0.20 ultramark (C24H19O6N3P3F36) 36 1221.9937 1221.9912 0.0025 2.01 ultramark (C26H19O6N3P3F40) 45 1321.9880 1321.9848 0.0032 2.44 ultramark (C28H19O6N3P3F44) 53 1421.9829 1421.9784 0.0045 3.16 ultramark (C30H19O6N3P3F48) 60 1521.9777 1521.9720 0.0056 3.70 ultramark (C32H19O6N3P3F52) 68 1621.9739 1621.9657 0.0082 5.07 ultramark (C34H19O6N3P3F56) 74 1721.9690 1721.9593 0.0097 5.65 ultramark (C36H19O6N3P3F60) 78 1821.9657 1821.9529 0.0128 7.04 ultramark (C38H19O6N3P3F64) 81 1921.9605 1921.9465 0.0140 7.27

SPECTRUM 4 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 338.348 338.1 338.38 0 576 0.79 2631 2 471.11 471.05 471.22 1 4004 5.5 25933 3 472.113 472.06 472.19 1 1049 1.44 6126

197

4 473.106 473.05 473.22 1 2202 3.02 17006 5 474.114 474.05 474.22 1 716 0.98 3682 6 547.431 547.37 547.55 1 1862 2.56 14463 8 608.346 608.26 608.39 0 554 0.76 2761.02 9 609.284 609.18 609.43 1 1950 2.68 18275 10 610.315 610.22 610.42 1 854 1.17 10143 11 611.344 611.26 611.5 1 66242 90.95 585877 12 612.348 612.27 612.5 1 29240 40.15 260981 13 613.352 613.24 613.49 1 6844 9.4 61001 14 614.346 614.3 614.46 1 1102 1.51 8324.52 15 908.004 907.89 908.12 0 564 0.77 4945 16 922.008 921.9 922.19 1 11848 16.27 125531 17 923.012 922.93 923.15 1 2000 2.75 20158 18 924.047 923.94 924.11 1 433 0.59 2517 19 936.028 935.93 936.12 0 1129 1.55 9127 20 946.011 945.9 946.17 0 843 1.16 6169 21 1007.99 1007.87 1008.14 0 1145 1.57 11357 22 1022 1021.86 1022.22 1 34205 46.97 388188 23 1023.01 1022.91 1023.16 1 7468 10.25 73181 24 1024.02 1023.9 1024.29 1 1519 2.09 14267 25 1036.02 1035.91 1036.15 0 2068 2.84 20538 26 1046 1045.89 1046.13 0 1412 1.94 14018 27 1107.98 1107.85 1108.17 0 1261 1.73 14357 28 1122 1121.72 1122.22 1 59341 81.48 723674 29 1123.01 1122.89 1123.17 1 13525 18.57 144428 30 1124.01 1123.88 1124.24 1 2527 3.47 27156 31 1125.01 1124.89 1125.11 1 655 0.9 5996 32 1136.01 1135.89 1136.16 1 2706 3.72 27365 33 1137.04 1136.94 1137.14 1 484 0.66 3103 34 1146 1145.89 1146.15 0 1489 2.04 15930 35 1207.98 1207.83 1208.13 0 1043 1.43 10854 36 1221.99 1221.73 1222.24 1 70110 96.27 907452 37 1223 1222.87 1223.18 1 16939 23.26 195484 38 1224.01 1223.88 1224.27 1 3289 4.52 36114 39 1224.69 1224.58 1224.82 0 784 1.08 8005.98

198

40 1225.01 1224.92 1225.13 1 908 1.25 6365 41 1236.01 1235.89 1236.18 0 2551 3.5 26048 42 1246 1245.87 1246.11 0 1342 1.84 12671 43 1272 1271.87 1272.11 0 482 0.66 4309 44 1307.99 1307.84 1308.12 0 748 1.03 8148 45 1321.99 1321.8 1322.24 1 72830 100 962207 46 1323 1322.86 1323.19 1 18178 24.96 216551 47 1324 1323.86 1324.31 1 3707 5.09 39515 48 1325.01 1324.86 1325.27 1 952 1.31 12302.9 49 1336 1335.87 1336.15 0 1606 2.21 18176 50 1345.98 1345.87 1347.04 0 890 1.22 7135 51 1371.98 1371.85 1373.02 0 598 0.82 4965 52 1407.97 1407.84 1408.12 0 583 0.8 4601 53 1421.98 1421.73 1422.27 1 63541 87.25 872818 54 1422.99 1422.85 1423.19 1 17783 24.42 208597 55 1424 1423.86 1424.29 1 3223 4.43 35463 56 1425.06 1424.91 1425.13 1 977 1.34 5180.39 57 1436.01 1435.85 1436.13 0 1243 1.71 11353 58 1446.01 1445.85 1446.09 0 474 0.65 2659 59 1471.94 1471.86 1472.13 0 597 0.82 5464 60 1521.98 1521.65 1522.26 1 50302 69.07 720355 61 1522.99 1522.82 1523.21 1 14671 20.14 178531 62 1523.99 1523.85 1524.17 1 3026 4.15 30423 63 1525.01 1524.83 1525.18 1 878 1.21 8443.47 64 1525.34 1525.27 1525.53 4 378 0.52 2605 65 1525.57 1525.53 1525.8 4 219 0.3 2463 66 1535.99 1530.02 1536.15 0 562 0.77 5572 67 1571.99 1571.85 1572.13 0 537 0.74 4596 68 1621.97 1621.59 1622.26 1 35985 49.41 532688 69 1622.98 1622.82 1623.21 1 10724 14.72 137608 70 1623.99 1623.83 1624.19 1 2516 3.45 23832 71 1624.98 1624.8 1625.09 1 629 0.86 5748 72 1629 1628.86 1629.11 0 452 0.62 3045 73 1671.97 1671.86 1672.13 0 372 0.51 3659 74 1721.97 1721.68 1722.28 1 22862 31.39 345236 75 1722.98 1722.8 1723.21 1 7574 10.4 93709

199

76 1723.99 1723.85 1724.59 1 1632 2.24 16458 77 1729 1728.83 1730.06 0 389 0.53 2680 78 1821.97 1821.68 1822.28 1 12223 16.78 187889 79 1822.96 1822.77 1823.18 1 4049 5.56 53082 80 1823.97 1823.82 1824.13 1 1007 1.38 8539 81 1921.96 1921.36 1922.26 1 5269 7.23 79727 82 1922.97 1922.78 1923.2 1 1786 2.45 22449 83 1923.95 1923.87 1924.16 1 431 0.59 3164

200

IR Spectra and Mass Spectrometry Data of Nitro Catalyst

IR Spectrum 659.99

717.12

724.86

754.72

784.41

806.60

836.95

872.60

904.94

943.78

917.16 980.72 989.08

1030.21

1101.78

1130.50 100 0 1152.53

1183.33

1246.88

1308.82

1388.50

1459.15

1491.62

1551.78

1597.46

1624.04 150 0

1653.05

200 0

250 0 Wavenumbers(cm-1)

2864.92

2934.49

300 0

350 0

30

35

40

45

50

55

60

65

70

75

80

85

90 95

%T

201

659.99

717.12

724.86

754.72

784.41

806.60

836.95

800

872.60

904.94

943.78

917.16

980.72

989.08

1030.21

100 0

1101.78

1130.50

1152.53

1183.33

1246.88 120 0

1308.82

1388.50

Wavenumbers(cm-1)

140 0 1459.15

1491.62

1551.78

1597.46

1624.04

160 0

1653.05

180 0

30

35

40

45

50

55

60

65

70

75

80

85

90 95 %T

202

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

203

Expected Data

Vanadium(Nitro) Complex C20H18N4O7V1 M+ [M+H]+ [M+H+1]+ [2M+H]+ mass 477.0609 478.0687 479.0721 955.13

Representative Spectrum

204

Summary of Results

Error Nominal SPECTRUM m/z Name 1 2 3 4 avg sd 95% furth CI est 242.3 TBA -5.41 -1.28 0.53 -2.36 -2.13 2.49 3.96 -6.09 477.1 M+ -0.44 10.6 12.1 4.92 6.78 5.72 9.10 15.9 478.1 [M+H]+ 0.93 1.83 3.10 -1.62 1.06 2.00 3.18 4.24 479.1 [M+1]+ -17.5 0.24 -10.9 -1.66 -7.46 8.29 13.19 -20.7 609.3 Reserpine [M+H]+ -1.24 1.76 2.06 2.67 1.31 1.74 2.77 4.08 610.3 Reserpine 2.17 3.07 2.87 3.66 2.94 0.61 0.98 3.92 [M+H+1]+ 955.1 [2M+H]+ 0.76 -1.92 -11.4 -4.61 -4.29 5.21 8.30 -12.6 1022.0 ultramark -2.87 0.29 0.41 -6.93 -2.27 3.45 5.50 -7.77 (C20H19O6N3P3F28) 1122.0 ultramark 0.20 1.72 2.05 -2.63 0.33 2.13 3.40 3.73 (C22H19O6N3P3F32) 1222.0 ultramark 1.01 1.51 4.01 0.32 1.71 1.61 2.56 4.27 (C24H19O6N3P3F36) 1322.0 ultramark -0.05 1.24 1.42 -0.61 0.50 0.99 1.57 2.07 (C26H19O6N3P3F40) 1422.0 ultramark -0.27 1.10 1.96 0.75 0.88 0.92 1.47 2.35 (C28H19O6N3P3F44) 1522.0 ultramark 0.01 0.65 3.78 -2.31 0.53 2.51 3.99 4.53 (C30H19O6N3P3F48) 1622.0 ultramark 0.41 1.01 4.17 -0.57 1.25 2.05 3.26 4.51 (C32H19O6N3P3F52) 1722.0 ultramark 1.61 -1.08 3.81 -1.72 0.66 2.55 4.06 4.71 (C34H19O6N3P3F56) 1822.0 ultramark 1.15 1.15 0.48 -1.20 0.39 1.11 1.76 2.16 (C36H19O6N3P3F60) 1921.9 ultramark 4.47 6.44 7.27 -1.62 4.14 4.02 6.39 10.5 (C38H19O6N3P3F64)

205

Data

SPECTRUM 1 True Error value Ind Centroid amu amu ppm ex Mass TBA 7 242.2829 242.2842 -0.00131 -5.41 M+ 41 477.0607 477.0609 -0.00021 -0.44 [M+H]+ 42 478.0692 478.0687 0.00044 0.929 [M+1]+ 43 479.0637 479.0721 -0.00840 -17.5 Reserpine [M+H]+ 46 609.2799 609.2806 -0.00076 -1.24 Reserpine [M+H+1]+ 47 610.2853 610.2840 0.00132 2.169 [2M+H]+ 50 955.1309 955.1302 0.00072 0.758 ultramark (C20H19O6N3P3F28) 51 1022.0010 1022.0040 -0.00293 -2.87 ultramark (C22H19O6N3P3F32) 53 1121.9978 1121.9976 0.00022 0.196 ultramark (C24H19O6N3P3F36) 56 1221.9924 1221.9912 0.00124 1.015 ultramark (C26H19O6N3P3F40) 61 1321.9847 1321.9848 -0.00007 -0.05 ultramark (C28H19O6N3P3F44) 67 1421.9780 1421.9784 -0.00039 -0.27 ultramark (C30H19O6N3P3F48) 74 1521.9721 1521.9720 0.00002 0.013 ultramark (C32H19O6N3P3F52) 81 1621.9663 1621.9657 0.00066 0.407 ultramark (C34H19O6N3P3F56) 86 1721.9620 1721.9593 0.00278 1.614 ultramark (C36H19O6N3P3F60) 90 1821.9550 1821.9529 0.00209 1.147 ultramark (C38H19O6N3P3F64) 92 1921.9551 1921.9465 0.00860 4.475

SPECTRUM 1 *Only peaks and areas >1% of BP shown* Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 229.14 229.1 229.2 1 6304 44.05 33915 2 229.22 229.2 229.68 0 295 2.06 436.95 3 230.14 230.11 230.92 1 966 6.75 4584 4 235.91 235.88 236 0 103 0.72 415 5 236.06 236.01 236.09 0 443 3.1 2100.4 6 238.06 238.02 238.88 0 213 1.49 897 7 242.28 242.21 243.02 1 14312 100 83445

206

8 243.28 243.24 243.34 1 2605 18.2 13690 9 243.36 243.34 243.83 0 109 0.76 310.6 10 244.29 244.25 244.49 0 224 1.56 937 11 246.17 246.12 247.12 1 2679 18.72 15151 12 247.17 247.13 247.2 1 277 1.93 1074.9 13 251.12 251.09 252.09 0 85 0.59 462 14 266.92 266.89 266.97 0 183 1.28 784.91 15 268.92 268.88 268.96 0 121 0.85 616 16 283.15 283.11 283.24 0 77 0.54 353 17 315.96 315.91 316.9 0 74 0.52 421 18 319.92 319.88 320.03 0 93 0.65 496 19 337.08 337.03 337.87 0 207 1.45 1072 20 338.93 338.87 339.84 1 42 0.3 237 21 339.93 339.87 340.86 1 99 0.69 434 22 340.93 340.87 341.84 1 120 0.84 620 23 341.92 341.87 342.84 1 87 0.61 480 24 342.92 342.87 343 1 69 0.48 402 25 343.93 343.87 344.82 1 56 0.39 354 26 344.89 344.84 345.83 0 64 0.44 357 27 359.2 359.15 360.88 0 96 0.67 619 28 363.9 363.86 364.85 0 49 0.34 209 29 377.22 377.16 378.16 0 49 0.34 285 30 391.29 391.21 391.83 0 68 0.47 388 31 409.12 409.04 409.85 0 77 0.54 416 32 412.12 412.06 412.54 0 49 0.34 322 33 414.12 414.06 415.86 0 44 0.31 211 34 419.32 419.27 420.08 0 45 0.31 216 35 448.12 448.04 448.17 0 280 1.96 1520.3 36 453.15 453.08 454.07 0 464 3.24 2850 37 455.15 455.08 455.21 0 173 1.21 1007.4 38 474.06 473.97 474.98 1 377 2.64 2446 39 475.06 475.01 475.96 1 60 0.42 301 40 476.06 475.99 476.11 1 175 1.22 922.52 41 477.06 476.96 477.31 1 288 2.01 1738 42 478.07 477.98 478.96 1 1242 8.68 9379 43 479.06 479 479.39 1 189 1.32 1174 44 607.27 607.18 608.15 1 230 1.61 1427

207

45 608.26 608.18 608.58 1 42 0.29 267 46 609.28 609.16 610.14 1 4784 33.43 41530 47 610.29 610.18 611.05 1 1455 10.16 11924 48 611.29 611.19 612.63 1 333 2.33 2097.3 49 922.01 921.87 922.85 0 312 2.18 2795 50 955.13 954.97 955.97 0 128 0.9 1000 51 1022 1021.8 1022.8 1 1305 9.12 13906 52 1023 1022.9 1023.8 1 167 1.17 1590 53 1122 1121.8 1122.7 1 2949 20.61 34045 54 1123 1122.8 1123.8 1 516 3.6 5331 55 1125 1124.8 1125.8 0 117 0.82 1017 56 1222 1221.6 1222.7 1 4110 28.72 51708 57 1223 1222.8 1223.8 1 941 6.57 9308 58 1224 1223.9 1224.7 0 55 0.38 493 59 1224.9 1224.8 1225.7 0 297 2.08 2987 60 1226.9 1226.8 1227.8 0 93 0.65 953 61 1322 1321.6 1322.7 1 4920 34.37 62888 62 1323 1322.8 1323.7 1 1244 8.69 13258 63 1324 1323.8 1324.6 1 140 0.97 1311 64 1324.9 1324.7 1325.7 0 351 2.45 3792 65 1326.9 1326.7 1327.1 0 99 0.69 923 66 1359.9 1359.8 1362.1 0 55 0.38 453 67 1422 1421.7 1422.7 1 5056 35.32 67097 68 1423 1422.8 1423.7 1 1279 8.94 14894 69 1424 1423.8 1424.6 1 170 1.19 1770 70 1424.9 1424.7 1425.2 1 339 2.37 3712 71 1426 1425.7 1426.7 1 83 0.58 845 72 1426.9 1426.8 1427.3 0 148 1.04 1486 73 1459.9 1459.8 1460.7 0 53 0.37 468 74 1522 1521.7 1522.6 1 4500 31.44 60913 75 1523 1522.8 1523.7 1 1290 9.01 14809 76 1524 1523.8 1524.6 1 155 1.08 1686 77 1524.9 1524.7 1525.6 1 272 1.9 3479 78 1525.9 1525.7 1526.1 1 41 0.29 373.21 79 1526.9 1526.7 1527.3 0 115 0.81 1246.9 80 1559.9 1559.7 1560.7 0 43 0.3 424 81 1622 1621.6 1622.6 1 3557 24.86 49210 82 1623 1622.7 1623.6 1 1009 7.05 12195 83 1624 1623.7 1624.6 1 95 0.66 1030

208

84 1624.9 1624.7 1625.6 1 184 1.29 2391 85 1626.9 1626.6 1627.3 0 46 0.32 464 86 1722 1721.6 1722.5 1 2215 15.47 32170 87 1723 1722.7 1723.6 1 685 4.78 8784 88 1724 1723.7 1724.5 1 73 0.51 827 89 1724.9 1724.7 1725.5 0 134 0.94 1438 90 1822 1821.6 1822.6 1 1263 8.83 18408 91 1823 1822.7 1823.6 1 405 2.83 5050 92 1922 1921.6 1922.5 1 489 3.41 6821 93 1922.9 1922.7 1923.6 1 110 0.77 1355

SPECTRUM 2 True Error value Index Centroid amu amu ppm Mass TBA 9 242.2839 242.2842 -0.0003 -1.28 M+ 41 477.0660 477.0609 0.0050 10.56 [M+H]+ 42 478.0696 478.0687 0.0009 1.83 [M+1]+ 43 479.0722 479.0721 0.0001 0.24 Reserpine [M+H]+ 46 609.2817 609.2806 0.0011 1.76 Reserpine [M+H+1]+ 47 610.2858 610.2840 0.0019 3.07 [2M+H]+ 50 955.1284 955.1302 -0.0018 -1.92 ultramark (C20H19O6N3P3F28) 51 1022.0043 1022.0040 0.0003 0.29 ultramark (C22H19O6N3P3F32) 53 1121.9995 1121.9976 0.0019 1.72 ultramark (C24H19O6N3P3F36) 57 1221.9930 1221.9912 0.0019 1.51 ultramark (C26H19O6N3P3F40) 62 1321.9865 1321.9848 0.0016 1.24 ultramark (C28H19O6N3P3F44) 68 1421.9800 1421.9784 0.0016 1.10 ultramark (C30H19O6N3P3F48) 74 1521.9730 1521.9720 0.0010 0.65 ultramark (C32H19O6N3P3F52) 80 1621.9673 1621.9657 0.0016 1.01 ultramark (C34H19O6N3P3F56) 86 1721.9574 1721.9593 -0.0019 -1.08 ultramark (C36H19O6N3P3F60) 90 1821.9550 1821.9529 0.0021 1.15 ultramark (C38H19O6N3P3F64) 93 1921.9589 1921.9465 0.0124 6.44

209

SPECTRUM 2 *Only peaks and areas >1% of BP shown* Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 229.1 229.1 229.2 1 6051 40.84 31436 2 229.2 229.2 229.9 0 301 2.03 279.3 3 230.1 230.1 230.2 1 706 4.76 3498 4 233.9 233.9 235.9 0 185 1.25 684 5 235.9 235.9 236 0 100 0.67 475 6 236.1 236 236.9 0 461 3.11 2318 7 238.1 238 238.9 1 168 1.14 819 8 238.9 238.9 240.9 1 56 0.38 200 9 242.3 242.2 242.3 1 14816 100 79076 10 242.9 242.9 242.9 0 63 0.42 220 11 243.3 243.2 243.9 1 2451 16.55 14698 12 244.3 244.3 244.5 0 98 0.66 387 13 246.2 246.1 246.2 0 2729 18.42 14402 14 247.2 247.1 251.1 0 243 1.64 1115 15 251.1 251.1 255 0 86 0.58 409 16 266.9 266.9 268.9 0 113 0.76 508 17 283.2 283.1 283.8 0 87 0.59 327 18 316 315.9 316.9 0 129 0.87 521 19 319.9 319.9 320 0 106 0.72 437 20 321.9 321.9 322.9 0 83 0.56 449 21 337.1 337 338 0 191 1.29 966 22 339.9 339.9 340.3 1 115 0.78 621 23 340.9 340.9 341.8 1 56 0.38 300 24 341.9 341.9 342.8 1 88 0.59 508 25 342.9 342.9 343 1 63 0.43 431 26 343.9 343.9 344.8 1 48 0.33 202 27 359.2 359.2 359.8 0 95 0.64 451.6 28 391.3 391.2 392.1 0 95 0.64 534 29 409.1 409.1 410.4 0 90 0.6 417 30 412.1 412.1 414 0 73 0.49 388 31 414.1 414.1 414.3 0 38 0.26 227 32 419.3 419.3 420.2 0 53 0.35 294 33 444.1 444 445 0 52 0.35 324 34 448.1 448.1 449 0 282 1.9 1728

210

35 453.1 453.1 453.8 1 536 3.62 3383 36 454.2 454.1 455.1 1 58 0.39 282 37 455.1 455.1 455.8 0 242 1.63 1367 38 474.1 474 475 1 386 2.61 2557 39 475.1 475 476 1 55 0.37 294 40 476.1 476 476.1 1 163 1.1 814.7 41 477.1 477 477.1 1 302 2.04 2073 42 478.1 478 479 1 1260 8.5 9533 43 479.1 479 479.1 1 214 1.45 1161 44 515.4 515.3 517.9 0 43 0.29 209 45 607.3 607.2 608.2 0 115 0.77 950 46 609.3 609.1 610.1 1 4367 29.47 37554 47 610.3 610.2 611 1 1574 10.62 12733 48 611.3 611.2 611.6 1 319 2.15 1998 49 922 921.9 922.9 0 354 2.39 3105 50 955.1 955 956 0 102 0.69 738 51 1022 1022 1023 1 1209 8.16 13572 52 1023 1023 1024 1 218 1.47 1856 53 1122 1122 1123 1 2800 18.9 33671 54 1123 1123 1124 1 464 3.13 4644 55 1124 1124 1124 1 57 0.38 411 56 1125 1125 1125 0 110 0.74 1046 57 1222 1222 1223 1 4145 27.97 51441 58 1223 1223 1224 1 895 6.04 9193 59 1224 1224 1225 0 84 0.57 704 60 1225 1225 1226 0 266 1.79 2613 61 1227 1227 1228 0 90 0.61 840 62 1322 1322 1323 1 4871 32.88 64303 63 1323 1323 1324 1 1212 8.18 12747 64 1324 1324 1325 0 120 0.81 1121 65 1325 1325 1325 0 320 2.16 3789 66 1327 1327 1328 0 110 0.74 1159 67 1360 1360 1361 0 46 0.31 396 68 1422 1422 1423 1 5017 33.86 67629 69 1423 1423 1424 1 1302 8.79 14683 70 1424 1424 1425 1 139 0.94 1376 71 1425 1425 1426 1 374 2.52 4469 72 1426 1426 1427 1 44 0.3 592

211

73 1427 1427 1427 0 147 0.99 1533 74 1522 1522 1523 1 4489 30.3 60738 75 1523 1523 1524 1 1232 8.31 14843 76 1524 1524 1524 1 144 0.97 1334 77 1525 1525 1526 1 339 2.29 3919 78 1526 1526 1527 1 53 0.36 653 79 1527 1527 1527 0 102 0.69 1035 80 1622 1622 1623 1 3452 23.3 48678 81 1623 1623 1624 1 981 6.62 11767 82 1624 1624 1625 1 159 1.08 1891 83 1625 1625 1626 1 198 1.34 2566 84 1626 1626 1626 1 54 0.36 598 85 1627 1627 1627 1 47 0.32 493 86 1722 1722 1723 1 2286 15.43 32685 87 1723 1723 1724 1 737 4.98 8880 88 1724 1724 1724 1 73 0.49 685 89 1725 1725 1726 1 115 0.78 1287 90 1822 1822 1823 1 1152 7.78 16990 91 1823 1823 1824 1 376 2.54 4683 92 1825 1825 1827 0 61 0.41 617 93 1922 1921 1922 1 494 3.34 6814 94 1923 1923 1924 1 105 0.71 1337

212

SPECTRUM 3 True value Error Index Centroid amu amu ppm Mass TBA 10 242.2844 242.2842 0.000 0.53 M+ 43 477.0667 477.0609 0.006 12.09 [M+H]+ 44 478.0702 478.0687 0.001 3.10 [M+1]+ 45 479.0669 479.0721 -0.005 -10.91 Reserpine [M+H]+ 48 609.2819 609.2806 0.001 2.06 Reserpine [M+H+1]+ 49 610.2857 610.2840 0.002 2.87 [2M+H]+ 53 955.1193 955.1302 -0.011 -11.39 ultramark (C20H19O6N3P3F28) 54 1022.0044 1022.0040 0.000 0.41 ultramark (C22H19O6N3P3F32) 56 1121.9999 1121.9976 0.002 2.05 ultramark (C24H19O6N3P3F36) 60 1221.9961 1221.9912 0.005 4.01 ultramark (C26H19O6N3P3F40) 66 1321.9867 1321.9848 0.002 1.42 ultramark (C28H19O6N3P3F44) 72 1421.9812 1421.9784 0.003 1.96 ultramark (C30H19O6N3P3F48) 79 1521.9778 1521.9720 0.006 3.78 ultramark (C32H19O6N3P3F52) 85 1621.9724 1621.9657 0.007 4.17 ultramark (C34H19O6N3P3F56) 91 1721.9658 1721.9593 0.007 3.81 ultramark (C36H19O6N3P3F60) 95 1821.9537 1821.9529 0.001 0.48 ultramark (C38H19O6N3P3F64) 97 1921.9605 1921.9465 0.014 7.27

SPECTRUM 3 *Only peaks and areas >1% of BP shown* Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 210.9 210.9 211.9 0 65 0.43 260 2 229.1 229.1 229.2 1 6388 42.58 33179 3 229.2 229.2 229.8 0 217 1.44 292.9 4 230.1 230.1 230.8 1 877 5.85 4500 5 231.2 231.1 231.2 1 127 0.84 531 6 233.9 233.9 234.9 0 276 1.84 1117 7 235.9 235.9 236 0 256 1.7 1030 8 236.1 236 236.1 0 464 3.1 2253 9 238.1 238 238.9 0 211 1.41 894 10 242.3 242.2 242.4 1 15001 100 79111 11 242.4 242.4 242.9 2 562 3.74 215.1 12 242.9 242.9 243 2 62 0.41 204

213

13 243.3 243.2 243.4 1 2519 16.79 14272 14 244.3 244.3 244.4 0 164 1.09 767 15 246.2 246.1 246.2 1 2575 17.17 13821 16 246.2 246.2 246.9 0 139 0.92 280.8 17 247.2 247.1 248.1 1 270 1.8 1520 18 251.1 251.1 253.1 0 96 0.64 367 19 266.9 266.9 267.9 0 108 0.72 459 20 268.9 268.9 269 0 117 0.78 560.9 21 286.9 286.9 287.1 0 81 0.54 341 22 317 316.9 317 0 51 0.34 320.3 23 321.9 321.9 322.8 0 44 0.29 232 24 337.1 337 337.9 0 177 1.18 826 25 338.9 338.9 339 0 52 0.35 328 26 340.9 340.9 341 1 78 0.52 536.5 27 341.9 341.9 342.8 1 40 0.27 229 28 342.9 342.8 343 1 42 0.28 273 29 343.9 343.8 344.2 1 52 0.35 349 30 348.2 348.2 348.4 0 89 0.6 401 31 359.2 359.1 359.8 0 68 0.45 489 32 377.2 377.2 377.3 0 73 0.49 383 33 391.3 391.2 391.8 0 95 0.63 525 34 409.1 409.1 409.8 0 161 1.07 883 35 411.1 411.1 411.2 1 52 0.35 243.1 36 412.1 412.1 412.6 1 105 0.7 590 37 419.3 419.3 419.4 0 72 0.48 326 38 448.1 448.1 448.2 0 232 1.55 1328 39 453.2 453.1 454.1 0 490 3.27 3406 40 455.2 455.1 456 0 191 1.27 1144 41 474.1 474 474.1 0 459 3.06 2509 42 476.1 476 476.1 1 161 1.08 730 43 477.1 477 477.2 1 297 1.98 2064 44 478.1 478 479 1 1152 7.68 8644 45 479.1 479 479.2 1 206 1.37 1158 46 607.3 607.2 608.2 1 270 1.8 1823 47 608.3 608.2 608.9 1 57 0.38 361 48 609.3 609.1 610.1 1 4754 31.69 40401 49 610.3 610.2 611.2 1 1633 10.88 12825

214

50 611.3 611.2 611.4 1 385 2.57 2522 51 922 921.9 922.3 1 301 2 2616 52 923 922.9 924 1 45 0.3 300 53 955.1 955 955.3 0 63 0.42 470 54 1022 1022 1023 1 1257 8.38 13625 55 1023 1023 1024 1 200 1.33 1709 56 1122 1122 1123 1 2758 18.38 31919 57 1123 1123 1124 1 605 4.03 6001 58 1124 1124 1124 1 69 0.46 637.5 59 1125 1125 1126 0 128 0.85 1141 60 1222 1222 1223 1 4087 27.24 50695 61 1223 1223 1224 1 922 6.14 9240 62 1224 1224 1225 0 82 0.55 662 63 1225 1225 1225 1 246 1.64 2456 64 1226 1226 1226 1 39 0.26 388.3 65 1227 1227 1227 0 97 0.64 897 66 1322 1322 1323 1 4851 32.34 62963 67 1323 1323 1324 1 1206 8.04 12352 68 1324 1324 1324 1 139 0.93 1362 69 1325 1325 1326 0 390 2.6 4707 70 1327 1327 1328 0 121 0.81 1379 71 1360 1360 1361 0 42 0.28 333 72 1422 1421 1423 1 5112 34.08 66672 73 1423 1423 1424 1 1435 9.57 16286 74 1424 1424 1424 1 172 1.15 1701 75 1425 1425 1425 1 360 2.4 4277 76 1426 1426 1427 1 66 0.44 646 77 1427 1427 1427 0 127 0.85 1384 78 1460 1460 1461 0 69 0.46 599 79 1522 1522 1523 1 4315 28.76 59249 80 1523 1523 1524 1 1308 8.72 15555 81 1524 1524 1525 1 199 1.32 2021 82 1525 1525 1525 1 296 1.97 3626 83 1526 1526 1526 1 41 0.27 297.8 84 1527 1527 1527 0 109 0.73 1341 85 1622 1622 1623 1 3613 24.09 49969 86 1623 1623 1624 1 987 6.58 11830 87 1624 1624 1625 1 137 0.91 1419 88 1625 1625 1625 0 224 1.49 2606

215

89 1627 1627 1627 0 46 0.31 595 90 1660 1660 1661 0 38 0.25 381 91 1722 1722 1723 1 2275 15.16 33723 92 1723 1723 1724 1 707 4.71 8415 93 1724 1724 1725 1 52 0.34 544 94 1725 1725 1726 1 102 0.68 1201 95 1822 1822 1823 1 1286 8.57 18100 96 1823 1823 1824 1 376 2.51 4920 97 1922 1922 1923 1 459 3.06 6510 98 1923 1923 1924 1 142 0.94 1795

SPECTRUM 4 True value Error Index Centroid amu amu ppm Mass TBA 8 242.2837 242.2842 -0.0006 -2.36 M+ 42 477.0633 477.0609 0.0023 4.92 [M+H]+ 44 478.0680 478.0687 -0.0008 -1.62 [M+1]+ 45 479.0713 479.0721 -0.0008 -1.66 Reserpine [M+H]+ 48 609.2822 609.2806 0.0016 2.67 Reserpine [M+H+1]+ 49 610.2862 610.2840 0.0022 3.66 [2M+H]+ 53 955.1258 955.1302 -0.0044 -4.61 ultramark (C20H19O6N3P3F28) 54 1021.9969 1022.0040 -0.0071 -6.93 ultramark (C22H19O6N3P3F32) 56 1121.9946 1121.9976 -0.0030 -2.63 ultramark (C24H19O6N3P3F36) 61 1221.9916 1221.9912 0.0004 0.32 ultramark (C26H19O6N3P3F40) 66 1321.9840 1321.9848 -0.0008 -0.61 ultramark (C28H19O6N3P3F44) 73 1421.9795 1421.9784 0.0011 0.75 ultramark (C30H19O6N3P3F48) 81 1521.9685 1521.9720 -0.0035 -2.31 ultramark (C32H19O6N3P3F52) 88 1621.9647 1621.9657 -0.0009 -0.57 ultramark (C34H19O6N3P3F56) 93 1721.9563 1721.9593 -0.0030 -1.72 ultramark (C36H19O6N3P3F60) 97 1821.9507 1821.9529 -0.0022 -1.20 ultramark (C38H19O6N3P3F64) 100 1921.9434 1921.9465 -0.0031 -1.62

216

SPECTRUM 4 *Only peaks and areas >1% of BP shown* Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 229.14 229.11 229.21 1 7947 46.2 33724 2 229.22 229.21 229.23 0 281 1.63 314 3 230.15 230.12 230.17 1 1058 6.15 3937 4 233.91 233.9 233.93 0 222 1.29 486 5 235.91 235.9 235.93 0 233 1.35 629 6 236.06 236.03 236.07 0 513 2.98 1396 7 238.06 238.03 238.08 0 182 1.06 450 8 242.28 242.25 242.38 1 17202 100 84622 9 243.29 243.26 243.34 1 3325 19.33 15384 10 243.36 243.35 243.37 0 104 0.6 242 11 243.92 243.9 243.93 3 225 1.31 473 12 244.29 244.28 244.31 3 204 1.19 565 13 246.17 246.14 246.23 1 3007 17.48 12992 14 247.17 247.14 247.19 1 560 3.26 1318 15 251.12 251.11 251.14 0 145 0.84 262.05 16 266.93 266.91 266.95 0 320 1.86 900 17 268.91 268.9 268.92 0 182 1.06 271.5 18 283.15 283.13 283.18 0 155 0.9 484 19 315.95 315.93 315.99 0 128 0.74 480 20 319.93 319.9 319.94 0 78 0.45 273 21 337.09 337.06 337.1 0 165 0.96 624 22 339.94 339.9 339.95 0 155 0.9 585 23 341.93 341.89 341.96 1 104 0.6 435 24 342.93 342.89 342.95 1 157 0.91 453 25 343.93 343.89 343.96 1 126 0.73 534 26 344.92 344.89 345.06 1 70 0.41 280 27 359.2 359.18 359.22 0 192 1.12 353 28 377.21 377.19 377.26 0 125 0.73 323 29 391.28 391.26 391.3 0 120 0.7 379 30 409.12 409.1 409.17 0 129 0.75 483 31 412.13 412.1 412.98 0 103 0.6 372 32 419.32 419.28 419.33 0 90 0.52 278 33 444.11 444.09 444.15 0 154 0.9 357 34 447.11 446.09 447.85 0 54 0.31 241

217

35 448.12 448.09 448.15 0 399 2.32 1368 36 453.15 453.11 453.2 0 516 3 2795 37 455.15 455.12 455.17 0 257 1.49 1028 38 474.06 474.01 474.11 1 574 3.34 2230 39 474.12 474.11 474.15 0 133 0.77 267 40 475.06 475.03 475.14 1 149 0.87 319 41 476.06 476.03 476.1 1 249 1.45 844 42 477.06 477.02 477.11 1 449 2.61 1817 43 477.13 477.12 477.94 0 103 0.6 305 44 478.07 478.02 478.19 1 1587 9.23 9735 45 479.07 479.04 479.13 1 300 1.74 1324 46 607.26 606.56 607.31 1 283 1.65 1203 47 608.25 608.23 608.29 1 85 0.49 234 48 609.28 609.21 609.43 1 5782 33.61 39068 49 610.29 610.21 610.41 1 2532 14.72 14420 50 611.29 611.23 611.36 1 499 2.9 2467 51 612.3 612.27 612.34 1 95 0.55 293 52 922 921.8 922.1 0 338 1.96 2467 53 955.13 955.04 955.17 0 233 1.35 541 54 1022 1021.9 1022.2 1 1741 10.12 14304 55 1023 1022.9 1023.1 1 421 2.45 1920 56 1122 1121.9 1122.2 1 3618 21.03 33551 57 1123 1122.9 1123.1 1 839 4.88 5748 58 1124 1124 1124 1 140 0.81 425 59 1125 1124.9 1125.1 1 121 0.7 873 60 1126.9 1126.9 1127 0 68 0.4 225 61 1222 1221.8 1222.2 1 5752 33.44 51762 62 1223 1222.9 1223.1 1 1270 7.38 8979 63 1224 1224 1224.1 1 174 1.01 727 64 1224.9 1224.9 1225.1 0 446 2.59 2540 65 1227 1226.8 1230.2 0 181 1.05 889 66 1322 1321.8 1322.2 1 6638 38.59 63705 67 1323 1322.9 1323.1 1 1672 9.72 12739 68 1324 1323.9 1324.1 1 220 1.28 1090 69 1324.9 1324.9 1325.1 1 435 2.53 3802 70 1325.9 1325.9 1326 1 168 0.98 432 71 1326.9 1326.9 1327 0 240 1.4 1141 72 1359.9 1351 1360 0 152 0.88 384 73 1422 1421.8 1422.2 1 6791 39.48 67286

218

74 1423 1422.9 1423.2 1 1794 10.43 14609 75 1424 1423.9 1424.2 1 290 1.69 1878 76 1424.9 1424.8 1425 1 543 3.16 4493 77 1425.9 1425.8 1426.1 1 106 0.62 648 78 1426.9 1426.9 1427.1 1 193 1.12 1139 79 1427.9 1427.9 1428.2 1 140 0.81 254 80 1460 1459.9 1460.1 0 73 0.42 279 81 1522 1521.8 1522.2 1 6028 35.04 61234 82 1523 1522.9 1523.1 1 1968 11.44 14855 83 1524 1523.9 1524.2 1 214 1.24 1646 84 1524.9 1524.8 1525.1 1 490 2.85 2913 85 1526 1525.9 1526 1 104 0.6 297 86 1527 1526.9 1527 0 160 0.93 732 87 1560 1559.9 1560 0 93 0.54 375 88 1622 1621.6 1622.2 1 4782 27.8 48546 89 1623 1622.9 1623.2 1 1343 7.81 11936 90 1624 1623.9 1624.1 1 299 1.74 1491 91 1624.9 1624.8 1625.2 0 381 2.21 2603 92 1626.9 1626.8 1627.1 0 96 0.56 636 93 1722 1721.8 1722.3 1 3004 17.46 33508 94 1723 1722.8 1723.2 1 1050 6.1 8208 95 1724 1723.9 1724.1 1 220 1.28 1023 96 1724.9 1724.8 1725 0 234 1.36 1666 97 1822 1821.8 1822.2 1 1696 9.86 17612 98 1823 1822.8 1823.2 1 603 3.51 4425 99 1824.9 1824.8 1825.1 0 131 0.76 721 100 1921.9 1913.8 1922.2 1 707 4.11 6725 101 1923 1922.8 1923.1 1 274 1.59 1544

219

IR Spectra and Mass Spectrometry Data of Napthyl Catalyst

665.64

676.70

IR Spectrum 688.00

743.25 752.95

790.33

830.53

855.29

911.78

951.79

982.37

1024.57

1093.51

100 0 1142.08

1160.13

1185.19

1213.05

1248.11

1272.89

1308.84

1341.83

1409.44

1390.18 1429.79

1456.13

1519.73

1538.91

1562.68

1604.14

150 0

1617.10

200 0

2160.74

250 0 Wavenumbers(cm-1)

2852.56

2939.77

300 0

350 0

30

35

40

45

50

55

60

65

70

75

80

85 90

%T

220

790.33

800

830.53

850

855.29

911.78

900

951.79

950

982.37

100 0

Wavenumbers(cm-1)

1024.57

105 0

1093.51

110 0

1142.08

1160.13

115 0

1185.19

1213.05

120 0

30

35

40

45

50

55

60

65

70

75 80

%T

221

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

222

Expected Data

Vanadium (naphthyl Complex) C28H24N2O3V1 M+ [M+H]+ [M+H+1]+ [2M+H]+ mass 487.1226 488.1305 489.1338 975.2536

Representative Spectrum

223

Summary of Results error nominal SPECTRUM 95% m/z Name 1 2 3 4 avg sd CI furthest 242.3 TBA 48.3 50.7 51.4 51.8 50.6 1.6 2.5 53.0 487.1 M+ 44.5 49.7 48.0 52.0 48.5 3.1 5.0 53.5 + 488.1 [M+H] 44.8 46.0 47.4 48.5 46.7 1.6 2.6 49.3 489.1 [M+1]+ 42.0 45.3 55.2 50.3 48.2 5.8 9.3 57.4 609.3 Reserpine [M+H]+ 46.1 51.0 48.5 49.5 48.8 2.0 3.2 52.0 610.3 Reserpine [M+H+1]+ 45.0 46.3 51.6 49.1 48.0 2.9 4.7 52.7 975.3 [2M+H]+ 35.8 39.6 41.1 42.9 39.9 3.0 4.8 44.6 ultramark 1022.0 (C20H19O6N3P3F28) 40.5 41.1 44.9 41.2 41.9 2.0 3.2 45.1 ultramark 1122.0 (C22H19O6N3P3F32) 42.2 42.3 45.2 41.3 42.8 1.7 2.7 45.5 ultramark 1222.0 (C24H19O6N3P3F36) 39.2 41.6 43.2 44.3 42.0 2.2 3.5 45.6 ultramark 1322.0 (C26H19O6N3P3F40) 43.9 43.2 43.2 42.3 43.1 0.6 1.0 44.2 ultramark 1422.0 (C28H19O6N3P3F44) 40.7 42.4 42.5 41.4 41.7 0.9 1.4 43.1 ultramark 1522.0 (C30H19O6N3P3F48) 40.8 42.4 41.9 41.5 41.6 0.7 1.1 42.8 ultramark 1622.0 (C32H19O6N3P3F52) 41.6 43.7 43.6 46.5 43.8 2.0 3.2 47.0 ultramark 1722.0 (C34H19O6N3P3F56) 38.5 41.9 41.5 42.2 41.0 1.7 2.7 43.7 ultramark 1822.0 (C36H19O6N3P3F60) 36.4 41.2 43.1 44.2 41.2 3.4 5.5 46.7

224

Data

True SPECTRUM 1 value Error Centroid Index Mass amu amu ppm TBA 3 242.2959 242.2842 0.011709 48.328 M+ 64 487.1438 487.1221 0.021689 44.525 [M+H]+ 65 488.1518 488.1299 0.021854 44.771 [M+1]+ 66 489.1538 489.1333 0.020524 41.960 Reserpine [M+H]+ 74 609.3087 609.2806 0.028114 46.143 Reserpine [M+H+1]+ 75 610.3114 610.2840 0.027444 44.969 [2M+H]+ 89 975.2886 975.2536 0.034936 35.822 ultramark (C20H19O6N3P3F28) 91 1022.0454 1022.0040 0.041380 40.489 ultramark (C22H19O6N3P3F32) 95 1122.0449 1121.9976 0.047340 42.193 ultramark (C24H19O6N3P3F36) 99 1222.0391 1221.9912 0.047870 39.174 ultramark (C26H19O6N3P3F40) 102 1323.0477 1321.9848 0.058040 43.904 ultramark (C28H19O6N3P3F44) 103 1422.0363 1421.9784 0.057830 40.669 ultramark (C30H19O6N3P3F48) 110 1522.0341 1521.9720 0.062030 40.756 ultramark (C32H19O6N3P3F52) 112 1622.0331 1621.9657 0.067430 41.573 ultramark (C34H19O6N3P3F56) 114 1722.0255 1721.9593 0.066250 38.474 ultramark (C36H19O6N3P3F60) 115 1822.0192 1821.9529 0.066300 36.390

SPECTRUM 1 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Index Mass Bound Bound (z) Height Intensity Area (A) 1 180.096 180.08 180.11 0 697 1.13 1930 2 229.152 229.1 229.22 0 4420 7.16 21953 3 242.296 242.27 242.39 1 61692 100 256096 4 243.299 243.24 243.36 1 10609 17.2 43312

225

5 243.99 243.92 244.01 0 958 1.55 3117 6 244.3 244.28 244.32 1 849 1.38 2633 7 246.182 246.16 246.2 0 2062 3.34 7356 8 254.035 254.01 254.06 0 894 1.45 2771 9 262.038 261.98 262.13 1 14546 23.58 61206 10 263.043 263.01 263.07 1 1599 2.59 6461 11 264.037 263.98 264.11 1 6680 10.83 26345 12 265.048 265.01 265.07 1 661 1.07 3308 13 283.046 283.02 283.08 0 734 1.19 2777 14 283.165 283.14 283.2 0 771 1.25 3077 15 284.021 283.99 284.71 1 10314 16.72 45337 16 285.028 285 285.09 1 1161 1.88 4942 17 285.199 285.18 285.9 0 1149 1.86 3615 18 286.02 285.99 286.09 0 5016 8.13 18818 19 293.225 293.2 293.29 0 1101 1.78 6565 20 295.279 295.22 295.3 0 849 1.38 3146 21 302.032 301.97 302.1 0 4307 6.98 17861 22 304.031 304 304.09 0 1727 2.8 7158 23 307.242 307.2 307.29 0 1256 2.04 5306 24 309.257 309.21 309.31 0 2150 3.49 9881 25 311.272 311.23 311.77 0 1114 1.81 4997 26 325.255 325.22 325.32 0 1893 3.07 8299 27 339.247 339.2 339.29 0 1193 1.93 5570 28 341.068 341.03 341.18 1 9518 15.43 42440 29 342.071 342.04 342.1 1 1347 2.18 5530 30 343.067 343.03 343.14 1 4587 7.44 18991 31 344.074 344.03 344.1 1 624 1.01 2717 32 358.29 358.25 358.33 1 1218 1.97 4975 33 358.977 358.94 359 0 876 1.42 3242 34 359.22 359.19 359.24 1 902 1.46 2969 35 360.976 360.94 361.04 1 960 1.56 3600 36 361.963 361.93 362.03 1 756 1.23 3780 37 362.309 362.24 362.34 0 954 1.55 3782 38 363.049 363.01 363.11 1 1111 1.8 4357.54 39 363.956 363.92 364.02 1 870 1.41 4609

226

40 364.109 364.07 364.16 0 706 1.14 3016 41 364.992 364.92 365.08 1 1432 2.32 8325.42 42 365.948 365.92 365.98 1 618 1 2053.52 43 366.991 366.94 367.05 4 1345 2.18 5736 44 367.265 367.23 367.3 4 673 1.09 3260 45 372.995 372.94 373.06 0 2403 3.9 9014 46 374.993 374.3 375.07 0 2033 3.3 8596 47 376.288 376.25 376.33 1 671 1.09 2382 48 377.231 377.2 377.31 1 843 1.37 4406 49 382.977 382.94 383 1 758 1.23 3105 50 383.977 383.93 384 1 633 1.03 2900 51 384.977 384.94 385.03 0 690 1.12 3264 52 390.128 390.09 390.16 1 920 1.49 3324 53 390.997 390.96 391.02 1 766 1.24 2782 54 408.28 408.23 408.34 0 1184 1.92 4922 55 423.012 422.94 423.13 1 16006 25.95 78663 56 424.016 423.96 424.13 1 2913 4.72 14780 57 425.011 424.87 425.13 1 14898 24.15 71818 58 426.013 425.95 426.13 1 2729 4.42 13665 59 427.009 426.97 427.08 1 3549 5.75 16520 60 428.01 427.96 428.09 1 867 1.41 3651 61 484.143 484.08 484.26 1 2903 4.71 15791 62 485.15 485.1 485.18 1 893 1.45 3657 63 486.142 486.09 486.2 1 1602 2.6 7243 64 487.144 487.1 487.23 1 1427 2.31 7274 65 488.152 487.96 488.28 1 4391 7.12 23298 66 489.154 489.12 489.29 1 1343 2.18 5653 67 502.042 501.99 502.17 0 2222 3.6 10588 68 504.04 503.99 504.12 0 1916 3.11 10050 69 531.431 531.38 531.5 0 1218 1.97 5932 70 545.048 545 545.09 0 1421 2.3 7650 71 547.052 547 547.14 0 1483 2.4 7341 72 607.293 607.25 607.33 0 654 1.06 3164 73 608.021 607.96 608.09 0 626 1.01 3557 74 609.309 609.24 609.45 1 8708 14.12 50912 75 610.311 610.25 610.42 1 3301 5.35 17830 76 611.316 611.26 611.9 1 813 1.32 3363

227

77 618.01 617.96 618.06 0 706 1.14 3143 78 645.116 645.06 645.17 0 909 1.47 5100 79 647.117 647.05 647.17 0 1058 1.71 5570 80 649.119 649.07 649.24 0 970 1.57 5297 81 967.277 967.17 967.43 1 4821 7.81 32201 82 968.28 968.19 968.4 1 2745 4.45 18400 83 969.275 969.18 969.42 1 5020 8.14 35235 84 970.278 970.18 970.44 1 2855 4.63 18518 85 971.286 971.18 971.45 1 3774 6.12 26943 86 972.285 972.2 972.41 1 1997 3.24 13348 87 973.288 973.2 973.42 1 1598 2.59 9222 88 974.291 974.2 974.39 1 1890 3.06 12153 89 975.289 975.21 975.4 1 1469 2.38 9521 90 976.297 976.25 976.38 1 707 1.15 3423 91 1022.05 1021.94 1022.18 0 1756 2.85 11571 92 1031.2 1031.11 1031.29 0 897 1.45 4585 93 1033.21 1033.11 1033.3 0 1192 1.93 6861 94 1035.21 1035.11 1035.28 0 801 1.3 4747 95 1122.04 1121.93 1122.23 1 3723 6.03 27839 96 1123.05 1122.96 1124.1 1 1004 1.63 5430 97 1130.24 1130.15 1130.38 0 842 1.36 5590 98 1132.25 1132.15 1132.32 0 647 1.05 4899 99 1222.04 1221.9 1222.24 1 5452 8.84 42009 100 1223.05 1222.94 1223.17 1 1255 2.03 7391 101 1322.04 1321.88 1322.27 1 6076 9.85 48279 102 1323.05 1322.93 1323.18 1 1470 2.38 9372 103 1422.04 1421.87 1422.26 1 5257 8.52 45486 104 1423.05 1422.93 1423.17 1 1643 2.66 10343 105 1452.41 1452.31 1452.52 1 764 1.24 5752 106 1453.42 1453.29 1453.51 1 619 1 3512 107 1454.43 1454.28 1454.51 1 871 1.41 6705 108 1455.42 1455.33 1455.52 1 636 1.03 4380 109 1456.43 1456.27 1456.54 0 806 1.31 5481 110 1522.03 1521.86 1522.25 1 4022 6.52 36198 111 1523.04 1522.94 1524.1 1 1094 1.77 8711 112 1622.03 1621.87 1622.26 1 3029 4.91 26459 113 1623.04 1622.93 1623.22 1 1047 1.7 6144

228

114 1722.03 1721.84 1722.23 0 1667 2.7 15178 115 1822.02 1821.86 1823.99 0 718 1.16 8700

SPECTRUM 2 True value Error Centroid Index Mass amu amu ppm TBA 3 242.2965 242.2842 0.012289 50.721 M+ 62 487.1463 487.1221 0.024189 49.657 [M+H]+ 63 488.1524 488.1299 0.022464 46.021 [M+1]+ 64 489.1554 489.1333 0.022144 45.272 Reserpine [M+H]+ 71 609.3117 609.2806 0.031044 50.952 Reserpine [M+H+1]+ 72 610.3122 610.2840 0.028234 46.264 [2M+H]+ 87 975.2923 975.2536 0.038666 39.647 ultramark (C20H19O6N3P3F28) 88 1022.0460 1022.0040 0.042050 41.145 ultramark (C22H19O6N3P3F32) 92 1122.0450 1121.9976 0.047460 42.300 ultramark (C24H19O6N3P3F36) 97 1222.0420 1221.9912 0.050800 41.571 ultramark (C26H19O6N3P3F40) 99 1322.0419 1321.9848 0.057060 43.162 ultramark (C28H19O6N3P3F44) 101 1422.0387 1421.9784 0.060280 42.392 ultramark (C30H19O6N3P3F48) 108 1522.0366 1521.9720 0.064590 42.438 ultramark (C32H19O6N3P3F52) 110 1622.0365 1621.9657 0.070850 43.682 ultramark (C34H19O6N3P3F56) 112 1722.0314 1721.9593 0.072110 41.877 ultramark (C36H19O6N3P3F60) 113 1822.0280 1821.9529 0.075080 41.209

SPECTRUM 2 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.153 229.11 229.22 1 4215 6.88 21574 2 230.159 230.12 230.19 1 663 1.08 2776 3 242.297 242.27 242.39 1 61252 100 255104 4 243.3 243.26 243.39 1 11449 18.69 47156

229

5 243.987 243.96 244 0 946 1.54 2710 6 244.303 244.28 244.34 1 852 1.39 3264 7 246.182 246.16 246.2 0 1778 2.9 6381 8 251.137 251.12 251.15 0 970 1.58 2415 9 254.037 254.01 254.07 0 825 1.35 2619 10 262.039 261.98 262.13 1 14769 24.11 61446 11 263.043 263 263.08 1 1636 2.67 5950 12 264.037 263.98 264.12 0 7034 11.48 27449 13 283.047 283.02 283.08 0 684 1.12 2751 14 283.166 283.15 283.21 0 711 1.16 2884 15 284.022 283.99 284.11 1 10308 16.83 45421 16 285.027 285 285.09 1 1140 1.86 5512 17 285.198 285.18 285.25 0 1188 1.94 4641 18 286.02 285.99 286.11 0 4969 8.11 20055 19 293.227 293.2 293.29 0 933 1.52 6594 20 295.278 295.22 295.31 0 975 1.59 3572 21 302.034 301.98 302.1 0 4360 7.12 18107 22 304.031 304.01 304.08 0 1965 3.21 7094 23 307.243 307.19 307.3 0 1408 2.3 5687 24 309.259 309.22 309.35 0 2393 3.91 9775 25 311.275 311.21 311.33 0 1016 1.66 4968 26 323.238 323.21 323.26 0 662 1.08 2259 27 325.254 325.19 325.32 0 1800 2.94 7534 28 339.244 339.11 339.28 0 1102 1.8 5838 29 341.069 341.03 341.18 1 9438 15.41 43672 30 342.071 342.03 342.29 1 1343 2.19 6524 31 343.068 343.03 343.14 1 4567 7.46 19197 32 344.069 344.03 344.09 1 638 1.04 2284 33 347.236 347.19 347.26 0 633 1.03 1941 34 349.256 349.23 349.29 0 615 1 2041 35 358.291 358.25 358.33 0 1351 2.21 5628 36 358.98 358.95 359 0 899 1.47 3345 37 360.978 360.92 361.01 0 1121 1.83 4423 38 362.312 362.24 362.34 0 1032 1.68 3947 39 363.053 363.01 363.08 1 1123 1.83 4701.04

230

40 363.955 363.92 363.99 0 747 1.22 3551 41 364.114 364.04 364.14 1 1058 1.73 3976 42 364.991 364.93 365.07 0 1528 2.49 8693.08 43 366.988 366.92 367.05 4 1088 1.78 5613 44 367.265 367.22 367.29 4 1036 1.69 3464 45 372.996 372.95 373.03 0 2466 4.03 9981 46 374.992 374.96 375.09 0 2136 3.49 8776 47 377.233 377.2 377.31 0 866 1.41 4163 48 382.978 382.94 383.01 0 790 1.29 3640 49 384.977 384.94 385 0 781 1.28 3515 50 390.128 390.09 390.17 1 643 1.05 3255 51 390.999 390.96 391.03 1 652 1.06 2368 52 408.28 408.23 408.94 0 1032 1.68 4800 53 423.013 422.93 423.13 1 16290 26.6 78264 54 424.018 423.96 424.12 1 2855 4.66 13968 55 425.011 424.94 425.13 1 13952 22.78 71134 56 426.013 425.94 426.07 1 2767 4.52 12846 57 427.011 426.95 427.12 1 3500 5.71 17077 58 428.006 427.96 428.06 1 645 1.05 3824 59 484.144 484.08 484.24 1 3073 5.02 16102 60 485.147 485.11 485.2 1 833 1.36 4030 61 486.142 485.94 486.25 1 1453 2.37 8602 62 487.146 487.1 487.28 1 1319 2.15 6758 63 488.152 488.09 488.29 1 4214 6.88 24438 64 489.155 489.12 489.21 1 1460 2.38 5840 65 502.041 501.98 502.13 0 2796 4.56 10915 66 504.042 503.99 504.09 0 2196 3.59 9969 67 531.434 531.38 531.5 0 1107 1.81 5839 68 545.053 544.99 545.17 0 1445 2.36 7805 69 547.049 546.99 547.11 0 1350 2.2 7192 70 608.025 607.97 608.07 0 896 1.46 4185 71 609.312 609.22 609.46 1 9691 15.82 52917 72 610.312 610.26 610.41 1 3148 5.14 16620 73 611.318 611.26 611.4 1 716 1.17 2947 74 618.011 617.96 618.09 0 863 1.41 3472 75 645.117 645.06 645.17 0 1158 1.89 5496 76 647.119 646.09 647.19 0 1069 1.75 6371

231

77 649.124 649.06 649.21 0 1090 1.78 5987 78 922.05 921.93 922.11 0 668 1.09 3456 79 967.281 967.16 967.45 1 4790 7.82 32279 80 968.28 968.19 968.43 1 2931 4.79 19148 81 969.279 969.18 969.46 1 5071 8.28 35006 82 970.282 970.19 970.4 1 2736 4.47 17956 83 971.286 971.18 971.48 1 4287 7 26263 84 972.287 972.2 972.4 1 2083 3.4 13745 85 973.291 973.2 973.39 1 1766 2.88 10424 86 974.291 974.2 974.44 1 1993 3.25 12820 87 975.292 975.21 975.44 1 1501 2.45 9173 88 1022.05 1021.94 1022.18 0 1860 3.04 12866 89 1031.2 1031.11 1031.27 0 786 1.28 4278 90 1033.21 1033.12 1033.28 0 1037 1.69 7234 91 1035.21 1034.15 1035.31 0 936 1.53 8698 92 1122.05 1121.15 1122.23 1 3808 6.22 28319 93 1123.05 1122.98 1123.14 1 722 1.18 4195 94 1130.25 1130.17 1130.37 0 999 1.63 5647 95 1132.25 1132.17 1132.35 0 839 1.37 5055 96 1134.26 1134.2 1134.32 0 625 1.02 2778 97 1222.04 1221.9 1222.24 1 4983 8.14 40371 98 1223.05 1222.96 1223.16 1 1260 2.06 7878 99 1322.04 1321.9 1322.27 1 5441 8.88 49827 100 1323.05 1322.95 1324.12 1 1359 2.22 10869 101 1422.04 1421.87 1422.26 1 5627 9.19 46180 102 1423.04 1422.93 1423.16 1 1632 2.66 11319 103 1450.42 1450.34 1450.5 0 627 1.02 3579 104 1452.41 1452.29 1452.57 0 843 1.38 5526 105 1454.41 1454.31 1454.56 1 1108 1.81 7286 106 1455.43 1455.3 1455.55 1 799 1.3 5944 107 1456.42 1456.32 1456.51 1 755 1.23 5181 108 1522.04 1521.86 1522.25 1 4308 7.03 37093 109 1523.04 1522.93 1524.11 1 1361 2.22 9714 110 1622.04 1621.86 1622.28 1 2886 4.71 26294 111 1623.04 1622.92 1623.14 1 872 1.42 6491 112 1722.03 1721.86 1722.29 0 2016 3.29 16611 113 1822.03 1821.88 1822.24 0 803 1.31 7126

232

SPECTRUM 3 True value Error Centroid Index Mass amu amu ppm TBA 2 242.2967 242.2842 0.01246 51.423 M+ 64 487.1455 487.1221 0.02340 48.035 [M+H]+ 65 488.1530 488.1299 0.02311 47.352 [M+1]+ 66 489.1603 489.1333 0.02702 55.249 Reserpine [M+H]+ 73 609.3102 609.2806 0.02957 48.539 Reserpine [M+H+1]+ 74 610.3154 610.2840 0.03147 51.573 [2M+H]+ 87 975.2937 975.2536 0.04007 41.083 ultramark (C20H19O6N3P3F28) 89 1022.0499 1022.0040 0.04590 44.912 ultramark (C22H19O6N3P3F32) 93 1122.0483 1121.9976 0.05076 45.241 ultramark (C24H19O6N3P3F36) 97 1222.0440 1221.9912 0.05276 43.175 ultramark (C26H19O6N3P3F40) 99 1322.0419 1321.9848 0.05706 43.162 ultramark (C28H19O6N3P3F44) 101 1422.0388 1421.9784 0.06040 42.476 ultramark (C30H19O6N3P3F48) 107 1522.0358 1521.9720 0.06374 41.880 ultramark (C32H19O6N3P3F52) 109 1622.0364 1621.9657 0.07073 43.608 ultramark (C34H19O6N3P3F56) 111 1722.0306 1721.9593 0.07138 41.453 ultramark (C36H19O6N3P3F60) 113 1822.0314 1821.9529 0.07850 43.086

SPECTRUM 3 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.153 229.11 229.23 0 4469 7.17 22611 2 242.297 242.27 242.88 1 62354 100 259105 3 243.3 243.26 243.36 1 10657 17.09 44922 4 243.988 243.97 244.02 0 1113 1.78 3699 5 244.303 244.28 244.35 1 859 1.38 2956 6 246.183 246.16 246.23 0 1740 2.79 6028 7 254.035 254.01 254.06 0 790 1.27 2151 8 262.039 261.15 262.13 1 16445 26.37 70091 9 263.043 263.02 263.07 1 1744 2.8 5760 10 264.038 263.99 264.13 1 7228 11.59 30215

233

11 265.042 265.03 265.1 1 1044 1.67 3635 12 283.052 283.02 283.1 0 705 1.13 2699 13 283.167 283.13 283.19 0 961 1.54 3057 14 284.022 283.99 284.12 1 10503 16.84 45105 15 285.027 285.01 285.07 1 1262 2.02 5149 16 285.2 285.17 285.23 0 1234 1.98 4686 17 286.02 285.98 286.11 0 5042 8.09 20086 18 293.229 293.2 293.29 0 1270 2.04 7198 19 295.277 295.22 295.31 0 961 1.54 3844 20 296.085 296.06 297.09 0 629 1.01 2027 21 302.034 301.98 302.1 0 4215 6.76 18527 22 304.031 304.01 304.08 0 2080 3.34 8338 23 307.243 307.2 307.29 0 1517 2.43 6206 24 309.258 309.22 309.32 0 2198 3.53 9028 25 311.274 311.23 311.33 0 1081 1.73 5345 26 325.254 325.19 325.31 0 1677 2.69 7849 27 339.247 339.2 339.33 0 1288 2.07 6812 28 341.071 341.03 341.18 1 10014 16.06 44780 29 342.072 342.04 342.17 1 1540 2.47 6434 30 343.069 343.03 343.14 1 4831 7.75 20141 31 344.072 344.04 344.1 1 762 1.22 2588 32 349.251 349.19 349.27 0 637 1.02 2386 33 353.143 353.07 353.17 0 665 1.07 2918 34 358.293 358.25 358.34 1 1294 2.08 5324 35 358.98 358.95 359 0 1085 1.74 3759 36 359.218 359.18 359.24 1 845 1.36 3478 37 360.978 360.94 361.01 0 942 1.51 3926 38 361.967 361.93 362 3 646 1.04 3179 39 362.309 362.27 362.36 3 1089 1.75 4188 40 363.051 363.01 363.08 1 1133 1.82 4420.05 41 363.954 363.3 364.02 0 837 1.34 5532 42 364.113 364.08 364.14 1 998 1.6 3311 43 364.993 364.94 365.08 1 1707 2.74 9888.98 44 365.953 365.92 365.99 1 671 1.08 2742.98 45 366.992 366.94 367.05 4 1284 2.06 5960

234

46 367.267 367.24 367.29 4 969 1.55 3187 47 372.994 372.95 373.22 0 2400 3.85 10268 48 374.994 374.96 375.06 0 2279 3.65 9072 49 376.993 376.97 377.03 4 637 1.02 2195 50 377.234 377.2 377.3 4 868 1.39 4741 51 382.978 382.75 383.04 0 864 1.39 3651 52 384.978 384.93 385.03 0 907 1.45 3973 53 390.125 390.1 390.19 0 910 1.46 3486 54 408.279 408.18 408.35 0 1026 1.65 4798 55 423.013 422.93 423.14 1 15879 25.47 81887 56 424.016 423.97 424.13 1 2942 4.72 15023 57 425.012 424.96 425.13 1 15010 24.07 73581 58 426.014 425.95 426.09 1 3011 4.83 13808 59 427.011 426.95 427.08 1 3814 6.12 18136 60 428.015 427.96 428.09 1 685 1.1 3610 61 484.144 484.08 484.26 1 3144 5.04 16563 62 485.147 485.1 485.2 1 970 1.56 4404 63 486.141 486.09 486.29 1 1305 2.09 7750 64 487.145 487.1 487.23 1 1438 2.31 7561 65 488.153 488.09 488.28 1 4484 7.19 24686 66 489.16 489.11 489.22 1 1443 2.31 6667 67 502.045 501.9 502.23 0 2602 4.17 12204 68 504.039 503.99 504.16 0 2086 3.35 10544 69 531.436 531.38 531.48 0 1279 2.05 6139 70 545.052 545 545.11 0 1557 2.5 7718 71 547.051 547 547.09 0 1522 2.44 7470 72 608.027 607.97 608.07 0 819 1.31 3767 73 609.31 609.22 609.45 1 9369 15.03 53525 74 610.315 610.26 610.41 1 3435 5.51 18167 75 611.319 611.26 611.41 1 866 1.39 3313 76 645.119 644.49 645.16 0 1012 1.62 5206 77 647.119 647.07 647.16 0 1060 1.7 4710 78 649.13 649.07 649.17 0 1178 1.89 4940 79 967.278 967.12 967.46 1 4562 7.32 32845 80 968.282 968.19 968.47 1 2690 4.31 18608 81 969.28 969.18 969.44 1 5484 8.79 36214 82 970.28 970.19 970.43 1 2674 4.29 17980

235

83 971.284 971.18 971.45 1 3809 6.11 27294 84 972.288 972.2 972.4 1 2032 3.26 12467 85 973.285 973.21 973.42 1 1403 2.25 8321 86 974.291 974.2 974.43 1 1860 2.98 12711 87 975.294 975.22 975.4 1 1824 2.93 9743 88 976.297 976.24 976.35 1 642 1.03 3020 89 1022.05 1021.95 1022.18 0 2358 3.78 14624 90 1031.2 1030.16 1032.25 0 719 1.15 7864 91 1033.21 1033.1 1033.28 0 1032 1.66 6854 92 1035.22 1035.12 1035.28 0 1036 1.66 5114 93 1122.05 1121.9 1122.21 1 4260 6.83 32080 94 1123.05 1122.96 1123.13 1 956 1.53 5124 95 1130.25 1130.15 1130.34 0 888 1.42 5415 96 1132.26 1132.16 1132.33 0 890 1.43 4905 97 1222.04 1221.78 1222.25 1 5788 9.28 45244 98 1223.05 1222.96 1224.1 1 1382 2.22 9221 99 1322.04 1321.72 1322.26 1 6590 10.57 54896 100 1323.05 1322.95 1323.18 1 1644 2.64 11310 101 1422.04 1421.77 1422.26 1 6477 10.39 52374 102 1423.05 1422.93 1423.18 1 1518 2.43 10487 103 1450.41 1450.32 1450.49 0 630 1.01 3575 104 1452.41 1452.29 1452.53 0 791 1.27 5860 105 1454.41 1454.3 1454.56 0 986 1.58 7762 106 1456.42 1456.29 1456.54 0 723 1.16 5173 107 1522.04 1521.86 1522.24 1 4560 7.31 42285 108 1523.04 1522.93 1523.17 1 1482 2.38 10099 109 1622.04 1621.86 1622.26 1 3500 5.61 30189 110 1623.04 1622.93 1624.22 1 1288 2.07 8622 111 1722.03 1721.86 1722.26 1 1871 3 18079 112 1723.05 1722.9 1724.12 1 969 1.55 5011 113 1822.03 1821.86 1822.18 0 925 1.48 8122

236

True SPECTRUM 4 value Error Centroid Index Mass amu amu ppm TBA 2 242.2968 242.2842 0.01255 51.795 M+ 68 487.1474 487.1221 0.02532 51.977 [M+H]+ 69 488.1536 488.1299 0.02368 48.520 [M+1]+ 70 489.1578 489.1333 0.02458 50.260 Reserpine [M+H]+ 81 609.3108 609.2806 0.03018 49.540 Reserpine [M+H+1]+ 82 610.3139 610.2840 0.02994 49.066 [2M+H]+ 95 975.2955 975.2536 0.04184 42.898 ultramark (C20H19O6N3P3F28) 97 1022.0461 1022.0040 0.04211 41.203 ultramark (C22H19O6N3P3F32) 102 1122.0440 1121.9976 0.04637 41.328 ultramark (C24H19O6N3P3F36) 106 1222.0453 1221.9912 0.05410 44.272 ultramark (C26H19O6N3P3F40) 108 1322.0408 1321.9848 0.05596 42.330 ultramark (C28H19O6N3P3F44) 110 1422.0372 1421.9784 0.05881 41.358 ultramark (C30H19O6N3P3F48) 118 1522.0352 1521.9720 0.06313 41.479 ultramark (C32H19O6N3P3F52) 120 1622.0410 1621.9657 0.07537 46.468 ultramark (C34H19O6N3P3F56) 122 1722.0320 1721.9593 0.07272 42.231 ultramark (C36H19O6N3P3F60) 123 1822.0333 1821.9529 0.08046 44.161

SPECTRUM 4 Only peaks and areas >1% of BP shown Centroid Lower Upper Charge Relative Area Index Mass Bound Bound (z) Height Intensity (A) 1 229.154 229.11 229.24 0 4234 6.87 23321 2 242.297 242.27 242.89 1 61668 100 261119 3 243.301 243.26 243.36 1 11027 17.88 45451 4 243.987 243.96 244.09 0 821 1.33 3490 5 244.304 244.28 244.38 1 791 1.28 2729

237

6 246.182 246.16 246.2 0 1700 2.76 6096 7 251.138 251.12 251.15 0 686 1.11 1785 8 254.036 254.01 254.07 0 741 1.2 2708 9 262.039 261.24 262.9 1 15391 24.96 66728 10 263.043 263 263.09 1 1476 2.39 5939 11 264.038 263.98 264.1 1 7866 12.76 31072 12 265.041 265.02 265.12 1 839 1.36 3790 13 283.051 283.02 283.09 0 667 1.08 2697 14 283.17 283.15 283.24 0 618 1 2768 15 284.022 283.99 284.11 1 10346 16.78 46300 16 285.028 284.99 285.08 1 1193 1.93 6213 17 285.2 285.17 285.26 0 1158 1.88 5111 18 286.021 285.99 286.1 1 5188 8.41 21412 19 287.027 286.95 287.05 1 621 1.01 2396 20 293.229 293.18 293.29 0 1369 2.22 8136 21 295.278 295.22 295.34 0 825 1.34 3413 22 302.034 301.98 302.13 0 4267 6.92 17753 23 304.032 304.01 304.09 0 1963 3.18 8225 24 307.243 307.21 307.27 0 1508 2.45 5738 25 309.259 309.23 309.3 0 2275 3.69 9244 26 311.273 311.22 311.35 0 1199 1.94 5818 27 313.291 313.26 313.32 0 704 1.14 2623 28 323.239 323.2 323.26 0 910 1.48 3104 29 325.253 325.16 325.32 0 1773 2.88 7718 30 339.247 339.2 339.37 0 1468 2.38 6874 31 341.07 341.03 341.18 1 9717 15.76 44926 32 342.073 342.03 342.14 1 1514 2.46 6008 33 343.068 343.02 343.14 0 4659 7.55 19789 34 353.144 353.07 353.17 0 756 1.23 2993 35 358.289 358.21 358.33 1 1297 2.1 5533 36 358.981 358.94 359.02 0 1008 1.63 4037 37 359.218 359.18 359.26 1 774 1.26 3288 38 360.977 360.94 361.02 1 932 1.51 4269 39 361.965 361.92 362 1 639 1.04 3499 40 362.309 362.26 362.34 0 892 1.45 4291

238

41 363.053 363.03 363.09 1 1128 1.83 4157 42 363.955 363.92 364.02 0 778 1.26 4286 43 364.111 364.08 364.16 1 893 1.45 3623 44 364.991 364.94 365.03 1 1535 2.49 6549.28 45 365.051 365.03 365.13 0 678 1.1 2418.72 46 365.951 365.93 365.99 1 617 1 2645.96 47 366.991 366.95 367.09 4 1491 2.42 6923 48 367.265 367.22 367.29 4 974 1.58 3481 49 372.997 372.94 373.09 0 2537 4.11 10841 50 374.995 374.96 375.06 0 2088 3.39 8729 51 376.289 376.26 376.31 1 743 1.2 2015 52 377.234 377.19 377.33 1 812 1.32 4531 53 382.981 382.94 383.07 1 1045 1.69 3809 54 383.98 383.92 384.05 1 912 1.48 3855 55 384.977 384.93 385.2 1 863 1.4 4207 56 390.129 390.09 390.17 1 1046 1.7 4012 57 390.997 390.28 391.03 1 669 1.08 3081 58 408.278 408.24 408.35 0 1104 1.79 5709 59 423.013 422.93 423.14 1 16456 26.68 83522 60 424.016 423.96 424.09 1 3137 5.09 15043 61 425.012 424.94 425.13 1 15057 24.42 74301 62 426.015 425.96 426.13 1 2719 4.41 13948 63 427.01 426.95 427.12 0 3520 5.71 17813 64 431.031 431 431.06 0 737 1.2 2538 65 484.146 484.09 484.26 1 3425 5.55 16283 66 485.145 484.96 485.22 1 1181 1.92 4868 67 486.144 486.1 486.25 1 1467 2.38 8481 68 487.147 487.1 487.33 1 1402 2.27 7802 69 488.154 488.01 488.28 1 5024 8.15 27255 70 489.158 489.11 489.21 1 1738 2.82 6467 71 502.044 501.99 502.09 0 2463 3.99 11685 72 504.043 503.99 504.12 1 2426 3.93 11399 73 505.042 504.98 505.08 1 649 1.05 2523 74 506.041 505.97 506.08 0 700 1.14 2881 75 531.436 531.04 531.49 0 1269 2.06 6502 76 545.053 544.39 545.13 0 1652 2.68 8019 77 547.052 547 547.12 0 1330 2.16 6971

239

78 604.002 603.93 604.07 0 717 1.16 3463 79 607.295 607.25 607.37 0 772 1.25 3662 80 608.019 607.94 608.12 0 668 1.08 4032 81 609.311 609.23 609.45 1 9744 15.8 56049 82 610.314 610.25 610.41 1 3796 6.16 19430 83 611.316 611.25 611.36 1 719 1.17 3350 84 645.116 645.06 645.41 0 1023 1.66 5598 85 647.119 647.06 647.22 0 1058 1.72 5837 86 649.124 649.07 649.22 0 1132 1.84 6354 87 967.278 967.16 967.43 1 4928 7.99 35099 88 968.281 968.19 968.42 1 2925 4.74 19766 89 969.278 969.17 969.46 1 5063 8.21 38150 90 970.28 970.19 970.4 1 2864 4.64 19294 91 971.284 971.19 971.46 1 4084 6.62 29670 92 972.287 972.19 972.45 1 2227 3.61 13911 93 973.29 973.21 973.42 1 1590 2.58 10541 94 974.292 974.2 974.46 1 2063 3.35 12871 95 975.295 975.21 975.4 1 1538 2.49 10519 96 976.3 976.21 977.35 1 809 1.31 4189 97 1022.05 1021.95 1022.18 0 2043 3.31 15163 98 1031.21 1031.11 1031.33 0 1009 1.64 5905 99 1033.2 1033.11 1033.34 1 1106 1.79 8108 100 1034.21 1034.12 1034.27 1 665 1.08 3235 101 1035.21 1035.12 1035.29 0 965 1.56 6073 102 1122.04 1121.92 1122.24 1 4132 6.7 32793 103 1123.05 1122.94 1124.11 1 1080 1.75 6757 104 1130.25 1130.14 1130.38 0 838 1.36 6224 105 1132.26 1132.16 1132.35 0 852 1.38 5232 106 1222.05 1221.91 1222.25 1 5906 9.58 46629 107 1223.04 1222.96 1224.08 1 1360 2.21 9739 108 1322.04 1321.88 1322.27 1 6558 10.63 54078 109 1323.04 1322.93 1323.19 1 1681 2.73 11239 110 1422.04 1421.87 1422.23 1 5935 9.62 53934 111 1423.05 1422.92 1423.18 1 1677 2.72 11054 112 1452.41 1452.29 1452.59 1 813 1.32 6125 113 1453.41 1453.31 1453.51 1 666 1.08 4056 114 1454.42 1454.3 1454.58 1 1042 1.69 8138

240

115 1455.43 1455.3 1455.54 1 759 1.23 5131 116 1456.42 1456.32 1456.63 0 776 1.26 5710 117 1458.44 1458.31 1458.52 0 622 1.01 3862 118 1522.04 1521.87 1522.25 1 5119 8.3 45163 119 1523.04 1522.93 1523.17 1 1392 2.26 10524 120 1622.04 1621.86 1622.22 1 3544 5.75 30122 121 1623.05 1622.92 1624.11 1 1137 1.84 8626 122 1722.03 1721.86 1722.26 0 1911 3.1 18106 123 1822.03 1821.86 1822.21 0 975 1.58 8513

241

IR Spectra and Mass Spectrometry Data of Bromo Catalyst

IR Spectrum

810.23

826.55 837.97

875.00

920.37

974.40 989.71

1024.97

1078.36

1101.75 100 0 1134.77

1180.62

1219.75

1244.17

1281.43

1303.96

1347.11 1375.31

1454.38

1529.47

1590.45

1620.78 150 0

1979.32

200 0

2160.73

250 0 Wavenumbers(cm-1)

2855.24

2929.73

300 0

350 0

50

55

60

65

70

75

80

85 90

%T

242

810.23

826.55 837.97

875.00

920.37

974.40 989.71

1024.97

1078.36

1101.75 100 0 1134.77

1180.62

1219.75

1244.17

1281.43

1303.96

1347.11 1375.31

1454.38

1529.47

1590.45

1620.78 150 0

1979.32

200 0

2160.73

250 0 Wavenumbers(cm-1)

2855.24

2929.73

300 0

350 0

50

55

60

65

70

75

80

85 90 %T

243

HR-ESI-MS data The following page contains relevant monoisotopic elements necessary to calculate the ions observed in the ESI-MS data. isotopes Element main +1 mass +2 mass -1 mass H mass 1.0078 2.0141 abundance 99.9885 0.012 C mass 12.0000 13.0034 abundance 98.93 1.08 N mass 14.0031 15.0001 abundance 99.632 0.369 O mass 15.9949 16.9991 17.9992 abundance 99.757 0.038 0.206 Na mass 22.9898 abundance 100 K mass 38.963708 abundance 93.2581 Br mass 78.9183 80.9163 abundance 50.69 49.31 V mass 50.9440 49.9472 abundance 99.75 0.251 electron 0.000549

The three compounds (tetrabutylammonium ion, reserpine, and ultramark) were used as internal standards for calibration in each of the catalyst analyzed.

Tetrabutylammonium ion C16H36N1 M+ [M+1]+ [M+2]+ [M+Na]+ [M+K]+ mass 242.2842 243.2876 244.2909 265.2740 280.2401

Reserpine C33H40N2O9 [M+H]+ [M+H+1]+ [M+Na]+ mass 609.2806 610.2840 632.2704 Ultramark

C20H19O6N3P3F28 C22H19O6N3P3F32 C24H19O6N3P3F36 C26H19O6N3P3F40 C28H19O6N3P3F44 mass 1022.00397 1121.99758 1221.99119 1321.98481 1421.97842

C30H19O6N3P3F48 C32H19O6N3P3F52 C34H19O6N3P3F56 C36H19O6N3P3F60 C38H19O6N3P3F64 mass 1521.97203 1621.96565 1721.95926 1821.95287 1921.94648

244

Expected Data

Vanadium(bromo) Complex C20H18N2O3Br2V1 M+ [M+H]+ [M+H+2]+ [M+H+4]+ mass 542.9118 543.9196 545.9176 547.9155 [M+H+1]+ [2M+H]+ [2M+H+2]+ [2M+H+4]+ mass 544.9230 1086.8320 1088.8299 1090.8279

Representative Spectrum

245

Summary of Results error nominal SPECTRUM m/z Name 1 2 3 4 242.3 TBA -0.17 3.75 4.29 7.59 - [M+H]+ 543.9 11.59 -7.22 -8.12 0.30 545.9 [M+H+2]+ -6.90 -4.33 -3.44 -0.19 547.9 [M+H+4]+ -2.80 -3.70 0.21 4.11 609.3 Reserpine [M+H]+ 0.25 1.06 1.16 4.77 610.3 Reserpine [M+H+1]+ 1.87 -5.43 7.17 2.56 1086.8 [2M+H]+ -4.72 -0.30 -5.62 8.00 - [2M+H+2]+ 1088.8 13.90 -13.90 -9.18 -3.90 1090.8 [2M+H+4]+ -4.81 -4.81 -2.68 -0.78

1022.0 ultramark (C20H19O6N3P3F28) -5.50 -7.28 -1.47 1.33

1122.0 ultramark (C22H19O6N3P3F32) -2.09 -1.54 1.83 3.24

1222.0 ultramark (C24H19O6N3P3F36) -1.78 -0.29 -0.18 5.01

1322.0 ultramark (C26H19O6N3P3F40) 2.53 0.60 1.70 3.64

1422.0 ultramark (C28H19O6N3P3F44) -0.79 2.04 3.85 6.42

1522.0 ultramark (C30H19O6N3P3F48) -0.15 0.17 1.22 5.47

1622.0 ultramark (C32H19O6N3P2F52) 1.91 3.11 -0.04 6.28

1722.0 ultramark (C34H19O6N3P3F56) -0.80 2.18 5.80 7.92

1822.0 ultramark (C36H19O6N3P3F60) 2.09 6.04 9.72 7.84

1921.9 ultramark (C38H19O6N3P3F64) 2.25 1.49 3.58 7.01

246

nominal SPECTRUM m/z Name 5 6 7 8 242.3 TBA 6.56 4.82 1.07 1.07 543.9 [M+H]+ -5.20 -1.83 -7.22 -4.07 545.9 [M+H+2]+ -2.43 0.70 -2.32 -4.33 547.9 [M+H+4]+ 1.43 4.66 -4.25 -3.35 609.3 Reserpine [M+H]+ 9.38 7.67 3.06 -0.14 610.3 Reserpine [M+H+1]+ 7.07 7.68 5.17 -4.04 1086.8 [2M+H]+ -1.79 0.18 -4.72 -3.83 - [2M+H+2]+ 1088.8 15.46 -6.93 -2.55 -2.21 1090.8 [2M+H+4]+ -2.68 2.92 -6.94 -2.01

1022.0 ultramark (C20H19O6N3P3F28) 2.67 3.01 -4.27 -3.37

1122.0 ultramark (C22H19O6N3P3F32) 1.83 2.26 -1.76 -1.21

1222.0 ultramark (C24H19O6N3P3F36) 3.22 4.01 -3.68 -3.38

1322.0 ultramark (C26H19O6N3P3F40) 2.62 6.13 0.60 -2.27

1422.0 ultramark (C28H19O6N3P3F44) 3.24 5.05 0.58 -1.48

1522.0 ultramark (C30H19O6N3P3F48) 5.22 6.59 -0.95 0.33

1622.0 ultramark (C32H19O6N3P3F52) 6.42 6.88 2.81 1.76

1722.0 ultramark (C34H19O6N3P3F56) 4.09 6.22 3.39 2.89

1822.0 ultramark (C36H19O6N3P3F60) 8.51 6.57 4.90 2.68

1921.9 ultramark (C38H19O6N3P3F64) 6.00 3.84 3.39 3.39

247

90% m/z Name average sd CI furthest 242.3 TBA 3.62 2.77 2.30 5.93 543.9 [M+H]+ -5.62 3.76 3.13 -8.75 545.9 [M+H+2]+ -2.91 2.43 2.02 -4.92 547.9 [M+H+4]+ -0.46 3.58 2.98 -3.44 609.3 Reserpine [M+H]+ 3.40 3.56 2.97 6.37 610.3 Reserpine [M+H+1]+ 2.76 5.10 4.24 7.00 1086.8 [2M+H]+ -1.60 4.43 3.69 -5.29 1088.8 [2M+H+2]+ -8.50 5.42 4.51 -13.02 1090.8 [2M+H+4]+ -2.72 2.99 2.49 -5.21 1022.0 ultramark (C20H19O6N3P3F28) -1.86 3.88 3.23 -5.09 1122.0 ultramark (C22H19O6N3P3F32) 0.32 2.16 1.80 2.12 1222.0 ultramark (C24H19O6N3P3F36) 0.37 3.35 2.79 3.15 1322.0 ultramark (C26H19O6N3P3F40) 1.94 2.47 2.05 4.00 1422.0 ultramark (C28H19O6N3P3F44) 2.36 2.79 2.32 4.69 1522.0 ultramark (C30H19O6N3P3F48) 2.24 3.00 2.50 4.73 1622.0 ultramark (C32H19O6N3P3F52) 3.64 2.57 2.14 5.78 1722.0 ultramark (C34H19O6N3P3F56) 3.96 2.71 2.26 6.22 1822.0 ultramark (C36H19O6N3P3F60) 6.04 2.71 2.25 8.30 1921.9 ultramark (C38H19O6N3P3F64) 3.87 1.82 1.52 5.39

248

Data

SPECTRUM 1 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2842 242.2842 0.00 -0.17 [M+H]+ 56 543.9133 543.9196 -0.01 -11.59 [M+H+2]+ 59 545.9138 545.9176 0.00 -6.90 [M+H+4]+ 61 547.9140 547.9155 0.00 -2.80 Reserpine [M+H]+ 68 609.2808 609.2806 0.00 0.25 Reserpine [M+H+1]+ 69 610.2851 610.2840 0.00 1.87 [2M+H]+ 84 1021.9992 1022.0040 0.00 -4.72 [2M+H+2]+ 85 1086.8169 1086.8320 -0.02 -13.90 [2M+H+4]+ 86 1088.8247 1088.8299 -0.01 -4.81 ultramark (C20H19O6N3P3F28) 88 1090.8219 1090.8279 -0.01 -5.50 ultramark (C22H19O6N3P3F32) 91 1121.9952 1121.9976 0.00 -2.09 ultramark (C24H19O6N3P3F36) 93 1221.9890 1221.9912 0.00 -1.78 ultramark (C26H19O6N3P3F40) 96 1321.9882 1321.9848 0.00 2.53 ultramark (C28H19O6N3P3F44) 100 1421.9773 1421.9784 0.00 -0.79 ultramark (C30H19O6N3P3F48) 104 1521.9718 1521.9720 0.00 -0.15 ultramark (C32H19O6N3P3F52) 107 1621.9688 1621.9657 0.00 1.91 ultramark (C34H19O6N3P3F56) 111 1721.9579 1721.9593 0.00 -0.80 ultramark (C36H19O6N3P3F60) 113 1821.9567 1821.9529 0.00 2.09 ultramark (C38H19O6N3P3F64) 115 1921.9508 1921.9465 0.00 2.25

SPECTRUM 1 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.2 0 476 4.22 2321 2 229.1 229.1 229.2 0 810 7.17 4410 3 242.3 242.2 242.8 1 6729 59.58 37962 4 243.3 243.3 243.8 1 977 8.65 6097 5 246.2 246.1 246.9 0 269 2.38 1436 6 264.2 264.2 264.3 0 682 6.04 3727

249

8 284.3 284.3 284.3 1 177 1.57 839.4 9 285.2 285.1 285.2 0 214 1.89 1188 10 286.9 286.9 287 0 172 1.52 816.3 11 322.9 322.8 323.2 0 258 2.29 1872 12 327.2 327.1 327.9 1 11295 100 74880 13 328.2 328.1 328.3 1 2773 24.56 17385 14 329.2 329.2 329.5 1 417 3.7 2612 15 338.3 338.3 338.8 1 500 4.43 2947 16 339.2 339.2 339.3 1 1099 9.73 7337 17 340.2 340.2 340.3 1 243 2.15 1856 18 341.3 341.2 341.4 1 191 1.69 1494 19 343.9 343.9 344.1 0 145 1.28 788 20 349.2 349.1 350.1 0 548 4.85 3305 21 355.3 355.2 356.2 1 310 2.75 1724 22 356.3 356.2 356.8 1 135 1.2 788.1 23 358.3 358.2 358.4 1 189 1.67 1087 24 359.2 359.1 359.3 1 454 4.02 2937 25 360 359.9 360 0 243 2.15 1343 26 361.2 361.2 361.8 0 119 1.05 820 27 369.3 369.3 369.4 0 125 1.11 995.3 28 377.2 377.2 377.3 0 145 1.29 809.6 29 383.3 383.2 383.8 0 184 1.63 2258 30 384.3 384.2 384.4 1 1164 10.31 7879 31 385.3 385.2 385.4 1 323 2.86 2311 32 391.3 391.2 391.8 0 196 1.74 1376 33 400.3 400.2 400.8 0 220 1.95 2148 34 406.1 406.1 406.2 0 117 1.04 954 35 423.1 423.1 423.2 0 117 1.03 787.4 36 439.3 439.3 439.9 0 195 1.72 1044 37 444.3 444.3 444.9 0 406 3.59 2602 38 467.1 467.1 467.2 0 117 1.04 1027 39 467.9 467.9 468 0 175 1.55 1169 40 471.9 471.9 472 0 201 1.78 1416 41 488.4 488.3 488.8 1 579 5.13 5073 42 489.4 489.3 489.8 1 149 1.32 1265 43 495.9 495.9 496.1 0 118 1.04 880.4 44 499.9 499.9 500.1 0 270 2.39 1931 45 502.4 502.3 502.5 0 423 3.74 3242 46 516.4 516.3 517 1 419 3.71 3299

250

47 517.4 517.4 517.8 1 120 1.06 884.3 48 527.9 527.9 528.2 0 232 2.05 1730 49 530.4 530.4 531.2 1 414 3.67 3374 50 531.4 531.3 531.6 1 139 1.23 1148 51 532.4 532.3 533.2 1 833 7.38 7299 52 533.4 533.3 533.8 1 234 2.08 1743 53 537.3 537.2 537.6 0 141 1.25 844.8 54 541.9 541.8 542.6 1 331 2.93 2433 55 542.9 542.8 543.2 1 229 2.03 1731 56 543.9 543.8 544.3 2 1827 16.17 14295 57 544.5 544.4 544.8 2 469 4.15 3462 58 544.9 544.8 545.4 0 617 5.47 4383 59 545.9 545.8 546.7 1 2976 26.35 24533 60 546.9 546.8 547.1 1 822 7.28 6290 61 547.9 547.8 548.7 1 1276 11.3 11422 62 548.9 548.8 549.2 1 316 2.8 2281 63 558.5 558.4 558.8 0 243 2.15 1855 64 572.5 572.4 572.8 0 134 1.19 964 65 576.4 576.3 577.3 1 867 7.68 7077 66 577.4 577.3 577.5 1 296 2.62 2451 67 586.5 586.4 587.2 0 121 1.07 843 68 609.3 609.2 609.8 1 1881 16.66 15959 69 610.3 610.2 611 1 574 5.08 4714 70 611.3 611.2 611.5 1 137 1.21 1300 71 620.4 620.3 620.8 1 854 7.56 7409 72 621.4 621.3 621.6 1 256 2.26 2380 73 648.9 648.8 649.3 0 333 2.95 2687 74 664.5 664.4 665.2 1 760 6.72 6884 75 665.5 665.3 665.6 1 287 2.54 2296 76 676.9 676.8 677.6 0 193 1.71 1755 77 704.9 704.7 705.1 0 150 1.33 1281 78 708.5 708.4 708.8 1 627 5.55 5785 79 709.5 709.4 709.7 1 226 2 1873 80 752.5 752.4 752.7 0 425 3.77 3794 81 796.5 796.4 797.3 0 182 1.61 1676 82 840.6 840.4 841.4 0 128 1.14 1082 83 922 921.9 922.5 0 120 1.06 1035

251

84 1022 1022 1023 0 383 3.39 4164 85 1087 1087 1087 0 177 1.57 1766 86 1089 1089 1090 1 444 3.93 4804 87 1090 1090 1090 1 218 1.93 2193 88 1091 1091 1092 1 534 4.73 6094 89 1092 1092 1093 1 206 1.82 2157 90 1093 1093 1093 0 309 2.73 3222 91 1122 1122 1123 1 973 8.62 11423 92 1123 1123 1124 1 197 1.75 2044 93 1222 1222 1223 1 1633 14.46 19887 94 1223 1223 1223 1 359 3.18 3981 95 1267 1267 1267 0 142 1.26 1687 96 1322 1322 1323 1 1977 17.5 26422 97 1323 1323 1324 1 516 4.57 5910 98 1367 1367 1367 0 186 1.64 2515 99 1401 1401 1402 0 129 1.14 1427 100 1422 1422 1423 1 2063 18.26 27527 101 1423 1423 1424 1 547 4.84 6840 102 1467 1467 1467 0 139 1.23 1738 103 1501 1501 1501 0 122 1.08 1435 104 1522 1522 1523 1 1824 16.15 25401 105 1523 1523 1524 1 523 4.63 6033 106 1567 1567 1568 0 120 1.06 1635 107 1622 1621 1623 1 1430 12.66 20598 108 1623 1623 1624 1 418 3.7 5039 109 1635 1635 1635 0 149 1.32 1720 110 1637 1637 1637 0 139 1.23 1771 111 1722 1722 1723 1 1015 8.98 14821 112 1723 1723 1723 1 276 2.44 3551 113 1822 1822 1823 1 566 5.01 8379 114 1823 1823 1824 1 184 1.63 2301 115 1922 1922 1923 0 256 2.26 3735

252

SPECTRUM 2 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2851 242.2842 0.001 3.75 [M+H]+ 53 543.9157 543.9196 -0.004 -7.22 [M+H+2]+ 56 545.9152 545.9176 -0.002 -4.33 [M+H+4]+ 58 547.9135 547.9155 -0.002 -3.70 Reserpine [M+H]+ 66 609.2813 609.2806 0.001 1.06 Reserpine [M+H+1]+ 67 610.2806 610.2840 -0.003 -5.43 [2M+H]+ 81 1022.0037 1022.0040 0.000 -0.30 [2M+H+2]+ 82 1086.8210 1086.8320 -0.015 -13.90 [2M+H+4]+ 83 1088.8313 1088.8299 -0.005 -4.81 ultramark (C20H19O6N3P3F28) 85 1090.8200 1090.8279 -0.008 -7.28 ultramark (C22H19O6N3P3F32) 89 1121.9959 1121.9976 -0.002 -1.54 ultramark (C24H19O6N3P3F36) 91 1221.9908 1221.9912 0.000 -0.29 ultramark (C26H19O6N3P3F40) 94 1321.9856 1321.9848 0.001 0.60 ultramark (C28H19O6N3P3F44) 98 1421.9813 1421.9784 0.003 2.04 ultramark (C30H19O6N3P3F48) 101 1521.9723 1521.9720 0.000 0.17 ultramark (C32H19O6N3P3F52) 103 1621.9707 1621.9657 0.005 3.11 ultramark (C34H19O6N3P3F56) 107 1721.9630 1721.9593 0.004 2.18 ultramark (C36H19O6N3P3F60) 109 1821.9639 1821.9529 0.011 6.04 ultramark (C38H19O6N3P3F64) 111 1921.9493 1921.9465 0.003 1.49

SPECTRUM 2 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.2 0 425 3.52 2322 2 229.1 229.1 229.2 0 909 7.52 4602 3 242.3 242.2 242.4 1 6428 53.13 37122 4 243.3 243.3 243.3 1 1098 9.07 6167 5 246.2 246.1 246.2 0 264 2.18 1187 6 264.2 264.2 264.3 0 682 5.64 3161 7 283.2 283.1 283.2 0 306 2.53 2064

253

8 285.2 285.1 285.2 0 239 1.98 1081 9 286.9 286.9 287 0 197 1.63 909.9 10 309.2 309.2 309.9 0 126 1.04 806 11 315.2 315.1 315.2 0 166 1.37 987.8 12 322.9 322.9 323.4 0 327 2.7 2247 13 327.2 327.1 327.8 1 12099 100 80400 14 328.2 328.2 328.3 1 2712 22.41 17114 15 329.2 329.1 329.3 1 435 3.6 2756 16 338.3 338.3 338.9 1 517 4.27 3397 17 339.2 339.2 339.3 1 1204 9.95 7457 18 340.2 340.2 340.3 1 187 1.55 1240 19 341.3 341.2 341.9 0 242 2 1898 20 349.2 349.1 349.8 0 573 4.74 3860 21 355.3 355.2 355.9 0 344 2.84 2605 22 358.3 358.2 358.9 0 151 1.24 988 23 359.2 359.2 359.3 0 386 3.19 2113 24 360 359.9 360.1 0 200 1.66 1116 25 369.3 369.2 369.4 0 168 1.39 912.4 26 377.2 377.1 377.8 0 156 1.29 1438 27 383.3 383.2 383.8 0 206 1.7 2063 28 384.3 384.2 384.8 1 1233 10.19 8990 29 385.3 385.2 385.4 1 327 2.7 1884 30 391.3 391.2 391.8 0 251 2.07 1864 31 397.3 397.3 397.8 0 150 1.24 835.1 32 400.3 400.2 400.8 0 243 2.01 2337 33 406.1 406.1 406.2 0 132 1.09 935.9 34 423.2 423.1 424 0 130 1.08 1117 35 439.3 439.3 439.9 0 165 1.36 986 36 444.3 444.3 444.9 0 399 3.3 2672 37 466.1 466.1 466.4 1 141 1.17 976.9 38 467.1 467.1 467.2 1 165 1.37 1242 39 471.9 471.9 472 0 185 1.53 1324 40 488.4 488.3 489.1 1 522 4.32 4898 41 489.4 489.2 489.5 1 138 1.14 1272 42 499.9 499.9 500.1 0 287 2.37 1900 43 502.4 502.3 503.2 0 366 3.02 3161 44 516.4 516.3 516.7 0 480 3.97 3955 45 527.9 527.9 528.3 0 184 1.52 1380 46 530.4 530.4 530.7 1 459 3.79 3570 47 531.4 531.3 531.7 1 149 1.24 1031

254

48 532.4 532.3 533.1 1 740 6.11 6729 49 533.4 533.3 533.8 1 219 1.81 1681 50 539.9 539.8 540.2 0 143 1.18 962 51 541.9 541.8 542.5 1 230 1.9 1916 52 542.9 542.8 543.3 1 199 1.64 1415 53 543.9 543.8 544.3 2 1795 14.84 15080 54 544.5 544.4 544.5 2 446 3.69 3225 55 544.9 544.8 545.3 0 751 6.21 5882 56 545.9 545.8 546.8 1 3251 26.87 26327 57 546.9 546.8 547 1 800 6.62 6116 58 547.9 547.8 548.8 1 1566 12.94 13000 59 548.9 548.8 549.3 1 303 2.5 2283 60 558.5 558.4 559.4 0 320 2.65 2391 61 567.9 567.8 568 0 137 1.13 898.3 62 572.5 572.4 573.4 0 133 1.1 1043 63 576.4 576.3 577.2 1 835 6.9 7589 64 577.4 577.3 577.8 1 283 2.34 2465 65 586.5 586.4 586.8 0 175 1.44 1135 66 609.3 609.2 610.1 1 1767 14.61 15685 67 610.3 610.2 610.8 1 595 4.92 5085 68 620.4 620.3 620.8 1 992 8.2 8291 69 621.4 621.3 621.8 1 268 2.22 2286 70 648.9 648.7 649.8 0 251 2.08 2125 71 652.9 652.8 653.3 0 139 1.15 1113 72 664.5 664.3 664.9 1 752 6.22 6727 73 665.5 665.3 665.7 1 245 2.02 2026 74 676.9 676.8 677.4 0 171 1.41 1481 75 704.9 704.8 705.8 0 166 1.37 1471 76 708.5 708.4 709.3 1 601 4.97 5640 77 709.5 709.4 709.8 1 213 1.76 1958 78 752.5 752.4 752.7 1 404 3.34 3754 79 753.5 753.4 753.6 1 174 1.44 1340 80 796.5 796.4 796.8 0 209 1.73 2029 81 1022 1022 1023 0 404 3.34 4419 82 1087 1087 1087 0 166 1.37 1818 83 1089 1089 1089 1 370 3.05 4384 84 1090 1090 1091 1 201 1.66 2289 85 1091 1091 1092 1 519 4.29 5892 86 1092 1092 1092 1 246 2.03 2595 87 1093 1093 1094 1 343 2.83 3818

255

88 1094 1094 1094 1 146 1.21 1501 89 1122 1122 1123 1 1065 8.8 11752 90 1123 1123 1124 1 180 1.49 1916 91 1222 1222 1223 1 1603 13.25 19978 92 1223 1223 1223 1 395 3.27 4091 93 1267 1267 1268 0 176 1.45 1980 94 1322 1322 1323 1 2094 17.31 27581 95 1323 1323 1324 1 469 3.88 5427 96 1367 1367 1368 0 199 1.65 2292 97 1401 1401 1402 0 125 1.03 1541 98 1422 1422 1423 1 2144 17.72 29572 99 1423 1423 1424 1 561 4.64 6674 100 1467 1467 1468 0 223 1.84 2509 101 1522 1522 1523 1 1842 15.23 25761 102 1523 1523 1524 1 488 4.03 5997 103 1622 1621 1623 1 1445 11.94 21857 104 1623 1623 1623 1 372 3.07 4990 105 1635 1634 1635 0 122 1.01 1536 106 1637 1637 1637 0 132 1.09 2117 107 1722 1722 1723 1 996 8.24 14737 108 1723 1723 1724 1 263 2.17 3528 109 1822 1822 1823 1 590 4.87 9002 110 1823 1823 1824 1 153 1.27 2119 111 1922 1922 1923 0 243 2.01 3592

256

SPECTRUM 3 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2853 242.2842 0.001 4.29 [M+H]+ 57 543.9152 543.9196 -0.004 -8.12 [M+H+2]+ 60 545.9157 545.9176 -0.002 -3.44 [M+H+4]+ 62 547.9157 547.9155 0.000 0.21 Reserpine [M+H]+ 69 609.2813 609.2806 0.001 1.16 Reserpine [M+H+1]+ 70 610.2883 610.2840 0.004 7.17 [2M+H]+ 86 1021.9982 1022.0040 -0.006 -5.62 [2M+H+2]+ 87 1086.8220 1086.8320 -0.010 -9.18 [2M+H+4]+ 88 1088.8270 1088.8299 -0.003 -2.68 ultramark (C20H19O6N3P3F28) 90 1090.8263 1090.8279 -0.002 -1.47 ultramark (C22H19O6N3P3F32) 94 1121.9996 1121.9976 0.002 1.83 ultramark (C24H19O6N3P3F36) 96 1221.9910 1221.9912 0.000 -0.18 ultramark (C26H19O6N3P3F40) 99 1321.9871 1321.9848 0.002 1.70 ultramark (C28H19O6N3P3F44) 102 1421.9839 1421.9784 0.005 3.85 ultramark (C30H19O6N3P3F48) 105 1521.9739 1521.9720 0.002 1.22 ultramark (C32H19O6N3P3F52) 108 1621.9656 1621.9657 0.000 -0.04 ultramark (C34H19O6N3P3F56) 114 1721.9692 1721.9593 0.010 5.80 ultramark (C36H19O6N3P3F60) 116 1821.9706 1821.9529 0.018 9.72 ultramark (C38H19O6N3P3F64) 118 1921.9534 1921.9465 0.007 3.58

SPECTRUM 3 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.18 219.2 219.2 0 606 3.26 2033 2 229.14 229.1 229.2 0 1466 7.89 6070 3 242.29 242.3 242.4 1 10337 55.63 50052 4 243.29 243.3 243.3 1 1801 9.69 8806 5 246.17 246.2 246.2 0 338 1.82 1439 6 264.23 264.2 264.3 0 854 4.6 4404

257

7 283.15 283.1 283.2 0 517 2.78 2167 8 285.18 285.2 285.2 0 343 1.85 1430 10 322.95 322.9 323 0 510 2.74 1980 11 327.2 327.2 327.3 1 18581 100 93942 12 328.2 328.2 328.3 1 3763 20.25 21023 13 329.21 329.2 329.3 1 574 3.09 3652 14 338.34 338.3 338.4 1 973 5.24 4324 15 339.23 339.2 339.3 1 1739 9.36 8457 16 340.24 340.2 340.3 1 377 2.03 2088 17 341.28 341.2 341.3 0 446 2.4 3155 18 349.18 349.2 349.3 0 984 5.3 5608 19 355.29 355.3 355.3 0 639 3.44 2921 20 357.97 358 358 0 270 1.45 1016 21 358.27 358.3 358.3 1 250 1.35 973 22 359.21 359.2 359.3 1 612 3.29 3474 23 359.97 359.9 360 0 387 2.08 2001 24 361.24 361.2 361.3 0 210 1.13 971 25 367.19 367.2 367.3 0 233 1.25 1007 26 369.3 369.3 369.3 0 244 1.31 990 27 377.22 377.2 377.3 0 202 1.09 1239 28 377.98 377.9 378 0 264 1.42 1074 29 383.31 383.3 383.4 0 405 2.18 1038 30 384.29 383.9 384.4 1 1530 8.23 9396 31 385.3 385.3 385.4 1 370 1.99 2466 32 391.29 391.3 391.4 0 288 1.55 1575 33 397.33 397.3 397.4 0 227 1.22 1077 34 400.28 400.2 400.4 0 355 1.91 2619 35 405.14 405.1 405.2 1 225 1.21 1012 36 406.14 406 406.2 1 235 1.26 1380 37 420.19 420 420.3 0 205 1.1 1013 38 439.32 439.3 439.4 0 262 1.41 1396 39 444.33 444.3 444.4 0 595 3.2 3099 40 466.14 466.1 466.2 1 312 1.68 1211 41 467.15 467.1 467.3 1 293 1.58 1378 42 471.93 471.9 472 0 230 1.24 1160 43 488.36 488.3 488.5 1 855 4.6 5508 44 489.35 489.3 489.4 1 290 1.56 1018 45 495.94 495.9 496 0 235 1.26 1097 46 499.93 499.9 500 0 397 2.14 2247 47 502.41 502.3 502.5 0 615 3.31 3132

258

48 516.43 516.4 516.5 1 576 3.1 3673 49 517.42 517.4 517.5 1 272 1.46 1242 50 527.93 527.9 528 0 319 1.72 1834 51 530.44 530.4 530.5 1 594 3.2 3885 52 531.43 531.4 531.5 1 263 1.42 1626 53 532.38 532.3 532.5 1 1166 6.28 7676 54 533.39 533.4 533.5 1 322 1.73 1684 55 541.91 541.9 542 1 591 3.18 3030 56 542.91 542.9 543.1 1 348 1.87 2438 57 543.92 543.9 544 2 2661 14.32 16348 58 544.46 544.4 544.5 2 713 3.84 4100 59 544.91 544.9 545 0 1258 6.77 6592 60 545.92 545.9 546 1 4865 26.18 30214 61 546.92 546.9 547 1 1217 6.55 8230 62 547.92 547.8 548 1 2262 12.17 15722 63 548.92 548.9 549 1 527 2.84 2871 64 558.48 558.1 558.5 0 523 2.81 2909 65 572.48 572.4 572.6 0 281 1.51 1458 66 576.41 576.4 576.5 1 1405 7.56 9100 67 577.41 577.3 577.5 1 356 1.92 2521 68 586.51 586.5 586.6 0 268 1.44 1466 69 609.28 609.2 610.2 1 2493 13.42 17704 70 610.29 610.2 610.4 1 889 4.78 6256 71 611.28 611.3 611.4 1 229 1.23 1160 72 620.44 620.4 620.5 1 1289 6.94 8258 73 621.44 621.4 621.5 1 502 2.7 2658 74 648.91 648.8 649 0 407 2.19 2640 75 664.47 664.4 664.6 1 1038 5.59 7313 76 665.46 665.4 666.3 1 367 1.98 2473 77 676.92 676.8 677 0 275 1.48 2042 78 704.91 704.8 705 0 350 1.88 2090 79 708.49 708.4 708.6 1 847 4.56 6171 80 709.49 709.5 709.6 1 389 2.09 2132 81 752.52 752.4 752.6 1 580 3.12 4176 82 753.52 753.5 753.6 1 330 1.78 1700 83 796.54 796.5 796.7 0 489 2.63 2631 84 801.88 801.8 801.9 0 264 1.42 949 85 825.88 825.8 826.2 0 248 1.33 1387 86 1022 1022 1022 0 652 3.51 5036 87 1086.8 1087 1087 0 234 1.26 2112

259

88 1088.8 1089 1089 1 602 3.24 4711 89 1089.8 1090 1090 1 313 1.68 2720 90 1090.8 1091 1091 1 907 4.88 7043 91 1091.8 1092 1092 1 325 1.75 2808 92 1092.8 1093 1093 1 492 2.65 4533 93 1093.8 1094 1094 1 187 1.01 1337 94 1122 1122 1122 1 1356 7.3 12994 95 1123 1123 1123 1 312 1.68 2302 96 1222 1222 1222 1 2600 13.99 24155 97 1223 1223 1223 1 646 3.48 4728 98 1267 1267 1267 0 274 1.47 2395 99 1322 1322 1322 1 2678 14.41 29951 100 1323 1323 1323 1 747 4.02 6578 101 1367 1367 1367 0 403 2.17 3475 102 1422 1422 1422 1 2892 15.56 32118 103 1423 1423 1423 1 914 4.92 7730 104 1467 1467 1467 0 373 2.01 2608 105 1522 1522 1522 1 2429 13.07 29841 106 1523 1523 1523 1 780 4.2 7789 107 1567 1567 1567 0 254 1.37 2169 108 1622 1622 1622 1 1942 10.45 23198 109 1623 1623 1623 1 712 3.83 6684 110 1634.8 1635 1635 1 251 1.35 1839 111 1635.7 1636 1636 1 214 1.15 1501 112 1636.8 1637 1637 1 245 1.32 2271 113 1637.8 1638 1638 1 195 1.05 1406 114 1722 1722 1722 1 1285 6.92 16247 115 1723 1723 1723 1 462 2.49 4615 116 1822 1822 1822 1 902 4.85 10226 117 1823 1823 1823 1 277 1.49 2453 118 1922 1922 1922 0 356 1.92 3963

260

SPECTRUM 4 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2861 242.2842 0.002 7.59 [M+H]+ 55 543.9198 543.9196 0.000 0.30 [M+H+2]+ 59 545.9175 545.9176 0.000 -0.19 [M+H+4]+ 61 547.9178 547.9155 0.002 4.11 Reserpine [M+H]+ 69 609.2835 609.2806 0.003 4.77 Reserpine [M+H+1]+ 70 610.2855 610.2840 0.002 2.56 [2M+H]+ 85 1022.0122 1022.0040 0.008 8.00 [2M+H+2]+ 86 1086.8278 1086.8320 -0.004 -3.90 [2M+H+4]+ 87 1088.8291 1088.8299 -0.001 -0.78 ultramark (C20H19O6N3P3F28) 89 1090.8294 1090.8279 0.001 1.33 ultramark (C22H19O6N3P3F32) 93 1122.0012 1121.9976 0.004 3.24 ultramark (C24H19O6N3P3F36) 95 1221.9973 1221.9912 0.006 5.01 ultramark (C26H19O6N3P3F40) 98 1321.9896 1321.9848 0.005 3.64 ultramark (C28H19O6N3P3F44) 101 1421.9876 1421.9784 0.009 6.42 ultramark (C30H19O6N3P3F48) 104 1521.9804 1521.9720 0.008 5.47 ultramark (C32H19O6N3P3F52) 107 1621.9758 1621.9657 0.010 6.28 ultramark (C34H19O6N3P3F56) 112 1721.9729 1721.9593 0.014 7.92 ultramark (C36H19O6N3P3F60) 114 1821.9672 1821.9529 0.014 7.84 ultramark (C38H19O6N3P3F64) 116 1921.9600 1921.9465 0.013 7.01

SPECTRUM 4 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.9 0 610 4.28 2953 2 229.1 229.1 229.2 0 1133 7.95 7663 3 242.3 242.2 242.4 1 8023 56.31 46686 4 243.3 243.3 243.4 1 1485 10.42 8004 5 246.2 246.1 246.2 0 344 2.42 1555 6 264.2 264.2 264.3 0 738 5.18 4280 7 283.2 283.1 283.2 1 331 2.32 2282

261

8 284.3 284.2 284.3 1 209 1.47 1033 9 285.2 285.1 285.2 0 336 2.36 1694 10 315.2 315.1 315.2 0 180 1.26 1006 11 322.9 322.9 323 0 410 2.87 2671 12 327.2 327.1 327.8 1 14248 100 95112 13 328.2 328.1 328.3 1 3221 22.6 19712 14 329.2 329.1 329.7 0 313 2.19 2578 15 338.3 338.3 338.9 1 709 4.98 4359 16 339.2 339.2 339.3 1 1251 8.78 8041 17 340.2 340.2 340.3 1 358 2.51 1900 18 341.3 341.2 341.8 1 343 2.41 2557 19 349.2 349.1 349.8 0 692 4.86 4562 20 355.3 355.2 356.2 0 393 2.76 2222 21 358.3 358.2 358.9 0 175 1.23 991 22 359.2 359.1 359.3 0 445 3.12 2751 23 360 359.9 360.1 0 285 2 1569 24 361.2 361.2 361.3 0 179 1.25 1225 25 363.2 363.2 363.8 0 155 1.09 1055 26 369.3 369.3 369.4 0 234 1.64 1193 27 377.2 377.1 377.3 0 148 1.04 988.7 28 383.3 383.2 383.7 0 215 1.51 2262 29 384.3 384.2 384.8 1 1275 8.95 10016 30 385.3 385.2 385.4 1 330 2.32 2274 31 391.3 391.2 391.8 0 274 1.92 1648 32 400.3 400.2 400.7 0 271 1.9 3135 33 406.1 406.1 406.2 0 143 1.01 1026 34 420.2 420.1 420.2 0 184 1.29 998.3 35 423.2 423.1 423.2 0 160 1.12 1243 36 444.3 444.3 445 0 418 2.93 2848 37 466.1 466.1 466.2 1 240 1.69 1470 38 467.2 467.1 467.2 1 245 1.72 1689 39 467.9 467.8 468.1 0 174 1.22 1136 40 471.9 471.8 472.1 0 245 1.72 1736 41 488.4 488.3 489 1 672 4.71 6082 42 489.4 489.3 489.5 1 149 1.05 1420 43 499.9 499.8 500.1 0 347 2.44 2418 44 502.4 502.3 503 0 436 3.06 3111 45 516.4 516.3 517 1 579 4.06 4417 46 517.4 517.3 517.5 1 164 1.15 1203 47 527.9 527.9 528.3 0 271 1.9 1909

262

48 530.4 530.4 530.5 1 514 3.61 3876 49 531.4 531.3 531.8 1 198 1.39 1681 50 532.4 532.3 533 1 935 6.56 8116 51 533.4 533.3 533.8 1 250 1.76 1840 52 539.9 539.8 540.1 0 190 1.34 1330 53 541.9 541.8 542.2 1 337 2.37 2594 54 542.9 542.8 543.3 1 322 2.26 2363 55 543.9 543.8 544.3 2 2014 14.13 17453 56 544.5 544.4 544.8 2 504 3.54 3918 57 544.9 544.8 545.1 2 867 6.08 7345 58 545.5 545.4 545.6 2 152 1.07 1085 59 545.9 545.8 546.8 1 3733 26.2 31249 60 546.9 546.8 547.2 1 972 6.82 7806 61 547.9 547.8 548.7 1 1891 13.27 15415 62 548.9 548.8 549 1 385 2.7 2688 63 558.5 558.4 559.3 0 353 2.48 2774 64 567.9 567.8 568 0 158 1.11 1066 65 572.5 572.4 573.2 0 198 1.39 1456 66 576.4 576.3 577.2 1 965 6.77 7994 67 577.4 577.3 577.8 1 339 2.38 2826 68 586.5 586.4 586.7 0 162 1.14 1287 69 609.3 609.1 610.1 1 1969 13.82 16989 70 610.3 610.1 610.4 1 779 5.46 5795 71 611.3 611.2 611.7 1 181 1.27 1459 72 620.4 620.4 620.8 1 1039 7.29 8747 73 621.4 621.4 621.8 1 311 2.18 2419 74 648.9 648.7 649 0 268 1.88 2476 75 664.5 664.3 665.3 1 809 5.68 7179 76 665.5 665.3 665.8 1 244 1.71 2275 77 676.9 676.8 677.1 0 215 1.51 1810 78 704.9 704.8 705.2 0 205 1.44 1944 79 708.5 708.3 709.1 1 666 4.67 6209 80 709.5 709.4 710 1 190 1.33 1636 81 752.5 752.3 753.3 1 420 2.95 3935 82 753.5 753.4 753.7 1 145 1.01 1308 83 796.5 796.4 796.8 0 239 1.68 2303 84 840.6 840.4 840.8 0 157 1.1 1466 85 1022 1022 1023 0 471 3.3 5636

263

86 1087 1087 1087 0 242 1.7 2575 87 1089 1089 1090 1 498 3.49 5639 88 1090 1090 1090 1 267 1.87 2928 89 1091 1091 1092 1 640 4.49 7173 90 1092 1092 1093 1 326 2.29 3377 91 1093 1093 1093 1 362 2.54 4390 92 1094 1094 1094 1 206 1.45 2247 93 1122 1122 1123 1 1162 8.16 13221 94 1123 1123 1123 1 239 1.68 2273 95 1222 1222 1223 1 1941 13.63 23576 96 1223 1223 1224 1 457 3.21 4713 97 1267 1267 1268 0 229 1.61 2513 98 1322 1322 1323 1 2355 16.53 30657 99 1323 1323 1324 1 552 3.87 6697 100 1367 1367 1368 0 212 1.49 2754 101 1422 1422 1423 1 2403 16.86 32211 102 1423 1423 1424 1 611 4.29 7490 103 1467 1467 1467 0 198 1.39 2488 104 1522 1522 1523 1 2163 15.18 29712 105 1523 1523 1524 1 537 3.77 6921 106 1567 1567 1568 0 172 1.21 2280 107 1622 1622 1623 1 1696 11.9 24667 108 1623 1623 1623 1 429 3.01 5455 109 1635 1635 1635 0 157 1.11 2228 110 1637 1637 1637 0 190 1.34 2481 111 1641 1641 1641 0 156 1.1 1772 112 1722 1722 1723 1 1156 8.12 17010 113 1723 1723 1724 1 355 2.49 4749 114 1822 1822 1823 1 673 4.72 10135 115 1823 1823 1824 1 203 1.42 2800 116 1922 1922 1923 0 300 2.1 4694

264

SPECTRUM 5 True value Error Index Centroid amu amu ppm Mass TBA 4 242.2858 242.2842 0.002 6.56 [M+H]+ 55 543.9168 543.9196 -0.003 -5.20 [M+H+2]+ 59 545.9163 545.9176 -0.001 -2.43 [M+H+4]+ 61 547.9163 547.9155 0.001 1.43 Reserpine [M+H]+ 68 609.2863 609.2806 0.006 9.38 Reserpine [M+H+1]+ 69 610.2883 610.2840 0.004 7.07 [2M+H]+ 83 1022.0021 1022.0040 -0.002 -1.79 [2M+H+2]+ 84 1086.8152 1086.8320 -0.017 -15.5 [2M+H+4]+ 85 1088.8270 1088.8299 -0.003 -2.68 ultramark (C20H19O6N3P3F28) 87 1090.8308 1090.8279 0.003 2.67 ultramark (C22H19O6N3P3F32) 91 1121.9996 1121.9976 0.002 1.83 ultramark (C24H19O6N3P3F36) 94 1221.9951 1221.9912 0.004 3.22 ultramark (C26H19O6N3P3F40) 97 1321.9883 1321.9848 0.003 2.62 ultramark (C28H19O6N3P3F44) 100 1421.9830 1421.9784 0.005 3.24 ultramark (C30H19O6N3P3F48) 103 1521.9800 1521.9720 0.008 5.22 ultramark (C32H19O6N3P3F52) 106 1621.9761 1621.9657 0.010 6.42 ultramark (C34H19O6N3P3F56) 110 1721.9663 1721.9593 0.007 4.09 ultramark (C36H19O6N3P3F60) 112 1821.9684 1821.9529 0.016 8.51 ultramark (C38H19O6N3P3F64) 114 1921.9580 1921.9465 0.012 6.00

SPECTRUM 5 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.2 0 406 2.99 1787 2 228.3 228.2 228.9 0 209 1.54 933 3 229.1 229.1 229.5 0 1031 7.59 6828 4 242.3 242.2 242.4 1 8681 63.92 47899 5 243.3 243.3 243.3 1 1654 12.18 8919 6 246.2 246.1 246.4 0 279 2.06 1410 7 264.2 264.2 264.7 0 754 5.55 4009

265

8 283.2 283.1 283.2 0 384 2.83 1941 9 285.2 285.2 285.2 0 287 2.12 1463 10 323 322.9 323 0 376 2.77 2382 11 327.2 327.1 328 1 13581 100 92824 12 328.2 328.1 328.3 1 3241 23.87 19703 13 329.2 329.1 329.3 1 487 3.59 3327 14 338.3 338.3 338.9 1 637 4.69 3891 15 339.2 339.2 339.3 1 1388 10.22 8327 16 340.2 340.2 340.8 1 370 2.73 2068 17 341.3 341.2 341.9 1 314 2.32 2745 18 341.9 341.9 342 0 203 1.5 928.3 19 349.2 349.1 349.9 0 616 4.54 4432 20 355.3 355.3 355.9 0 419 3.09 2064 21 358 357.9 358.2 0 150 1.11 1023 22 358.3 358.2 358.8 1 257 1.89 1542 23 359.2 359.2 359.3 1 564 4.15 3543 24 360 359.9 360.1 0 196 1.44 1294 25 369.3 369.2 369.4 0 225 1.65 1365 26 378 377.9 378.1 0 188 1.38 1082 27 383.3 383.2 384 0 292 2.15 3114 28 384.3 384.2 384.9 1 1301 9.58 9880 29 385.3 385.2 385.4 1 385 2.84 2770 30 391.3 391.2 391.4 0 277 2.04 2070 31 397.3 397.3 397.8 0 172 1.27 1003 32 400.3 400.2 400.8 0 340 2.51 3327 33 406.1 406.1 406.2 0 192 1.41 1191 34 420.2 420.1 420.3 0 159 1.17 930.8 35 423.2 423.1 423.3 0 193 1.42 1468 36 444.3 444.3 444.9 0 476 3.51 3706 37 466.1 466 466.2 1 201 1.48 1647 38 467.1 467.1 467.2 1 214 1.57 1420 39 471.9 471.8 472 0 225 1.66 1587 40 488.4 488.3 488.8 1 702 5.17 6565 41 489.4 489.3 489.8 1 218 1.6 1812 42 499.9 499.8 500.7 0 307 2.26 2219 43 502.4 502.3 503.1 1 483 3.55 4176 44 503.4 503.4 503.8 1 194 1.42 1085 45 516.4 516.3 517 1 559 4.11 4739 46 517.4 517.3 517.8 1 172 1.26 1237 47 527.9 527.9 528.1 0 234 1.73 1553

266

48 530.4 530.4 530.8 1 588 4.33 4571 49 531.4 531.4 531.6 1 161 1.19 1317 50 532.4 532.3 533.2 1 825 6.07 7381 51 533.4 533.3 533.5 1 301 2.22 2443 52 539.9 539.8 540 0 162 1.19 1019 53 541.9 541.8 542.3 1 375 2.76 3141 54 542.9 542.8 543.8 1 334 2.46 2696 55 543.9 543.8 544.3 2 2142 15.77 17270 56 544.5 544.4 544.6 2 480 3.53 3936 57 544.9 544.8 545 2 855 6.29 6535 58 545.5 545.4 545.7 2 169 1.25 1106 59 545.9 545.8 546.3 1 3621 26.66 31098 60 546.9 546.8 547.1 1 995 7.33 8050 61 547.9 547.8 548.7 1 1845 13.58 15235 62 548.9 548.8 549.2 1 446 3.29 3027 63 558.5 558.4 559 0 329 2.43 2502 64 572.5 572.4 573.3 0 157 1.16 1077 65 576.4 576.3 577.1 1 1034 7.61 8991 66 577.4 577.3 578 1 329 2.42 2685 67 586.5 586.4 586.8 0 164 1.21 1202 68 609.3 609.2 610.1 1 2058 15.15 17847 69 610.3 610.1 610.8 1 652 4.8 5698 70 620.4 620.3 620.8 1 992 7.3 8721 71 621.4 621.3 621.8 1 316 2.33 2336 72 648.9 648.7 649.2 0 322 2.37 2782 73 664.5 664.3 665.1 1 845 6.22 7553 74 665.5 665.3 665.6 1 326 2.4 2992 75 676.9 676.7 677.3 0 206 1.51 1928 76 704.9 704.8 705.4 0 215 1.59 1838 77 708.5 708.3 708.7 1 721 5.31 6501 78 709.5 709.4 709.8 1 258 1.9 2466 79 752.5 752.4 753.2 1 480 3.54 4150 80 753.5 753.4 753.7 1 186 1.37 1542 81 796.5 796.4 796.7 0 302 2.23 2914 82 922 921.8 922.7 0 144 1.06 1251 83 1022 1022 1022 0 530 3.9 5855 84 1087 1087 1088 0 196 1.44 2169 85 1089 1089 1090 1 489 3.6 5267

267

86 1090 1090 1090 1 222 1.64 2411 87 1091 1091 1092 1 593 4.37 7052 88 1092 1092 1093 1 297 2.19 3280 89 1093 1093 1094 1 417 3.07 4362 90 1094 1094 1094 1 147 1.08 1710 91 1122 1122 1123 1 1179 8.68 14028 92 1123 1123 1123 1 192 1.41 1986 93 1167 1167 1167 0 142 1.05 1497 94 1222 1222 1223 1 1883 13.87 23558 95 1223 1223 1223 1 431 3.18 4792 96 1267 1267 1268 0 240 1.77 2679 97 1322 1322 1323 1 2352 17.32 30313 98 1323 1323 1323 1 588 4.33 7234 99 1367 1367 1368 0 243 1.79 3213 100 1422 1422 1423 1 2357 17.36 32263 101 1423 1423 1424 1 615 4.53 7458 102 1467 1467 1468 0 193 1.42 2496 103 1522 1522 1523 1 2062 15.18 29063 104 1523 1523 1524 1 552 4.06 7027 105 1567 1567 1568 0 174 1.28 2254 106 1622 1622 1622 1 1661 12.23 24462 107 1623 1623 1623 1 492 3.62 6188 108 1635 1634 1635 0 167 1.23 2266 109 1637 1637 1637 0 169 1.24 2316 110 1722 1722 1723 1 1175 8.66 17387 111 1723 1723 1724 1 330 2.43 4526 112 1822 1822 1822 1 631 4.65 9643 113 1823 1823 1824 1 245 1.8 3158 114 1922 1922 1923 0 321 2.37 4927

268

SPECTRUM 6 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2854 242.2842 0.001 4.82 [M+H]+ 54 543.9186 543.9196 -0.001 -1.83 [M+H+2]+ 58 545.9180 545.9176 0.000 0.70 [M+H+4]+ 60 547.9181 547.9155 0.003 4.66 Reserpine [M+H]+ 67 609.2853 609.2806 0.005 7.67 Reserpine [M+H+1]+ 68 610.2886 610.2840 0.005 7.68 [2M+H]+ 82 1022.0042 1022.0040 0.000 0.18 [2M+H+2]+ 83 1086.8245 1086.8320 -0.008 -6.93 [2M+H+4]+ 85 1088.8331 1088.8299 0.003 2.92 ultramark (C20H19O6N3P3F28) 87 1090.8312 1090.8279 0.003 3.01 ultramark (C22H19O6N3P3F32) 90 1122.0001 1121.9976 0.003 2.26 ultramark (C24H19O6N3P3F36) 92 1221.9961 1221.9912 0.005 4.01 ultramark (C26H19O6N3P3F40) 95 1321.9929 1321.9848 0.008 6.13 ultramark (C28H19O6N3P3F44) 98 1421.9856 1421.9784 0.007 5.05 ultramark (C30H19O6N3P3F48) 102 1521.9821 1521.9720 0.010 6.59 ultramark (C32H19O6N3P3F52) 105 1621.9768 1621.9657 0.011 6.88 ultramark (C34H19O6N3P3F56) 110 1721.9700 1721.9593 0.011 6.22 ultramark (C36H19O6N3P3F60) 112 1821.9648 1821.9529 0.012 6.57 ultramark (C38H19O6N3P3F64) 114 1921.9539 1921.9465 0.007 3.84

SPECTRUM 6 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.2 0 598 4.48 2499 2 229.1 229.1 229.2 0 1000 7.49 6857 3 242.3 242.2 242.8 1 8432 63.15 49129 4 243.3 243.3 243.4 1 1433 10.73 8581 5 246.2 246.1 246.2 0 218 1.63 1078 6 264.2 264.2 265 0 705 5.28 4083 7 283.2 283.1 283.2 0 254 1.9 1464 8 285.2 285.1 285.3 0 188 1.41 978.5

269

9 315.2 315.1 315.2 0 195 1.46 1129 10 323 322.9 323 0 421 3.15 3068 11 327.2 327.1 327.8 1 13353 100 91275 12 328.2 328.1 328.5 1 3222 24.13 22306 13 329.2 329.1 329.3 1 482 3.61 2928 14 338.3 338.3 338.9 1 577 4.32 4028 15 339.2 339.2 339.3 1 1238 9.27 8330 16 340.2 340.2 340.8 1 267 2 1438 17 341.3 341.2 341.9 0 268 2.01 2480 18 349.2 349.1 349.9 0 606 4.53 3868 19 355.3 355.2 355.9 0 462 3.46 2272 20 358 357.9 358.2 0 192 1.44 1188 21 358.3 358.2 358.8 1 235 1.76 1374 22 359.2 359.2 359.3 1 493 3.69 2869 23 360 359.9 360 0 263 1.97 1530 24 363.2 363.2 363.8 0 184 1.38 972 25 377.2 377.2 377.7 0 160 1.2 1187 26 383.3 383.2 383.7 0 247 1.85 2386 27 384.3 384.2 384.8 1 1260 9.44 9287 28 385.3 385.2 385.4 1 374 2.8 2222 29 391.3 391.2 391.8 0 219 1.64 1439 30 400.3 400.2 400.8 0 251 1.88 2339 31 406.1 406.1 406.2 0 195 1.46 1249 32 420.2 420.1 420.3 0 195 1.46 1182 33 423.2 423.1 423.3 0 189 1.42 1282 34 439.3 439.3 439.8 0 198 1.48 1481 35 444.3 444.2 444.5 0 342 2.56 2574 36 466.1 466.1 466.2 1 203 1.52 1321 37 467.2 467.1 467.2 1 170 1.27 1237 38 467.9 467.9 468 0 185 1.39 1163 39 471.9 471.8 472 0 214 1.6 1490 40 488.4 488.3 488.5 1 751 5.63 6852 41 489.4 489.2 489.8 1 240 1.8 1955 42 493.3 493.3 493.9 0 164 1.23 1191 43 499.9 499.9 500.3 0 340 2.55 2626 44 502.4 502.3 502.8 0 471 3.52 3614 45 516.4 516.3 517.1 1 476 3.56 3650 46 517.4 517.3 517.8 1 139 1.04 1087 47 527.9 527.9 528.2 0 274 2.05 2161 48 530.4 530.4 531.1 1 544 4.08 4507

270

49 531.4 531.3 531.6 1 141 1.05 1113 50 532.4 532.3 533.2 1 880 6.59 7814 51 533.4 533.3 533.8 1 241 1.8 1931 52 541.9 541.8 542.8 1 336 2.52 2572 53 542.9 542.8 543.1 1 314 2.35 2257 54 543.9 543.8 544.3 2 2094 15.68 17327 55 544.5 544.4 544.8 2 514 3.85 3945 56 544.9 544.8 545.4 2 785 5.88 6665 57 545.5 545.4 545.7 2 165 1.23 1134 58 545.9 545.8 546.8 1 3627 27.16 30527 59 546.9 546.8 547.1 1 1028 7.7 7994 60 547.9 547.8 548.6 1 1777 13.31 15454 61 548.9 548.8 549.3 1 410 3.07 3018 62 558.5 558.4 559.4 0 306 2.29 2320 63 572.5 572.4 573.2 0 192 1.43 1445 64 576.4 576.3 577.2 1 921 6.9 7801 65 577.4 577.3 577.7 1 352 2.64 2866 66 586.5 586.4 586.8 0 144 1.08 1003 67 609.3 609.2 610.2 1 1933 14.48 16621 68 610.3 610.2 610.8 1 637 4.77 5507 69 620.4 620.4 620.8 1 857 6.42 7318 70 621.4 621.3 621.8 1 336 2.52 2770 71 648.9 648.8 649.8 0 333 2.5 2909 72 664.5 664.4 664.7 1 927 6.94 8366 73 665.5 665.4 665.9 1 354 2.65 2960 74 676.9 676.8 677.4 0 243 1.82 2039 75 704.9 704.8 705.4 0 230 1.72 2086 76 708.5 708.3 709 1 623 4.67 5695 77 709.5 709.4 709.8 1 258 1.93 2457 78 752.5 752.4 752.7 1 458 3.43 4088 79 753.5 753.4 753.7 1 174 1.31 1495 80 796.5 796.4 796.8 0 228 1.71 1995 81 825.9 825.8 826.3 0 174 1.3 1343 82 1022 1022 1023 0 482 3.61 4807 83 1087 1087 1088 1 219 1.64 2555 84 1088 1088 1088 1 179 1.34 1754 85 1089 1089 1090 1 446 3.34 5038 86 1090 1090 1091 1 293 2.19 2841

271

87 1091 1091 1091 1 597 4.47 7183 88 1092 1092 1093 1 291 2.18 3232 89 1093 1093 1094 0 378 2.83 4336 90 1122 1122 1123 1 1125 8.42 12960 91 1123 1123 1124 1 173 1.3 1883 92 1222 1222 1223 1 1795 13.44 22044 93 1223 1223 1223 1 382 2.86 4225 94 1267 1267 1268 0 206 1.54 2476 95 1322 1322 1323 1 2366 17.72 30319 96 1323 1323 1324 1 548 4.11 6541 97 1367 1367 1368 0 252 1.89 2819 98 1422 1422 1423 1 2297 17.2 31291 99 1423 1423 1424 1 614 4.6 7026 100 1467 1467 1468 0 229 1.72 2805 101 1501 1501 1502 0 142 1.06 1887 102 1522 1522 1523 1 2083 15.6 28758 103 1523 1523 1524 1 489 3.66 6371 104 1567 1567 1567 0 163 1.22 2061 105 1622 1621 1623 1 1709 12.8 24352 106 1623 1623 1624 1 462 3.46 6161 107 1635 1635 1635 1 159 1.19 2172 108 1636 1636 1636 1 151 1.13 1909 109 1637 1637 1637 0 186 1.39 2450 110 1722 1722 1723 1 1111 8.32 16031 111 1723 1723 1724 1 319 2.39 4261 112 1822 1822 1823 1 640 4.79 9694 113 1823 1823 1824 1 181 1.35 2255 114 1922 1921 1923 0 309 2.31 4312

272

SPECTRUM 7 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2845 242.2842 0.000 1.07 [M+H]+ 49 543.9157 543.9196 -0.004 -7.22 [M+H+2]+ 53 545.9163 545.9176 -0.001 -2.32 [M+H+4]+ 55 547.9132 547.9155 -0.002 -4.25 Reserpine [M+H]+ 63 609.2825 609.2806 0.002 3.06 Reserpine [M+H+1]+ 64 610.2871 610.2840 0.003 5.17 [2M+H]+ 80 1021.9992 1022.0040 -0.005 -4.72 [2M+H+2]+ 81 1086.8292 1086.8320 -0.003 -2.55 [2M+H+4]+ 82 1088.8224 1088.8299 -0.008 -6.94

ultramark (C20H19O6N3P3F28) 84 1090.8232 1090.8279 -0.005 -4.27

ultramark (C22H19O6N3P3F32) 88 1121.9956 1121.9976 -0.002 -1.76

ultramark (C24H19O6N3P3F36) 90 1221.9867 1221.9912 -0.005 -3.68

ultramark (C26H19O6N3P3F40) 93 1321.9856 1321.9848 0.001 0.60

ultramark (C28H19O6N3P3F44) 96 1421.9793 1421.9784 0.001 0.58

ultramark (C30H19O6N3P3F48) 99 1521.9706 1521.9720 -0.001 -0.95

ultramark (C32H19O6N3P3F52) 102 1621.9702 1621.9657 0.005 2.81

ultramark (C34H19O6N3P3F56) 106 1721.9651 1721.9593 0.006 3.39

ultramark (C36H19O6N3P3F60) 108 1821.9618 1821.9529 0.009 4.90

ultramark (C38H19O6N3P3F64) 110 1921.9530 1921.9465 0.007 3.39

SPECTRUM 7 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area (A) Mass Bound Bound (z) Intensity 1 219.175 219.14 219.23 0 479 3.52 2413.13 2 229.141 229.08 229.17 0 1113 8.17 5467.23 3 242.284 242.23 242.83 1 7643 56.12 43157.4 4 243.288 243.25 243.69 1 1290 9.47 7187 5 246.166 246.13 246.74 0 205 1.51 1020 6 264.231 264.19 264.85 0 670 4.92 3735 7 283.156 283.12 283.23 0 366 2.69 2237.97 8 285.186 285.12 285.25 0 180 1.32 1017.98

273

9 315.178 315.13 315.22 0 257 1.89 1265.29 10 322.951 322.86 323.17 0 376 2.76 2660 11 327.197 327.11 327.82 1 13621 100 92725.5 12 328.201 328.13 328.84 1 3032 22.26 21386.7 13 329.203 329.13 329.26 1 396 2.91 2532.83 14 338.343 338.29 338.4 1 798 5.86 4553.28 15 339.233 339.15 339.3 1 1100 8.08 7367.34 16 340.235 340.18 340.3 1 266 1.95 1732.27 17 341.281 341.2 341.78 1 252 1.85 2220 18 349.18 349.09 349.28 0 693 5.09 4791.42 19 355.283 355.24 356.2 0 440 3.23 2191.82 20 358.272 358.23 358.82 1 221 1.63 1207.89 21 359.205 359.14 359.29 1 508 3.73 3470.51 22 359.969 359.93 360.04 0 295 2.17 1449.44 23 361.238 361.17 361.45 0 170 1.25 1344 24 369.3 369.25 369.37 0 192 1.41 1222.18 25 383.294 383.23 383.37 0 272 2 2583.04 26 384.291 384.22 384.85 1 1203 8.83 8883.68 27 385.295 385.24 385.76 1 320 2.35 2116.03 28 391.286 391.24 391.81 0 212 1.55 1113.97 29 400.28 400.2 400.77 0 333 2.44 3157 30 406.146 406.08 406.23 0 229 1.68 1424.45 31 423.151 423.09 423.27 0 186 1.37 1397.24 32 439.319 439.23 439.83 0 190 1.4 1339 33 444.333 444.27 444.78 0 451 3.31 2870.26 34 466.146 466.05 466.21 1 144 1.06 1018.65 35 467.139 467.07 467.23 1 171 1.25 1202.48 36 471.936 471.81 472.03 0 185 1.36 1302 37 488.363 488.29 488.8 1 610 4.48 5127.54 38 489.372 489.3 489.84 1 141 1.03 1321.19 39 499.935 499.82 500.03 0 358 2.63 2562.41 40 502.409 502.33 503.11 0 398 2.92 3250.38 41 516.429 516.35 517.11 0 536 3.94 4091.74 42 527.929 527.82 528.04 0 192 1.41 1369.63 43 530.443 530.36 530.97 1 491 3.6 3725 44 531.44 531.32 531.81 1 153 1.12 1411 45 532.388 532.26 532.96 1 791 5.81 7345 46 533.392 533.27 533.79 1 296 2.18 2190 47 541.906 541.82 542.06 1 371 2.72 2948 48 542.912 542.75 543.23 1 225 1.65 2044.72 49 543.916 543.82 544.34 2 2170 15.93 18121 50 544.464 544.38 544.79 2 464 3.4 3613

274

51 544.912 544.83 545.35 2 788 5.78 6351 52 545.456 545.38 545.54 2 162 1.19 1002.87 53 545.916 545.77 546.77 1 3523 25.87 30193 54 546.916 546.8 547.09 1 951 6.98 7923 55 547.913 547.82 548.76 1 1893 13.89 15933 56 548.915 548.8 549.01 1 386 2.84 2879.77 57 558.48 558.39 559.36 0 367 2.69 2968 58 567.906 567.82 568.03 0 146 1.07 993 59 572.481 572.35 572.79 0 179 1.32 1270 60 576.413 576.23 577.23 1 869 6.38 7854 61 577.413 577.27 577.73 1 327 2.4 2719 62 586.507 586.42 586.63 0 187 1.37 1444.06 63 609.282 609.18 610.15 1 1994 14.64 18128.4 64 610.287 610.19 610.77 1 675 4.96 6101 65 620.436 620.34 620.78 1 915 6.72 7967 66 621.438 621.34 621.79 1 305 2.24 2381 67 624.89 624.78 625.08 0 164 1.2 1379 68 644.938 644.78 645.08 0 162 1.19 1241 69 648.908 648.78 649.65 0 272 2 2632 70 664.461 664.24 664.9 1 803 5.89 7236 71 665.469 665.35 665.79 1 297 2.18 2299.38 72 676.918 676.8 677.18 0 289 2.12 2233.42 73 704.91 704.78 705.65 0 209 1.53 1842.64 74 708.489 708.38 709.26 1 602 4.42 5605 75 709.494 709.32 709.65 1 228 1.67 1893.51 76 752.513 752.36 752.7 1 428 3.14 4090 77 753.515 753.39 753.64 1 153 1.13 1193.36 78 796.542 796.43 796.75 0 246 1.81 2141.06 79 825.898 825.77 826.24 0 156 1.14 1618 80 1022 1021.85 1022.79 0 473 3.47 5454.63 81 1086.83 1086.64 1087.07 0 178 1.31 1985 82 1088.82 1088.56 1089.58 1 492 3.61 5285 83 1089.83 1089.65 1090.06 1 281 2.06 3326 84 1090.82 1090.66 1091.59 1 657 4.83 7230.52 85 1091.82 1091.66 1092.58 1 267 1.96 3006 86 1092.82 1092.65 1093.25 1 380 2.79 4571 87 1093.83 1093.67 1094.32 1 162 1.19 1907 88 1122 1121.68 1122.74 1 1111 8.15 12793

275

89 1123 1122.84 1123.78 1 220 1.62 2161 90 1221.99 1221.8 1222.71 1 1861 13.66 22799.6 91 1222.99 1222.81 1223.59 1 420 3.09 4839 92 1267.04 1266.76 1267.77 0 229 1.68 2908 93 1321.99 1321.54 1322.69 1 2212 16.24 29170 94 1322.99 1322.79 1323.67 1 532 3.91 6720 95 1367.04 1366.85 1367.55 0 287 2.11 3431.18 96 1421.98 1421.4 1422.66 1 2328 17.09 31178.1 97 1422.98 1422.77 1423.68 1 567 4.17 6850 98 1467.03 1466.76 1467.71 0 215 1.58 2724 99 1521.97 1521.69 1522.63 1 2179 16 30103.7 100 1522.98 1522.74 1523.54 1 546 4.01 7328 101 1567.05 1566.81 1567.72 0 145 1.07 1801.5 102 1621.97 1621.5 1622.59 1 1553 11.41 23399 103 1622.96 1622.71 1623.55 1 474 3.48 5969 104 1634.78 1634.49 1635.41 0 153 1.12 2100 105 1636.78 1636.52 1637.39 0 180 1.32 2456 106 1721.97 1721.49 1722.54 1 1127 8.27 17021 107 1722.96 1722.69 1723.6 1 318 2.34 4275 108 1821.96 1821.3 1822.55 1 633 4.65 9872 109 1822.96 1822.71 1823.46 1 198 1.45 2684 110 1921.95 1921.56 1922.5 0 268 1.97 4177.01

276

SPECTRUM 8 True value Error Index Centroid amu amu ppm Mass TBA 3 242.2845 242.2842 0.000 1.07 [M+H]+ 54 543.9174 543.9196 -0.002 -4.07 [M+H+2]+ 58 545.9152 545.9176 -0.002 -4.33 [M+H+4]+ 60 547.9137 547.9155 -0.002 -3.35 Reserpine [M+H]+ 67 609.2805 609.2806 0.000 -0.14 Reserpine [M+H+1]+ 68 610.2815 610.2840 -0.002 -4.04 [2M+H]+ 83 1022.0001 1022.0040 -0.004 -3.83 [2M+H+2]+ 84 1086.8296 1086.8320 -0.002 -2.21 [2M+H+4]+ 86 1088.8278 1088.8299 -0.002 -2.01 ultramark (C20H19O6N3P3F28) 88 1090.8242 1090.8279 -0.004 -3.37 ultramark (C22H19O6N3P3F32) 92 1121.9962 1121.9976 -0.001 -1.21 ultramark (C24H19O6N3P3F36) 94 1221.9871 1221.9912 -0.004 -3.38 ultramark (C26H19O6N3P3F40) 97 1321.9818 1321.9848 -0.003 -2.27 ultramark (C28H19O6N3P3F44) 100 1421.9763 1421.9784 -0.002 -1.48 ultramark (C30H19O6N3P3F48) 103 1521.9725 1521.9720 0.001 0.33 ultramark (C32H19O6N3P3F52) 106 1621.9685 1621.9657 0.003 1.76 ultramark (C34H19O6N3P3F56) 110 1721.9642 1721.9593 0.005 2.89 ultramark (C36H19O6N3P3F60) 112 1821.9578 1821.9529 0.005 2.68 ultramark (C38H19O6N3P3F64) 114 1921.9530 1921.9465 0.007 3.39

SPECTRUM 8 Only peaks and areas >1% of BP shown Index Centroid Lower Upper Charge Height Relative Area Mass Bound Bound (z) Intensity (A) 1 219.2 219.1 219.8 0 514 3.8 2847 2 229.1 229.1 229.2 0 1040 7.69 5037 3 242.3 242.2 242.8 1 7984 59 46593 4 243.3 243.3 243.4 1 1417 10.47 7354 5 246.2 246.1 246.3 0 318 2.35 1641 6 264.2 264.2 264.9 0 859 6.35 4830 7 283.2 283.1 283.2 0 319 2.36 1939

277

8 285.2 285.1 285.3 0 240 1.78 1477 9 286.9 286.9 287.1 0 175 1.29 1007 10 322.9 322.9 323.2 0 394 2.91 2791 11 327.2 327.1 327.8 1 13533 100 92945 12 328.2 328.1 328.3 1 3038 22.45 21225 13 329.2 329.1 329.3 1 518 3.83 3083 14 338.3 338.3 338.9 0 510 3.77 3163 15 339.2 339.2 339.3 1 1381 10.21 8383 16 340.2 340.2 340.8 1 292 2.16 1829 17 341.3 341.2 341.8 1 291 2.15 2827 18 349.2 349.1 349.8 0 621 4.59 4126 19 355.3 355.2 355.9 0 487 3.6 2678 20 358 357.9 358 3 153 1.13 931 21 358.3 358.2 358.9 3 204 1.51 1258 22 359.2 359.2 359.3 0 615 4.54 3535 23 360 359.9 360.1 0 227 1.68 1500 24 369.3 369.2 369.4 0 148 1.1 947.2 25 377.2 377.1 377.3 0 149 1.1 1112 26 383.3 383.2 383.9 0 272 2.01 2778 27 384.3 384.2 384.8 1 1309 9.67 9083 28 385.3 385.2 385.4 1 292 2.16 1912 29 391.3 391.2 391.8 0 293 2.16 1527 30 397.3 397.3 397.4 0 159 1.17 1016 31 400.3 400.2 400.8 0 253 1.87 2289 32 406.1 406.1 406.2 0 223 1.65 1353 33 420.2 420.1 420.3 0 169 1.25 1087 34 423.2 423.1 423.2 0 138 1.02 1085 35 439.3 439.2 439.4 0 199 1.47 1243 36 444.3 444.3 444.9 0 490 3.62 3516 37 467.1 467.1 467.2 0 172 1.27 1192 38 467.9 467.8 468 0 172 1.27 1371 39 471.9 471.8 472.1 0 215 1.59 1771 40 488.4 488.3 489 1 636 4.7 5849 41 489.4 489.3 489.6 1 172 1.27 1470 42 495.9 495.9 496.2 0 170 1.25 1125 43 499.9 499.9 500.7 0 332 2.45 2403 44 502.4 502.3 502.8 0 499 3.69 3896 45 516.4 516.4 517.2 0 505 3.73 3779 46 527.9 527.9 528.1 0 241 1.78 1717 47 530.4 530.3 530.8 1 403 2.98 3578

278

48 531.4 531.3 531.5 1 162 1.2 1370 49 532.4 532.3 532.8 1 873 6.45 8114 50 533.4 533.3 533.7 1 220 1.63 1916 51 539.9 539.8 540.2 0 136 1.01 1139 52 541.9 541.8 542.3 1 425 3.14 3260 53 542.9 542.8 543.3 1 278 2.05 2291 54 543.9 543.8 544.3 2 2171 16.05 18746 55 544.5 544.4 544.8 2 472 3.49 3785 56 544.9 544.8 545.1 2 826 6.11 6521 57 545.5 545.4 545.6 2 151 1.11 1016 58 545.9 545.8 546.7 1 3622 26.76 29911 59 546.9 546.8 547.1 1 1005 7.42 8002 60 547.9 547.8 548.8 1 1788 13.21 15194 61 548.9 548.8 549.1 1 353 2.61 2903 62 558.5 558.4 558.8 0 369 2.73 2803 63 572.5 572.4 572.8 0 158 1.17 1220 64 576.4 576.3 577.2 1 898 6.64 7706 65 577.4 577.3 577.8 1 313 2.31 2799 66 586.5 586.4 586.8 0 175 1.3 1613 67 609.3 609.2 610.1 1 1889 13.96 17059 68 610.3 610.1 610.8 1 692 5.11 6185 69 611.3 611.2 611.4 1 153 1.13 1188 70 620.4 620.3 620.8 1 942 6.96 8030 71 621.4 621.4 621.8 1 275 2.03 2347 72 648.9 648.8 649.2 0 313 2.32 2765 73 664.5 664.4 664.7 1 803 5.93 7740 74 665.5 665.3 665.6 1 291 2.15 2561 75 676.9 676.8 677.1 0 233 1.72 2037 76 704.9 704.8 705.3 0 248 1.84 1914 77 708.5 708.3 708.7 1 656 4.85 5846 78 709.5 709.3 709.8 1 243 1.79 2307 79 752.5 752.4 752.8 1 414 3.06 3982 80 753.5 753.4 753.7 1 190 1.41 1421 81 796.5 796.4 796.8 0 221 1.63 2126 82 825.9 825.8 826.3 0 138 1.02 1129 83 1022 1022 1022 0 451 3.33 5372 84 1087 1087 1087 1 215 1.59 2569 85 1088 1088 1089 1 138 1.02 1602 86 1089 1089 1089 1 496 3.66 5573

279

87 1090 1090 1090 1 281 2.08 3239 88 1091 1091 1091 1 613 4.53 6920 89 1092 1092 1093 1 278 2.06 3043 90 1093 1093 1093 1 392 2.9 4411 91 1094 1094 1094 1 140 1.04 1460 92 1122 1122 1123 1 1162 8.58 13529 93 1123 1123 1124 1 249 1.84 2300 94 1222 1222 1223 1 1789 13.22 22151 95 1223 1223 1224 1 420 3.1 4896 96 1267 1267 1268 0 202 1.49 2232 97 1322 1322 1323 1 2417 17.86 31201 98 1323 1323 1323 1 560 4.14 6505 99 1367 1367 1368 0 235 1.74 2990 100 1422 1422 1423 1 2441 18.04 31949 101 1423 1423 1423 1 542 4 6612 102 1467 1467 1468 0 244 1.8 3025 103 1522 1522 1523 1 2113 15.61 28799 104 1523 1523 1524 1 522 3.86 6481 105 1567 1567 1568 0 192 1.42 2283 106 1622 1621 1623 1 1638 12.1 23610 107 1623 1623 1624 1 467 3.45 6018 108 1635 1635 1635 0 190 1.4 2158 109 1637 1637 1637 0 159 1.17 2532 110 1722 1722 1723 1 1138 8.41 16327 111 1723 1723 1723 1 341 2.52 4486 112 1822 1822 1823 1 686 5.07 10708 113 1823 1823 1824 1 184 1.36 2419 114 1922 1922 1923 0 287 2.12 4273

280

IR Spectra of Dibromo Catalyst

IR Spectrum

719.09

748.04

793.02

847.37

867.87

963.74 974.37

1026.51

100 0

1159.51

1218.43

1291.07

1312.94

1353.94

1387.15

1404.61

1434.49

1512.74

1580.29

1627.08 150 0

1642.95

200 0

250 0 Wavenumbers(cm-1)

2848.73

2933.23

300 0

350 0

50

55

60

65

70

75

80

85

90

95

100 105

%T

281

719.09

700

748.04

793.02

800

847.37

867.87

900

963.74

974.37

1026.51 100 0

Wavenumbers(cm-1)

110 0

1159.51

1218.43

120 0

1291.07

1312.94

130 0

1353.94

50

55

60

65

70

75

80

85

90

95

100 %T

282

719.09

700

748.04

793.02

800

847.37

867.87

900

963.74

974.37

1026.51 100 0

Wavenumbers(cm-1)

110 0

1159.51

1218.43

120 0

1291.07

1312.94

130 0

1353.94

50

55

60

65

70

75

80

85

90

95

100 %T

283

APPENDIX C: Characterization of Epoxides and Chiral Shift Studies of

Epoxides

The following characterization includes 1H NMR spectra of epoxides synthesized. Certain

epoxides that were subjected to chiral shift studies are included in this section. The

spectra seen are a representation of one in seven reactions from each substrate.

284

Styrene Oxide 1 H NMR spectrum (CDCl3, 500 MHz)

285

1 H NMR spectrum (CDCl3, 500 MHz) with 15 mg of chiral shift reagent

286

Trans-stilbene Oxide 1 H NMR spectrum (CDCl3, 500 MHz)

287

6,7-epoxycitronellol 1 H NMR spectrum (CDCl3, 500 MHz)

288

1 H NMR spectrum (CDCl3, 500 MHz) with 3 mg chiral shift reagent

289

1 H NMR spectrum (CDCl3, 500 MHz) with 5 mg chiral shift reagent

290

2,3-epoxygeraniol 1 H NMR spectrum (CDCl3, 500 MHz)

291

1 H NMR spectrum (CDCl3, 500 MHz) with 10 mg chiral shift reagent

292

6,7-epoxycitronellylpivalate 1 H NMR spectrum (CDCl3, 500 MHz)

293

Epoxy α-methylstyrene 1 H NMR spectrum (CDCl3, 500 MHz)

294

Trans-β-epoxymethylstyrene 1 H NMR spectrum (CDCl3, 500 MHz)

295

cis-β-epoxymethylstyrene 1 H NMR spectrum (CDCl3, 500 MHz)

296

Syn-2,3-epoxy-3,5,5-trimethylcyclohexanol 1 H NMR spectrum (CDCl3, 500 MHz)

297

1 H NMR spectrum (CDCl3, 500 MHz) with 10 mg chiral shift reagent

298

APPENDIX D. X-RAY CRYSTALLOGRAPHY DATA

The following crystallography data is obtained from the Naphthyl Catalyst.

299

TITL JF2611Fmi P2(1) SADABS 2 NO MERGE FINAL ALL DATA MERGE-I 14Feb2017 JF2611FMI.res created by SHELXL-2016/6 at 14:30:08 on 14-Feb-2017 CELL 0.71073 9.5304 8.5210 26.8104 90.0000 95.1076 90.0000 ZERR 4.00 0.0005 0.0005 0.0015 0.0000 0.0016 0.0000 LATT -1 SYMM -X, 1/2+Y, -Z SFAC C H N O V UNIT 112 96 8 12 4 L.S. 9 OMIT -3 55.00 ACTA BOND $H FMAP 2 PLAN 20 HTAB EQIV $1 x-1, y, z EQIV $2 x+1, y, z HTAB C16 O33_$1 HTAB C17 O31 HTAB C42 O1 HTAB C46 O3_$2 HTAB C48 O3_$2 WPDB -2 CONF SIZE 0.033 0.07 0.128 REM EMERALD GREEN PLATE TEMP -173.120 WGHT 0.030300 0.855700 EXTI 0.001976 FVAR 0.13493 V1 5 0.309938 0.355985 0.245753 11.00000 0.01570 0.01328 = 0.00939 0.00037 0.00192 0.00157 O1 4 0.478872 0.246834 0.233693 11.00000 0.01917 0.02131 = 0.00888 0.00065 0.00465 0.00541 O2 4 0.370930 0.352298 0.316602 11.00000 0.01534 0.01530 = 0.00984 -0.00057 0.00275 0.00206 O3 4 0.179305 0.239111 0.236400 11.00000 0.01924 0.01807 = 0.01828 0.00111 0.00116 -0.00322

300

N1 3 0.319464 0.456771 0.177174 11.00000 0.01611 0.01567 = 0.01016 -0.00217 -0.00070 0.00044 N2 3 0.233499 0.575697 0.259399 11.00000 0.01425 0.01212 = 0.00864 0.00147 -0.00094 -0.00220 C1 1 0.523704 0.201451 0.190724 11.00000 0.01497 0.01742 = 0.01667 -0.00346 0.00313 -0.00375 C2 1 0.619927 0.072783 0.192752 11.00000 0.01915 0.01471 = 0.01714 0.00058 0.00015 0.00137 AFIX 43 H2 2 0.641286 0.019102 0.223549 11.00000 -1.20000 AFIX 0 C3 1 0.681189 0.025864 0.151760 11.00000 0.01877 0.01228 = 0.02000 -0.00373 0.00494 -0.00012 AFIX 43 H3 2 0.747510 -0.057599 0.154572 11.00000 -1.20000 AFIX 0 C4 1 0.648327 0.099110 0.104304 11.00000 0.02104 0.01543 = 0.01732 -0.00524 0.00415 -0.00296 C5 1 0.715774 0.050440 0.062009 11.00000 0.02335 0.01706 = 0.02386 -0.00801 0.00781 -0.00006 AFIX 43 H5 2 0.784438 -0.030579 0.065406 11.00000 -1.20000 AFIX 0 C6 1 0.683155 0.118880 0.016185 11.00000 0.02789 0.02670 = 0.01707 -0.00860 0.00853 -0.00696 AFIX 43 H6 2 0.730317 0.087091 -0.011897 11.00000 -1.20000 AFIX 0 C7 1 0.580323 0.235422 0.011077 11.00000 0.02758 0.02335 = 0.01229 -0.00218 0.00396 -0.00813 AFIX 43 H7 2 0.556325 0.281266 -0.020845 11.00000 -1.20000 AFIX 0 C8 1 0.512993 0.285125 0.051577 11.00000 0.02075 0.02007 = 0.01526 -0.00287 0.00266 -0.00276 AFIX 43 H8 2 0.442473 0.363899 0.047034 11.00000 -1.20000 AFIX 0 C9 1 0.546921 0.220911 0.100017 11.00000 0.01605 0.01651 = 0.01407 -0.00209 0.00344 -0.00599 C10 1 0.485290 0.274142 0.144508 11.00000 0.01460 0.01554 = 0.01438 -0.00211 0.00093 -0.00192

301

C11 1 0.391025 0.405864 0.141591 11.00000 0.01919 0.01594 = 0.00943 0.00006 0.00126 -0.00335 AFIX 43 H11 2 0.380072 0.460886 0.110671 11.00000 -1.20000 AFIX 0 C12 1 0.218567 0.587688 0.169610 11.00000 0.01722 0.01323 = 0.01124 0.00329 0.00114 0.00156 AFIX 13 H12 2 0.122330 0.540166 0.167993 11.00000 -1.20000 AFIX 0 C13 1 0.223845 0.685595 0.122296 11.00000 0.03223 0.02234 = 0.01061 0.00160 0.00325 0.00351 AFIX 23 H13A 2 0.208567 0.617324 0.092428 11.00000 -1.20000 H13B 2 0.317621 0.735385 0.121989 11.00000 -1.20000 AFIX 0 C14 1 0.109922 0.811763 0.120713 11.00000 0.04002 0.01983 = 0.01352 0.00784 0.00171 0.00799 AFIX 23 H14A 2 0.115490 0.877660 0.090541 11.00000 -1.20000 H14B 2 0.016015 0.761264 0.118410 11.00000 -1.20000 AFIX 0 C15 1 0.127139 0.915048 0.167333 11.00000 0.02960 0.01344 = 0.01723 0.00342 0.00165 0.00237 AFIX 23 H15A 2 0.050774 0.994131 0.165763 11.00000 -1.20000 H15B 2 0.218156 0.971469 0.168351 11.00000 -1.20000 AFIX 0 C16 1 0.122573 0.816663 0.214939 11.00000 0.02330 0.01517 = 0.01285 0.00140 0.00298 0.00142 AFIX 23 H16A 2 0.139383 0.885116 0.244707 11.00000 -1.20000 H16B 2 0.028169 0.768647 0.215614 11.00000 -1.20000 AFIX 0 C17 1 0.233945 0.688348 0.216777 11.00000 0.01694 0.01420 = 0.01069 0.00341 0.00138 -0.00131 AFIX 13 H17 2 0.328504 0.739958 0.218639 11.00000 -1.20000 AFIX 0 C18 1 0.181377 0.614656 0.300667 11.00000 0.01445 0.00920 = 0.01432 -0.00202 -0.00167 -0.00092 AFIX 43

302

H18 2 0.130717 0.710585 0.301134 11.00000 -1.20000 AFIX 0 C19 1 0.195014 0.522180 0.346048 11.00000 0.01403 0.01420 = 0.00843 -0.00117 0.00083 -0.00167 C20 1 0.114623 0.565244 0.387584 11.00000 0.01551 0.01191 = 0.01039 -0.00403 -0.00007 -0.00384 C21 1 0.001186 0.672564 0.382885 11.00000 0.02059 0.01322 = 0.01252 -0.00105 0.00134 -0.00147 AFIX 43 H21 2 -0.023069 0.722425 0.351610 11.00000 -1.20000 AFIX 0 C22 1 -0.074671 0.705963 0.422895 11.00000 0.01858 0.01287 = 0.01875 -0.00214 0.00154 0.00040 AFIX 43 H22 2 -0.150828 0.778100 0.418799 11.00000 -1.20000 AFIX 0 C23 1 -0.041204 0.635085 0.469612 11.00000 0.02428 0.01533 = 0.01467 -0.00318 0.00865 -0.00223 AFIX 43 H23 2 -0.093758 0.659364 0.497100 11.00000 -1.20000 AFIX 0 C24 1 0.067621 0.530906 0.475160 11.00000 0.02479 0.01615 = 0.00892 0.00087 0.00266 -0.00494 AFIX 43 H24 2 0.090762 0.483041 0.506828 11.00000 -1.20000 AFIX 0 C25 1 0.146674 0.492798 0.434639 11.00000 0.01772 0.01117 = 0.01015 -0.00160 0.00093 -0.00354 C26 1 0.258879 0.382716 0.440514 11.00000 0.01790 0.01559 = 0.00908 0.00284 0.00005 -0.00362 AFIX 43 H26 2 0.284279 0.338336 0.472555 11.00000 -1.20000 AFIX 0 C27 1 0.330268 0.339977 0.401167 11.00000 0.01475 0.01311 = 0.01343 -0.00097 -0.00147 0.00195 AFIX 43 H27 2 0.403962 0.265008 0.406151 11.00000 -1.20000 AFIX 0 C28 1 0.297505 0.404814 0.352379 11.00000 0.01512 0.00912 = 0.01289 -0.00281 0.00162 -0.00334 V31 5 0.715930 0.640608 0.260518 11.00000 0.01399 0.01177 = 0.01004 0.00073 0.00221 0.00169

303

O31 4 0.548391 0.761402 0.269716 11.00000 0.02001 0.01843 = 0.01107 0.00009 0.00210 0.00546 O32 4 0.655881 0.635292 0.190113 11.00000 0.01724 0.01777 = 0.01111 0.00096 0.00222 0.00486 O33 4 0.843146 0.760361 0.273575 11.00000 0.01747 0.01599 = 0.01729 0.00088 0.00252 -0.00093 N31 3 0.673186 0.519800 0.323149 11.00000 0.01169 0.01198 = 0.01220 0.00011 0.00127 0.00136 N32 3 0.816068 0.431572 0.249072 11.00000 0.01210 0.01409 = 0.00864 0.00234 -0.00032 -0.00001 C31 1 0.498499 0.802630 0.311781 11.00000 0.01290 0.01414 = 0.01177 -0.00052 0.00213 -0.00262 C32 1 0.402636 0.931567 0.309719 11.00000 0.01855 0.01917 = 0.01446 0.00102 0.00195 0.00097 AFIX 43 H32 2 0.386427 0.990169 0.279613 11.00000 -1.20000 AFIX 0 C33 1 0.334121 0.971788 0.350239 11.00000 0.01567 0.01386 = 0.01976 0.00006 0.00005 0.00217 AFIX 43 H33 2 0.267215 1.054658 0.347282 11.00000 -1.20000 AFIX 0 C34 1 0.360023 0.893064 0.396880 11.00000 0.01611 0.01173 = 0.01485 -0.00355 0.00050 -0.00342 C35 1 0.285993 0.932704 0.438386 11.00000 0.02021 0.01498 = 0.02010 -0.00411 0.00502 -0.00093 AFIX 43 H35 2 0.217321 1.013705 0.434938 11.00000 -1.20000 AFIX 0 C36 1 0.310114 0.858339 0.483144 11.00000 0.02082 0.02221 = 0.01411 -0.00830 0.00681 -0.00245 AFIX 43 H36 2 0.258064 0.885748 0.510481 11.00000 -1.20000 AFIX 0 C37 1 0.413171 0.740346 0.488366 11.00000 0.02160 0.02102 = 0.01150 -0.00410 0.00134 -0.00446 AFIX 43 H37 2 0.431693 0.688661 0.519656 11.00000 -1.20000 AFIX 0 C38 1 0.487800 0.698520 0.448710 11.00000 0.01781 0.01836 = 0.01371 -0.00038 0.00079 -0.00068 AFIX 43

304

H38 2 0.558905 0.620408 0.453288 11.00000 -1.20000 AFIX 0 C39 1 0.460093 0.770142 0.401326 11.00000 0.01293 0.01099 = 0.01500 -0.00470 0.00154 -0.00433 C40 1 0.527944 0.720925 0.357143 11.00000 0.01112 0.01395 = 0.01379 0.00016 0.00280 0.00131 C41 1 0.601711 0.575176 0.358200 11.00000 0.01252 0.01629 = 0.01059 0.00034 -0.00045 -0.00457 AFIX 43 H41 2 0.598180 0.512586 0.387385 11.00000 -1.20000 AFIX 0 C42 1 0.723253 0.354055 0.325865 11.00000 0.01389 0.00783 = 0.01451 0.00250 0.00121 0.00128 AFIX 13 H42 2 0.648423 0.287117 0.308114 11.00000 -1.20000 AFIX 0 C43 1 0.754780 0.288388 0.378766 11.00000 0.01989 0.01619 = 0.01311 0.00371 0.00374 0.00466 AFIX 23 H43A 2 0.667724 0.288932 0.396344 11.00000 -1.20000 H43B 2 0.825398 0.355501 0.397835 11.00000 -1.20000 AFIX 0 C44 1 0.811118 0.120632 0.376417 11.00000 0.02710 0.01683 = 0.01494 0.00615 0.00510 0.00632 AFIX 23 H44A 2 0.837829 0.082243 0.410807 11.00000 -1.20000 H44B 2 0.736124 0.051230 0.360931 11.00000 -1.20000 AFIX 0 C45 1 0.939031 0.113275 0.346005 11.00000 0.02313 0.01418 = 0.01769 0.00456 0.00177 0.00439 AFIX 23 H45A 2 0.971017 0.003095 0.344015 11.00000 -1.20000 H45B 2 1.016932 0.175264 0.363120 11.00000 -1.20000 AFIX 0 C46 1 0.904025 0.177380 0.293155 11.00000 0.01675 0.01411 = 0.01468 0.00097 0.00406 0.00336 AFIX 23 H46A 2 0.988854 0.173871 0.274388 11.00000 -1.20000 H46B 2 0.829954 0.112181 0.275115 11.00000 -1.20000 AFIX 0 C47 1 0.852662 0.346208 0.296551 11.00000 0.01593 0.01411 = 0.00868 0.00064 0.00133 0.00003

305

AFIX 13 H47 2 0.929112 0.406946 0.315879 11.00000 -1.20000 AFIX 0 C48 1 0.856338 0.382667 0.206910 11.00000 0.01017 0.01460 = 0.01407 0.00080 0.00293 -0.00124 AFIX 43 H48 2 0.910550 0.289023 0.207468 11.00000 -1.20000 AFIX 0 C49 1 0.825503 0.458967 0.159111 11.00000 0.01321 0.00892 = 0.01278 0.00176 0.00034 -0.00068 C50 1 0.895675 0.408194 0.116192 11.00000 0.01562 0.00949 = 0.01135 -0.00084 0.00149 -0.00342 C51 1 1.009098 0.301441 0.118983 11.00000 0.01889 0.01133 = 0.01200 0.00014 0.00127 -0.00132 AFIX 43 H51 2 1.039707 0.255833 0.150415 11.00000 -1.20000 AFIX 0 C52 1 1.076869 0.261241 0.077580 11.00000 0.02007 0.01231 = 0.01713 -0.00261 0.00150 0.00229 AFIX 43 H52 2 1.153184 0.189167 0.080864 11.00000 -1.20000 AFIX 0 C53 1 1.033841 0.326256 0.030345 11.00000 0.02507 0.01652 = 0.01564 -0.00313 0.00682 -0.00117 AFIX 43 H53 2 1.080171 0.297952 0.001719 11.00000 -1.20000 AFIX 0 C54 1 0.924903 0.430230 0.026325 11.00000 0.02661 0.01601 = 0.01020 -0.00015 0.00303 -0.00252 AFIX 43 H54 2 0.896000 0.474507 -0.005457 11.00000 -1.20000 AFIX 0 C55 1 0.853752 0.473922 0.068262 11.00000 0.01684 0.01189 = 0.01282 -0.00238 0.00207 -0.00259 C56 1 0.742169 0.585204 0.064034 11.00000 0.02207 0.01520 = 0.01039 0.00235 -0.00315 -0.00216 AFIX 43 H56 2 0.710902 0.625505 0.031917 11.00000 -1.20000 AFIX 0 C57 1 0.679203 0.635390 0.104420 11.00000 0.01587 0.01407 = 0.01375 0.00056 -0.00195 0.00095 AFIX 43

306

H57 2 0.605806 0.710962 0.100268 11.00000 -1.20000 AFIX 0 C58 1 0.721891 0.575999 0.153161 11.00000 0.01592 0.01680 = 0.00958 -0.00251 0.00224 -0.00487 HKLF 4

REM JF2611Fmi P2(1) SADABS 2 NO MERGE FINAL ALL DATA MERGE-I 14Feb2017 REM R1 = 0.0395 for 8407 Fo > 4sig(Fo) and 0.0547 for all 9949 data REM 614 parameters refined using 1 restraints

END

WGHT 0.0303 0.8539

REM Instructions for potential hydrogen bonds HTAB C16 O33_$1 HTAB C17 O31 HTAB C42 O1 HTAB C46 O3_$2 HTAB C48 O3_$2

REM Highest difference peak 0.298, deepest hole -0.399, 1-sigma level 0.059 Q1 1 0.7081 0.6074 0.1280 11.00000 0.05 0.30 Q2 1 0.3939 0.4168 0.2467 11.00000 0.05 0.29 Q3 1 0.2266 0.6372 0.1481 11.00000 0.05 0.29 Q4 1 0.3425 0.9191 0.3732 11.00000 0.05 0.28 Q5 1 0.1180 0.5076 0.4103 11.00000 0.05 0.27 Q6 1 -0.0303 0.6882 0.4498 11.00000 0.05 0.27 Q7 1 0.8464 0.4308 0.1807 11.00000 0.05 0.27 Q8 1 0.4750 0.2217 0.1656 11.00000 0.05 0.26 Q9 1 0.4435 0.8515 0.3100 11.00000 0.05 0.26 Q10 1 0.4805 0.2291 0.1178 11.00000 0.05 0.26 Q11 1 0.4980 0.7519 0.3772 11.00000 0.05 0.25 Q12 1 0.8599 0.4197 0.0889 11.00000 0.05 0.25 Q13 1 0.2704 0.2269 0.2317 11.00000 0.05 0.25 Q14 1 0.6779 0.5643 0.3481 11.00000 0.05 0.24 Q15 1 0.8580 0.4297 0.1383 11.00000 0.05 0.24 Q16 1 0.8209 0.6736 0.2590 11.00000 0.05 0.23

307

Q17 1 1.0972 0.3645 -0.0105 11.00000 0.05 0.23 Q18 1 0.5814 0.7161 0.1618 11.00000 0.05 0.23 Q19 1 0.8407 0.2504 0.2909 11.00000 0.05 0.23 Q20 1 0.5013 0.3725 0.2418 11.00000 0.05 0.23

308

REFERENCES

(1) Grover, M.; He, C.; Hsieh, M.-C.; Yu, S.-S. Processes. 2015, 3 (2), 309–338.

(2) Vargesson, N. Birth Defects res., Part C 2015, 105, 140-156.

(3) Vargesson, N. ISRN Dev. Biol. 2013, 2013, 18.

(4) Kim, J., Scialli, A. Toxicol. Sci. 2011, 122 (1), 1–6.

(5) Hartman, R. I.; Kimball, A. B. Clin. Dermatol. 2016, 34 (3), 410–415.

(6) Linker, T. Angew. Chem. Int. Ed. Engl. 1997, 36 (19), 2060–2062.

(7) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc.

1991, 113 (18), 7063–7064.

(8) Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59 (16), 4378–4380.

(9) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102 (18), 5974–5976.

(10) McCrea-Hendrick, M. Vanadium-catalyzed Epoxidation of Allylic Alcohols and

Radical Cyclization/Fragmentation En Route to an Eight-membered Ring. M.S.

Thesis, Sacramento State University, CA, 2011.

(11) Martin, E. Racemic and Diastereoselective Epoxidation Reactions: Synthesis,

characterization and Application of Chiral Oxovandyl(IV) Salen Complexes. M.S.

Thesis, Sacramento State University, CA, 2008.

(12) Sharpless, K.; Michaelson, R. J. Am. Chem. Soc. 1973, 95 (18), 6136–6137.

(13) Pellissier, H. Coord. Chem. Rev. 2015, 284, 93–110.

(14) Taroni, A. Nat. Chem. 2017, 9 (6), 602.

(15) Sutradhar, M.; Pombeiro, A. J. Coord. Chem. Rev. 2014, 265 (1), 89–124.

309

(16) Crans, D. C.; Tracey, S. ACS Symp. Ser. 1998, 711, 2–29.

(17) Minato, H. The Chemistry of Peroxides; 1968; Vol. 17.

(18) Catalysts & Chemicals Markets http://www.americanvanadium.com/catalysts-

chemicals.php (accessed Apr 2, 2016).

(19) Rappoport, Z. The Chemistry of Peroxides; John Wiley & Sons: Chichester, 2006;

Vol. 2. 423-424.

(20) Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32 (8), 703–710.

(21) Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chemie Int. Ed. English 1995,

34 (10), 1059–1070.

(22) Michaelson, R.; Palermo, R.; Sharpless K.; J. Am. Chem. Soc. 1977, 99, 1990.

(23) Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H. J. Org. Chem. 1999, 64 (2),

338–339.

(24) Zhang, W.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129 (2), 286–287.

(25) Li, Z. H. I.; Yamamoto, H. J. Am. Chem. Soc. 2013, 46 (2) , 506–518.

(26) Williams, I.; Pedersen, S.; Sharpless, K.; Lippard, S. J. Am. Chem. Soc. 1984, 106

(21), 6430–6431.

(27) The Official Web Site of the Nobel Prize. Nobel Prizes and Laureates.

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/ (accessed Jan.

20, 2016.

(28) Miranda, J. Asymmetric Synthesis of 6,7-Epoxycitronellyl Pivalate: Optimizing

the Synthesis of the California Red Scale Pheromone. M.S. Thesis, Fresno State

310

University, CA, 2001.

(29) Katsuki, T. J. Mol. Catal. A. Chem. 1996, 113 (1-2), 87–107.

(30) Pietikäinen, P. Mn-salen catalyzed asymmetric epoxidation: search for new

oxidation systems. Ph. D. Dissertation, University of Helsinki, Finland, 2001.

(31) Jacobsen, E. ; Zhang, W.; Güler, M. J. Am. Chem. Soc. 1991, 113 (17), 6703–

6704.

(32) Crouch, R.; Russell, D. Easy, Precise and Accurate Quantitative NMR

https://www.agilent.com/cs/library/applications/qNMR%205990-7601.pdf

(accessed Jun 8, 2017). (33) Aerts, H. A. J.; Sels, B. F. E.; Jacobs, P. A. JAOCS,

J. Am. Oil Chem. Soc. 2005, 82 (6), 409–413.

(34) Aerts, H.; Jacobs, P. J. Am. Oil Chem. Soc. 2004, 81 (9), 841–846.

(35) Peterson, T. NMR Yields

http://www.organ.su.se/bo/Gruppfiler/NMR%20yield%20calculation.pdf

(accessed Jun 8, 2017).

(36) Ben Zid, T.; Khedher, I.; Ghorbel, A. React. Kinet. Mech. Catal. 2010, 100 (1),

131–143.

(37) Callahan, K.; Durand, P. Inorg. Chem. 1980, 19, 3211-3217.

(38) Malkov, A.; Bourhani, Z.; Kocovský, P. Org. Biomol. Chem. 2005, 3 (17), 3194–

3200.

(39) Malkov, A.; Czemerys, L.; Malyshev, D. a. J. Org. Chem. 2009, 74 (9), 3350–

3355.

311

(40) Grivani, G.; Ghavami, A.; Eigner, V.; Dušek, M.; Khalaji, A. D. Chinese Chem.

Lett. 2015, 26 (6), 779–784.

(41) Stingl, K. A.; Weiß, K. M.; Tsogoeva, S. B. Tetrahedron 2012, 68 (40), 8493–

8501.

(42) Sarkheil, M.; Lashanizadegan, M. J. Serbian Chem. Soc. 2016, 81 (4), 369–382.

(43) Hsiao, M. C.; Liu, S. T. Catalysis Letters. 2010, pp 61–66.

(44) Rayati, S.; Ashouri, F. Comptes Rendus Chim. 2012, 15 (8), 679–687.

(45) Bonart, R. Polymer (Guildf). 1979, 20 (11), 1389–1403.

(46) Ren, X.; Fan, H.; Ma, J.; Wang, C.; Zhao, Y.; Lei, S. ACS Sustain. Chem. Eng.

2017, 5 (2), 1957–1964.

(47) Terent’ev, A.; Sharipov, M.; Krylov, I.; Gaidarenko, D.; Nikishin, G. Org. Biomol.

Chem. 2015, pp 1439–1445.

(48) Kumar, N.; Sharma. M.; Rawat, D. Curr. Med. Chem. 2011, 18, 3889–3928.

(49) W. Jefford, C. Curr. Top. Med. Chem. 2012, 12, 373–399.

(50) Shul’pin, G. B.; Gradinaru, J.; Kozlov, Y. N. Org. Biomol. Chem. 2003, 1 (20),

3611–3617.

(51) Saussine, L.; Brazi, E.; Robine, A.; Mimoun, H.; Fischer, J.; Weiss, R. J. Am.

Chem. Soc. 1985, 107 (12), 3534–3540.

(52) Surh, Y. J.; Kundu, J. K.; Na, H. K. Planta Med. 2008, 74 (13), 1526–1539.

(53) Nishimura, T.; Onoue, T.; Ohe, K.; Tateiwa, J.; Uemura, S. Tetrahedron Lett.

1998, 39, 4359–4362.

312

(54) Lampman, Gary; Pavia, Donald; Kriz, George; Vyvyan, J. Spectroscopy, 4th ed.;

Brooks/Cole, 2010.

(55) Cooper, M. A.; Ward, A. D. Tetrahedron 2004, 60 (36), 7963–7972.

(56) Ada, P.; Pessoa, C.; Henriques, R. T.; Kuznetsov, M. L.; Avecilla, F.; Maurya, M.

R.; Kumar, U.; Correia, I. Inorg. Chem. 2009, 48 (8), 3542–3561.

(57) Kuznetsov, M. L.; Pessoa, J. C. Dalton Trans. 2009, 28, 5460–5468.

(58) Barman, S.; Patil, S.; Desper, J.; Aikens, C. M.; Levy, C. J. Eur. J. Inorg. Chem.

2013, 33, 5708–5717.

(59) Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42 (9), 1587–1590.

(60) Correia, I.; Costa Pessoa, J.; Duarte, M. T.; Da Piedade, M. F. M.; Jackush, T.;

Kiss, T.; Castro, M. M. C. A.; Geraldes, C. F. G. C.; Avecilla, F. Eur. J. Inorg.

Chem. 2005, 4, 732–744.

(61) Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101 (1),

159–169.

(62) Boghaei, D. M.; Mohebi, S. J. Mol. Catal. A Chem. 2002, 179 (1–2), 41–51.