7 April 2003

The Effect of Metapopulation Processes on the Spatial Scale

of Adaptation Across an Environmental Gradient

(thisarticleisformallyunpublishedduetolossofcontactwiththefirstauthor)

IanR.Wynne 1* ,RobertJ.Wilson 2,A.S.Burke 3,FraserSimpson 1,

AndrewS.Pullin 3,ChrisD.Thomas 2,JamesMallet 1

1Galtonlaboratory,DepartmentofBiology,UniversityCollege,4Stephenson

Way,LondonNW12HE,UK. [email protected] , [email protected] .

2SchoolofBiology,UniversityofLeeds,LeedsLS29JT,UK. [email protected] , [email protected] .

3SchoolofBiosciences,TheUniversityofBirmingham,Edgbaston,Birmingham,B15 2TT,UK.[email protected] , [email protected] .

*Correspondingauthorandpresentaddress:DepartmentofPopulationEcology,

ZoologicalInstitute,CopenhagenUniversity,Universitetsparken15,DK2100,

KøbenhavnØ;email: [email protected] .Tel:+4535321280.Fax:+453532150.

Keywords :voltinism,adaptation,populationgeneticstructure,connectivity,habitat networks

Running header :Thespatialscaleofadaptation 1 ABSTRACT:Weshowthatthebutterfly Aricia agestis (Lycaenidae)isadaptedtoits thermalenvironmentinviaintegerchangesinthenumbersofgenerationsperyear

(voltinism):ithastwogenerationsperyearinwarmhabitatsandonegenerationper yearincoolhabitatsinnorth(UK).Voltinismisan“adaptivepeak”since individualshavinganintermediatenumberofgenerationsperyearwouldfailto survivethewinter,andindeednopopulationsshowedbothvoltinismtypesinnature.

Inspiteofthisgeneralpattern,11%ofpopulationsapparentlypossessthe“wrong” voltinismfortheirlocalenvironment,andpopulationdensitieswerelowerinthermally intermediatehabitatpatches.Populationdynamicdataandpatternsofgenetic differentiationsuggestthatadaptationoccursatthemetapopulationlevel,withlocal populationspossessingthevoltinismtypeappropriateforthecommonesthabitattype withineachpopulationnetwork.Whenpopulationsandgroupsofpopulationsgo extinct,theytendtobereplacedbycolonistsfromthecommonestthermalenvironment nearby,evenifthisisthelocallyincorrectadaptation.Ourresultsillustratehow stochasticpopulationturnovercanimposealimitonlocaladaptationoverdistances manytimeslargerthanpredictedonthebasisofnormaldispersalmovements.

2 Introduction

Acriticalquestioninevolutionarybiologyandecologyis“whatisthespatialscaleof adaptation?”Inevolutionaryterms,theanswerdeterminestheconditionsunderwhich populationsareabletodiverge(Lenormand2002),andhencerelatestoquestionsabout speciationandadaptation,andtheabilityofrangeboundariestoexpandthrough successivelocaladaptations(e.g.Holt1996;KirkpatrickandBarton1997).Inan ecologicalcontext,localadaptationaffectsdistributions,abundance,population dynamicsandinteractionsbetweenspecies(e.g.Singer&Thomas1996;TudaandIwasa

1998;Hanski&Singer2001).

Understandingadaptationrequiresbothecologicalandevolutionaryapproaches becauseitresultsfromaninteractionbetweenlocalselection,migration(geneflow), colonization(founderevents)andextinction.Withinmetapopulationssuchasthose consideredhere,extinctionratesareusuallyhighinsmallandlowqualityhabitat patches,whereasmigrationratesofindividualsbetweenpatchesandthecolonization ratesofemptyhabitatsareusuallydeterminedbypatchisolation(e.g.Kindvall&Ahlen

1992;Thomas&Jones1993;Hanskietal.1994;Hanski1999;J.A.Thomasetal.2001).

Theseecologicaldynamicsoflocalextinctionandcolonizationaresuperimposedona heterogeneousenvironment,wheredifferentselectionpressuresoccurindifferent patchesofhabitat.Thisheterogeneitypotentiallygeneratesanadaptivelandscapewith multiplepeaks.Theabilityofapopulationtoachievealocaladaptivepeakdependson thebalancebetweenselectionforthelocalenvironmentandtheeffectiverateof

3 immigrationfrompopulationsoccupyingalternativeenvironmentsthat,forthefocal population,carrygenesthatmaybenonadaptive.Effectivegeneflowcanbeinthe formofongoingdispersalbetweenextantpopulationsor(re)colonizationofempty patchesofhabitat.Thegeographicalscaleoverwhichecologicallyrelevanttraitsare differentiateddependsontheratioofthescaleofeffectivedispersaltothescaleofthe ecologicalorselectiveprocessesinvolved(Endler1992;Mallet2001;Lenormand2002).

Whenlocalpopulationsaresubjecttofrequentextinctionwithinmetapopulations

(Hanski&Gilpin,1997),localadaptationislostandthepatchmaysubsequentlybe recolonizedbymigrantsfromnearbypopulations.Thus,inmetapopulationswithhigh turnover,adaptationstoindividualpatcheswillberare,andthetraitsthatpredominate arelikelytobethoseassociatedeitherwiththecommonesttypeofhabitatinanetwork, orthehabitatpresentinthelargestpatchesifthesearetheleastextinctionproneand generatemostsuccessfulcolonists(Hanski1999;Wilsonetal. 2002).

Inthispaperweexaminetheinfluenceofpopulationstructureonthedistribution andmaintenanceofallozymemarkersandadaptivetraitsinabutterflymetapopulation distributedacrossatemperaturegradient.Atacoarsescale,thetemperaturechanges areverygradual,butatafinerscaletemperatureisextremelyheterogeneous, producinghotterandcoolerhabitatpatchesdependingontheelevationandaspectof individualsites.Inthetemperatezone,adaptationtotheseenvironmentalgradients ofteninvolveschangesinthenumberofgenerationsperyear(voltinisms)forany speciesthatcanoverwinterinonlyonestageofthelifecycle(e.g.,mostinsects).One andabitgenerationsperyearwouldbefatal,sospeciesofthistypemusttranslatea 4 gradualenvironmentalchangeintoanintegernumberofgenerations.Theorganism mayberequiredtoalterbothitslifehistoryandresponsestoenvironmentalcues

(photoperiodandtemperaturesensitivity).Justonthe"warmside"ofthetransition, developmentmustbeasfastaspossibletoensuretwofullgenerationsareachieved; justonthe"coolside",developmentmustbedelayedtoensureexactlyonegeneration.

Suchdifferenceswillbeachievedeitherthroughlocaladaptation(populationshaveone ortwogenerations)orthroughadaptivepolyphenism(developmentalresponsetoan environmentaltrigger).

Inthispaperweevaluatethespatialscaleofvoltinismacrossaheterogeneous temperaturegradient,andinvestigatewhetheradaptationtolocalenvironmentsoccurs locallyorisaffectedbypopulationturnoverinmetapopulations.

Study System

InBritain,brownargusbutterflies, Aricia Reichenbach(Lycaenidae)occurin populationsthathaveeitherone(univoltine)ortwo(bivoltine)generationsayear.

Thereisacorrespondingdifferenceinadultflightperiodbetweentheseforms:thepeak emergenceoftheunivoltinepopulationsfallsbetweenthetwoemergencepeaksofthe bivoltinepopulations(Figure1).Breedingexperimentsinwhichunivoltineand bivoltinebroodsarerearedunderthesameconditionsshowthatvoltinismis determinedbytheresponseoflarvaetophotoperiodandisundergeneticcontrol

(Jarvis1966;A.S.Burkeetal.unpublished).Voltinismvariationin Aricia appearstobea

5 consequenceofadaptationtoclimaticconditions,asinotherbutterfliessuchas Pieris brassicae (L.)(Held&Spieth1999).

Univoltineandbivoltine A. agestis (seetaxonomicstatus,below)populationsoccurin closeproximityinNorthWales(Figure1;Wilson et al .2002).Here,thehabitatofthe butterfly(unimprovedlimestonegrasslandsupportingthelarvalfoodplant,

Helianthemum nummularium (L.))ispatchilydistributedacrossathermalgradient: warmerinwestern,lowelevationcoastalareas,andcoolerintheeastathigher elevationinlandsites.Superimposedonthisgradientisconsiderablelocalvariationin thermalmicroclimate,determinedchieflybyaspect,slopeandaltitudeofindividual hillsides.Theseenvironmentalchangesoccurwithinverynarrowlatitudinallimits,so allpopulationsexperienceapproximatelythesamephotoperiods.Thefitnessofeach voltinismwillthereforedependonthelocalthermalenvironment,andthermally intermediatepatchesmightbeexpectedtosupportpopulationswithamixtureof voltinisms.Butinnature,populationsnevershowedpolymorphismsinvoltinism

(Wilsonetal.2002).Furthermore,colonizationandextinctionofpopulationswere observed,andsmalland/orisolatedhabitatpatcheswereunlikelytobeoccupied, suggestingthatpopulationturnovermaybecommonenoughtoaffectthermal adaptationbyA. agestis .

Taxonomic status of north Wales Aricia

Univoltinepopulationsof Aricia innorthernEuropehaveoftenbeenregardedas belongingto A. artaxerxes (Fabricius)andbivoltinepopulationsto A. agestis (Denis&

6 Schiffermüller).Thesespeciescanbematedincaptivityandwillproducefertileviable offspring(Jarvis,1966),butthedegreetowhichthisoccursinthewildanditssuccessis unknown.Inaphylogeographicstudyof Aricia butterfliesinnorthwesternEurope,

Aagaardetal.(2002)foundtwomajorcladesofthemitochondrialgenecytochromeb

(cyt b )separatedby3.34.6%sequencedivergence.Thesecorrespondtothetaxa A. artaxerxes and A. agestis fromScotland/northernScandinaviaandsouthern

England/southernScandinaviarespectively.However,theunivoltineandbivoltine formsinnorthWalesbothappeartobelongtoasinglemitochondrialclade correspondingto A. agestis ,basedonsixbivoltine(twoeachfromMD,MHWandGT; seeFigure2forpopulationcodes)andsixunivoltine(twoeachfromGF,LXandPG) individuals(A.S.Burke&I.R.Wynne, unpublished ).ThreemtDNAhaplotypeswere foundamong12individualsfromnorthWalessequencedforcytochromeb.When comparedwiththeknownhaplotypeswithin A. agestis and A. artaxerxes ,allindividuals couldbeclearlyassignedto A. agestis haplotypesofAagaard et al .(2002:GenBank accessionnumbersAF408186toAF408192):Haplotype1(MD,GF,LX,PG),Haplotype2

(MHW)andHaplotype3(GT,LX,PG).

Materials and Methods

Distribution Mapping

Thedistributionof Helianthemum nummularium wasmappedinnorthWalesduring

May–September19961999(Wilsonetal.2002).Habitatpatcheswereconsidered distinctifseparatedby50mormoreofhabitatwithno H. nummularium ,or25mor

7 moreifascruborwoodlandbarrierwaspresent.Withthesepatchdefinitions,the closestneighboringpatcheswilltypicallyexchange~20%ofdispersingindividuals,but mostpatcheswerefurtherapartandshouldexchangefarfewer(Wilson&Thomas

2002).Habitatpatcharea,aspect(degreesdifferencefromsouth),slopeandaltitude wererecorded,aswellasshelter, H. nummularium cover,baregroundcoverandturf height(seeWilson1999).

Thesurveywasalsousedtoconfirmthephenologyof A. agestis previously monitoredatmanyofthesitesbyregularvisitsandtransects(R.W.Whitehead, unpublisheddata), atacomprehensivelistofitspopulationsinnorthWales.Onthe

CreuddynPeninsula(Fig1),thedistributionof A. agestis wasmapped,andthedate, locationandnumberof A. agestis seenanywherefrom19961998wererecorded(Wilson

1999).Numbersof A. agestis weremonitoredat24sites,fromMay1996toJuly1998on standardizedweeklytransects(Pollard&Yates1993;Wilson1999).Duringsummer

1999,weeklytransectswerewalkedatafurthersixpopulationsacrossmainlandnorth

Wales,fromtheDulasValleyinthenorthwesttotheClwydianHillsinthesoutheast

(Figure1).Theweeklytransectswereusedtoestablishthephenologyofbivoltineand univoltine A. agestis (Figure1b).Todeterminethevoltinismtypeofallother populationsinnorthWales,everyhabitatpatchwassearchedinsummer1999for adults,eggsorlarvaeof A. agestis .Patchesweresearchedtwiceifnoindividualswere detectedonthefirstvisit,andatleastonepopulationper2kmOrdnanceSurveygrid squarewasvisitedtwice,onceduringthepeakflightperiodofunivoltinepopulations, andonceduringeitherthefirstorsecondpeakflightperiodofbivoltinepopulations.

8 Whereadultswerefound,sexandcondition(from4mintconditionto1completely worn)wererecorded,andatransectwaswalkedtogiveanestimateofpopulation density(seeThomas,1983a).Populationswereassignedtoavoltinismtype(bivoltine orunivoltine)accordingtothedatesandlifestageswhen A. agestis wasobserved;i.e., theconditionandsexratioofadultbutterflies,orthestageoflarvaldevelopment,with referencetothepopulationswhereregulartransectswerecarriedout.Althoughthere wasasmallamountofoverlapbetweentheendofthefirstbivoltineadultperiodand thebeginningoftheunivoltineflightperiod,andbetweentheendoftheunivoltineand thebeginningofthesecondgenerationofthebivoltineflightperiod(Fig1b),inpractice itwaseasytodistinguishformsonthebasisofadultcondition(veryoldbivoltineand absolutelyfreshunivoltinesinthefirstoverlapperiodandthereverseinthesecond overlapperiod),evenonthebasisofasinglevisit.

Thermal Model

FromMay1996toApril1998,temperaturewasmonitoredatthirtylocations,stratified byaspectandaltitude,ontheCreuddynPeninsula(16onGreatOrme’sHead(GO),14 atBrynEuryn(BE);Figure2).Tinytalkdataloggerswereplacedbeneath57cmtallturf onlimestonegrasslandwhere H. nummularium grew.Temperaturewasrecordedtothe nearest0.1 °C,every30minutesfromMaytoOctober,andeveryhourfromNovember toApril.

Experimentalrearingofunivoltineandbivoltineformsshowedthatlarval developmentonlyoccurredattemperaturesgreaterthan10 °C(A.S.Burkeetal.,

9 unpublisheddata).Therefore,foreachmonthateachTinytalklocation,wecalculated theaveragenumberofdaydegrees>10 °Cfromthetwoyears’data(Higleyetal.1986).

Amonthlythermalmodelwascalculatedusingthelinearregressionofcumulativeday degrees>10 °CagainstaspectandaltitudeforallTinytalklocationswhichhadtwo years’dataforaparticularmonth(thisdidnotincludealllocationsforallmonths, becauseoflossortemporarydamage,andbecausefewerdataloggerswereusedduring winter).Forthismodel,aspectwasconvertedtoalineartermbycalculatingthe differenceofsiteaspectfromtruesouth(~185 °innorthWalesin1997).Asasimple estimateofthelengthofthe Aricia growingseason,weusedthemonthlythermal modelstoestimatetheannualnumberofdaydegrees>10 °Cateachsite,basedonits aspectandaltitude.Thisgivesameasureofthethermal“developmenttime”available to A. agestis withineachhabitatpatch.

Weusedlogisticregression(Norusis1993)totestwhetherthethermalenvironment differedsignificantlybetweenunivoltineandbivoltinepopulations,andtocalculatethe probabilityofapopulationbeingbivoltine(ratherthanunivoltine).

Connectivity

Weestimatedlikelyrelativelevelsofimmigrationtoeachhabitatpatchbycalculating connectivity( Si)(Hanski1994,1999;Moilanen&Nieminen2002).Connectivityoffocal patch idependsonitsdistance fromallother(source)patches( j),theareaofeach sourcepatch,andthedispersalrateofthespeciesinquestion.Connectivityforpatch i

(Si) isdefinedas:

10 αdij b Si = ∑e Aj j where αdescribeshowratesofdispersaldeclinewithincreasingdistance(basedona

Cauchydistributionwith α=3;seeShaw1995;Wilson et al . 2002); dij isthedistanceto patch i fromeachsourcepatch j (where i ≠ j );and Ajistheareaofeachpatch j.Source populationsizescaleswithpatcharea,andemigrationratescaleswithpatchareatothe power b(setto0.5,asanapproximatedescriptionofhowbutterflypercapita emigrationratedeclineswithincreasingpatcharea;Thomas&Hanski1997;Moilanen

&Nieminen2002).Foreachpatch,wecalculated Sitoall A. agestis populations;i.e.,the potentialrateofimmigrationfromallotherpopulations.However,weareprimarily interestedinthe relative ratesofgeneflow(andcolonizationpotential)frombivoltine andunivoltinesourcepopulations,ratherthantheoverallimmigrationrate.To estimatethis,wecalculatedthedifferencebetween Sicalculatedi)toallbivoltine populations,andii)toallunivoltinepopulationsthatexistedduringthesurveyperiod

(connectivitydifference).Inanetwork,somehabitatpatchescouldbeemptyina particularsurveyperiod,butmighthavebeenoccupiedinapreviousyear,atwhich timepopulationsinthemcouldhavecontributedtogeneflow.Therefore,wealso calculatedasecondtermforthermalconnectivitydifference,basedonthethermal characteristicsofeachhabitatpatchinthelandscape(regardlessofwhetherthehabitat wasoccupiedduringthesurveyperiod).Forthissecondmeasure,wefirstcalculated whethereachpatchwouldbeexpectedtofavorbivoltine(“warmpatches”)or univoltine(“coolpatches”)populationsusingourlogisticregressionmodelthatrelated

11 voltinismtypetohabitatthermalcharacteristics(seeresults).Foreachpatch,wethen subtracteditsconnectivitytoall“coolpatches”fromitsconnectivitytoall“warm patches.”

Metapopulation modeling

Thespatiallyrealistic“incidencefunction”metapopulationmodel(IFM;Hanski1994,

1999)wasusedtoestimaterelativepersistencetimesofmetapopulationsof A. agestis in northWales.IFMparametersrelatingextinctionratetopatcharea,andcolonization ratetopatchconnectivity,wereestimatedusingstandardtechniques(Moilanen1999; seeappendixmaterial).Fourteennetworkscontainingoneormorepatchesofsuitable habitatweredefined(Fig1a),eachseparatedbymorethan3kmofunsuitablehabitat

(Wilsonetal.2002).Toestimaterelativemetapopulationpersistencetimes,100IFM simulationsofupto200generationswereiteratedforeachhabitatnetwork.Patch occupancywassetto100%inthefirstyearofeachsimulation,inordertocompare persistencetimesofnetworksthatwereoccupiedandunoccupiedby A. agestis during thesurvey.

Population Genetic Structure

Butterflysampleswerecollectedfrom26localitiesacrosstheentiresuitableareain

NorthWalesin1999and2000(Figure2).Localitieswithbivoltinepopulationswere

(codesinparentheses):BwrddArthur(BA),Mariandyrys(MD),Quarry(PQ),

GreatOrme(GO),MynyddPenygareg(MP),Penybont(PYB),Llangwstenin(LN),

BrynEuryn(BE),MarleHallwood(MHW),Terfyn(TF),PenyCorddynBach(PCB),

12 MynyddMarian(MM),BrynMeiriadog(BM),BrynCefn(BC),andGraigTremeirchion

(GT).Localitieswithunivoltinepopulationswere:GraigFawr(GF),OchryFoel(OF),

GopHill(GH),Lixwm(LX),Loggerheads(LOG),CefnMawr(CF),Aberduna(AB),

BurleyHillQuarry(BHQ),PistyllGwyn(PG),Eryrys(EYS),Perthichweru(PW),and

CastleWoods(CW).Samplesizesofatleastthirtyindividualsweresought.However, inafewinstancesthisproveddifficultor,inthecaseofverysmallpopulations,was deemedundesirable.Sampleswereheavilymalebiasedtominimizeanypotential impactonthepopulations.

Butterfliesweresnapfrozeninliquidnitrogeninthefield,andthenstoredat–80 oC.

Butterflieswerehomogenizedandpreparedforelectrophoresisbythemethods describedbyWynneandBrookes(1992)usinghalfthethoraxandabdomenin250 lof extractionbuffer.

Allozymevariationwasassessedusingcelluloseacetateelectrophoresis(Helena

LaboratoriesseeWynne et al .,1992).Atotalof24enzymes(representing approximately31putativeloci)werescreened(atleast10individualsperlocus)for polymorphism.Thesewere:adenylatekinase(AK;2.7.4.3),aconitatehydratase(ACON;

EC4.2.1.3),alanineaminotransferase(GPT;EC2.6.1.2),alcoholdehydrogenase(ADH;

EC1.1.1.1),diaphorase(DIA;EC1.6),fumaratehydratase(FUM;EC4.2.1.2),glucose dehydrogenase(GLDH;EC1.1.1.47),glutamateoxaloacetatetransaminase(GOT;EC

2.6.1.1),glucose6phosphatedehydrogenase(G6PD;EC1.1.1.49),glycerol3 phosphatedehydrogenase( αGPD;EC1.1.1.8),hexokinase(HK;EC2.7.1.1), b

13 hydroxybutaratedehydrogenase(HBDH;EC1.1.1.30),isocitratedehydrogenase(IDH;

EC1.1.1.42),lactatedehydrogenase(LDH;EC1.1.1.27),malatedehydrogenase(MDH;

EC1.1.1.37),malicenzyme(ME;EC1.1.1.40),mannosephosphateisomerase(MPI;EC

5.3.1.8),peptidases(PEPAandPEPD,usingsubstratesleucylglycineandphenyl alaninerespectively)(PEP;EC3.4.11),phosphoglucoseisomerase(PGI;EC5.3.1.9),3 phosphoglyceratedehydrogenase(3PGD:EC?SeeMalletetal.1993,fordetails),6 phosphogluconatedehydrogenase(6PGD;EC1.1.1.44),phosphoglucomutase(PGM;EC

2.7.5.1),andsorbitoldehydrogenase(SORDH;1.1.1.14).Therunningbuffersusedwere

50mMTriscitrate,pH7.8(forACON,ADH,DIA, αGPD,IDH,3PGD,6PGDand

SORDH),100mMTriscitrate,pH8.2(forAK,GPT,FUM,GOT,G6PDH,HK,HBDH,

MDH,andME)and25mMTrisglycine,pH8.5(forMPI,PEPA,PEPD,PGIandPGM).

Formostenzymesthedurationoftherunwas30minutesataconstantvoltageof200V.

TheexceptionswerePGIandPGM,whichwererunfor40minutes(visualizedtogether asadoublestain).StainingrecipeswereuseddirectlyormodifiedfromRichardsonet al.(1986)andMalletetal.(1993).Ofthelocirun,nineweremonomorphic( Ak-1, Ak-2,

Fum, Gpt, 6pgd, Dia-1, Ldh-2, Mdh-1, and PepA )andonlysevengavescorable polymorphisms( Pgi, Pgm, Got-2, Mdh-2, Me, G6pd and αGpd ).

Allelefrequencies,deviationsfromHardyWeinbergequilibriumexpectationand testsforgeneticdifferentiationwerecalculatedusingGENEPOP3.2a(Raymond&

Rousset1995).Fstatistics(Wright,1978)werealsocalculatedusingthisprogramusing

Weir&Cockerham’s(1984)method.Pairwise FST comparisonsweretransformedtoan estimateof Nm andusedasameasureofgeneticsimilaritytoassessisolationby

14 distance(Slatkin1993).Slatkin(1993)showedthat FST ,transformedinto Nm ( Mˆ in

Slatkin'sterminology),hasarelativelysimplerelationshipwithgeographicaldistance underavarietyofassumptionsaboutgeneflowandpopulationhistory.Afewpairwise

FST valuesbetweenparticularlycloseand/orwellconnected Aricia populationsinnorth

Waleswereslightlynegative.Toavoidlosingthesedatapoints,andthusbiasingthe dataset,asmallquantityof FST (0.01)wasaddedtoallpairwisevaluesbefore transformationof FST to Nm .

Results

Distribution

InmainlandnorthWales,bivoltinepopulationswerefoundin87habitatpatches,and univoltinepopulationsin68habitatpatchesinthemainlandstudyregion(Figure1).

Populationgeneticsamplesweretakenfromafurtherthreebivoltinepopulationson theislandof(Figure1).Thefirstflightperiodofbivoltine Aricia stretched fromlateApriltoearlyJune,peakingattheendofMay;thesecondflightperiod extendedfrommidJulytoearlySeptember,peakinginmidAugust.Theflightperiod ofunivoltine Aricia extendedfromearlyJunetomidAugust,peakingattheendofJune

(Figure1b).

Thermal Model

Monthlydaydegrees>10 °Cwerealwaysnegativelyrelatedtoaspect(degrees differencefromsouth)andaltitude(Table1).Theregressioncoefficientsforaspectand

15 altitudeweresignificant( P <0.05)foreightandfivemonthsrespectively.Theywere rarelysignificantduringthewintermonths,whenfewerdataloggerswereusedandthe numberofdaydegrees>10 °Cweremuchsmaller.Allmonthlyequationswereusedto estimatetheannualthermalenvironmentatallhabitatpatchesacrossnorthWales:the nonsignificant,winterequationshavearelativelyminoreffectonoverallestimates,as theconstantsandcoefficientsforthesemonthsaresmall(Table1).

Themodeledthermalenvironmentwascoolerinsiteswhereunivoltinepopulations occurredthanwherebivoltinepopulationsoccurred.Logisticregressionusingthe thermalmodeldifferentiatedsignificantlybetweenbivoltineandunivoltinepopulations

(Table2).Usingthethermalmodel,patchesreceivingmorethan782daydegreesin excessof10 °Cperyearwereexpectedtosupportbivoltinepopulations,andcooler patcheswereexpectedtosupportunivoltinepopulations.Modeledthermal environmentmisclassifiedvoltinismat17(11%)populations(outof155).Misclassified populationswerelocatedinnetworks1,2,6,9and10(Figure1),soitisunlikelythat latitudeorproximitytothecoastaffectedresults.Inparticular,thethermalmodel misclassifiedfiveunivoltinepopulationsinnetwork6,andfourunivoltinepopulations innetwork10:thesetwohabitatnetworkswereatmuchloweraltitudesthanother univoltinepopulations,andhadanumberofsteep,southfacingslopes.

Densitywithinpopulationswasalsorelatedtothermalenvironment.Ageneralized linearmodel(GLM)oflog e (populationdensity)againstthermalenvironmentand numberofgenerationsperyear(R 2=0.17,F 3,40 =2.66, P=0.06)foundsignificanteffects

16 ofthermalenvironment(F 1,40 =6.62, P=0.01),voltinism(F 1,40 =5.04, P=0.03),andof theirinteraction(F 1,40 =7.20, P=0.01).Theinteractiontermissignificantbecause populationdensityinbivoltinepopulationsdecreasedatcoolertemperatures,whereas thedensityinunivoltinepopulationsincreasedincoolerenvironments(Figure3).

Furthermore,densityinunivoltinepopulationswaspositivelyrelatedtovegetation height(usingSpearman’srankcorrelationbecausevegetationheightwasrecordedona categoricalscale;n=20,r s =0.62, P =0.03),againsuggestinghigherpopulationdensity incoolerenvironments(tallervegetationislikelytoresultinlowerdaydegree accumulation;Thomas1983b).

Alternativemodelsusingeitherpopulationconnectivitydifference orthermal connectivitydifferenceinthelogisticregressionmodelexplainedmuchmoreofthe observedvoltinismpatternthandidmodeledthermalenvironmentalone(Table2).

Populationconnectivitydifference,calculatedtoestimatethepotentialforgeneflow frombivoltineandunivoltineforms,discriminatedbetweenallunivoltineandbivoltine populations(Figure4),suchthatthermalenvironmentandthermalconnectivity differenceceasedtobesignificantinastepwisemodel.Thus,somepatchesthat appearedtofavoronevoltinismformonthebasisofthelocalthermalenvironment wereoccupiedbytheother,probablybecauseofimmigrationbytheunfavoredform.

Basedonthethermalmodel,wecalculatedtheareaineachhabitatnetworkthatwas suitableforeachform(<782daydegrees>10 °Cforunivoltine,>782forbivoltine)(Table

3).Nonetworkwasoccupiedbythewrongform,butseveralnetworkscontained relativelylargeareasofhabitatsuitablefortheotherform.Forexample,network6

17 containsthethirdlargestquantityofhabitatthermallysuitableforthebivoltineform, butisoccupiedonlybytheunivoltineform.

Metapopulation simulations

Incidencefunctionmodelingpredictedthatmetapopulationsinonlythreehabitat networkswouldpersistindefinitely(Table3,Figure5).Twoofthepersistentnetworks supportedbivoltinebutterflies,andonepersistentnetworksupportedunivoltine butterflies(1,2and9respectively;Fig1).Allothernetworksoccupiedby A. agestis had medianestimatedtimestoextinctionofbetween2and84years,shorterthanthe modeledtimetoextinction(median110generations)ofthemostisolatedunoccupied network(Table3).Metapopulationsimulationsappeartosupporttheconclusionof

Wilsonetal.(2002),basedonhabitatnetworksizeandconfiguration,thatsomesmall butsurviving A. agestis metapopulationsmayhaveperiodicallybecomeextinct,onlyto berecolonizedfromthelarge,persistentmetapopulations.

Genetic Variation

AllelefrequenciesforthesevenpolymorphiclociaregivenintheAppendix.Testsfor deviationsfromHardyWeinbergequilibriumrevealedonly8significantdeviations

(P<.05)outofatotalof150locusxpopulationtestsperformed.Thisissimilartothe numberofsignificantresultsexpectedbychancealone(7.5expected)andthesignificant testswerenotassociatedwithanyparticularlocusorpopulation(seeappendix material).Overall,theresultsdonotindicatedeviationfromrandommatingwithin populations.

18 Population Genetic Structure in North Wales

Nofixeddifferenceswerefoundbetweenunivoltineandbivoltinepopulationsatanyof thesevenpolymorphiclociinnorthWales.Howevertherewassignificantvariationof allelefrequencyamongallpopulationsinnorthWales( FST =0.093, P<<0.001,Table4).

Geneticdifferentiationwithinvoltinismtypeswasalsosignificant( FST =0.088, P<<

0.001and FST =0.064, P<<0.001amongstbivoltineandunivoltinepopulations respectively,Table4).Pairwisetestsbetweenpopulationsrevealedthatthis differentiationwaswidespread;only16outof325comparisonswerenotsignificant(at

P< 0.05).

Geneticdistancebetweenpairsofpopulations(14univoltine,12bivoltine)declined withincreasinggeographicdistance(Figure6).InathreewayManteltestwith20000 randomizedmatrices,geneticsimilarity[log( Nm +1)]wassignificantly,andnegatively, relatedtogeographicdistance[log(km+1)]evenaftercontrollingforvoltinism

(correlationcoefficientg=0.29, P <0.001),butgeneticsimilaritywasunrelatedto voltinismaftercontrollingforgeographicdistance(g=0.09, P=0.25).Geographic distanceisthereforethemostimportantdeterminantofgeneticstructurewithin voltinismtypes,andhasasimilareffectineach,butitdoesnotcontrolgenetic differentiationbetweenvoltinismtypes(theslopeisweaklyintheoppositedirection;

Figure6),suggestingthatgeneflowbetweenvoltinismtypesmaybeverylow.

Averageheterozygosity,overallpolymorphicloci,variedbetween0.245and0.354for bivoltineandbetween0.266and0.354forunivoltinepopulations.Therewasno

19 detectablerelationshipbetweenwithinpopulationheterozygosityandthedegreeto whichpopulationswereconnected( Si)tothepopulationnetworkofthesamevoltinism type(Spearman’sRank rs=0.509, P>0.05and rs=0.490, P>0.05forbivoltineand univoltinepopulationsrespectively).

Geneticdifferentiationofeachpopulationfromthewithinvoltinismnetworkmean allelefrequencywasagaincalculatedusingpairwise Nm derivedfrom FST .This measurewassignificantlycorrelatedwithconnectivityforbivoltinepopulations

(Spearman’sRank rs=0.827, P<0.01)andthenonsignificanttrendforunivoltine populationsisinthesamedirection( rs=0.469, P>0.05)(Figure7).Thus,itwould appearthatdriftduringcolonizationeventsorinsmallestablishedpopulations,whilst insufficienttogeneratedetectablelossesofheterozygosity,issufficienttodisturballele frequenciesinisolatedpopulations.

Geneticdifferentiationwithinthethreenetworksconsideredpersistentby metapopulationmodelingwaslowbutsignificant:Creuddynpeninsula(network1;

GO,MP,MHW,PYB,LNandBE), FST =.0240( P<<0.0001);DulasValley(network2;

MM,TFandPCB), FST =.043( P=0.0446);theClwydianHills(network9;LOG,CF,AB,

PG,BHQ,EYSandPW), FST =.0504( P<<0.0001).Thuspopulationsubstructureis evidentevenwellconnectednetworksoflocalpopulations.Wealsosampledthree populations(GF,OFandGH)fromnetwork6,whichhadapredictedmetapopulation survivalof43%after100generations(Figure5):differentiationamongthese populationswasagainlowbutsignificant( FST= .0296, P<<0.0001).

20 Discussion

The spatial scale of adaptation

Ourresultsindicatethatthespatialpopulationdynamicsofpatchilydistributedspecies canplayamajorroleindeterminingpatternsofbothadaptiveand“neutral”genetic variation,atlandscapescalesthataremuchlargerthanexpectedfromdispersal distancesachievedbymostindividuals.Despitetherelativelyshortdistancesofmost individualmovements,rarelongdistancedispersaleventshavethecapacityto dominatepatternsofgeneticvariationatbroadscales,givensufficientturnoverof populationsandmetapopulations.

Aricia agestis appearstoshow“correct”adaptationtovariationintheenvironmentin

89%ofthehabitatpatchesinthelandscapestudied:itconvertsasmooth,but heterogeneous,thermalgradientintoabinaryresponseofeitheroneortwogenerations peryear.Inotherwords,itachievesalternativeadaptivepeaks.Yetitisnot100% successfulinachievingthe“correct”localadaptationineveryhabitat,andmost“local” adaptationsalmostcertainlyarisenotbecauseof in situ evolutionwithineachpatchbut becausethepatchofhabitatwascolonizedbyaphenotypethatalreadyhadappropriate adaptations.

Itisapparentthatvariationingenerationnumber(voltinism)in A. agestis butterflies isanadaptationtothethermalenvironment,asinmanyothernortherntemperate insects.Thelarvaeofbothvoltinismtypeshavesimilarminimumtemperature requirementsabovewhichdevelopmentispossible(A.S.Burke et al .unpublished),so

21 the‘best’voltinismstrategywilldependonthe‘growingseason’availableina particularsite(measuredasdaydegreesavailablefordevelopment).Abivoltine(two generationperyear)strategywillbemoresuccessfulinwarm,lowelevationand/or southfacingconditionsandaunivoltine(onegenerationperyear)strategymore successfulincool,highelevationand/ornorthfacingslopes.Thereduceddensityof bivoltinebutterfliesinrelativelycoolhabitats,andthereduceddensityofunivoltine butterfliesinrelativelywarmhabitatssuggeststhatbothvoltinismtypes“struggle”in thermallymarginalenvironments.

Inheterogeneousconditions,amixtureofthetwovoltinismsmightbeexpectedif(a) lifecycletimingwassolelyaphenotypicresponsetolocalenvironmentalconditionsor

(b)localpopulationswereindependentlyadaptedtoeachlocalhabitatpatch.Thefirst oftheseexplanationsisnotplausible:avarietyofmicroclimatesoccurwithinevery singlehabitatpatch,andpatchesdifferinthermalenvironmentwithineachpatch network,sowewouldexpectamixtureofvoltinismstrategiestobeobservedwithin mostpatchesandpatchnetworks.Thebutterfliesonlyeverachievedasinglevoltinism strategywithineachpatchandnetwork.Laboratoryrearingrevealedgeneticallybased differencesinphotoperiodresponsesofunivoltineandbivoltinecaterpillars determiningwhethertheyenterdiapauseforthewinter,orcontinuetodevelopdirectly toproduceasecondgenerationofadultbutterflieslaterinthesamesummer(A.S.Burke et al .,unpublished).Weconcludethatgeneticdifferencesamongpopulationsare responsibleforthegeographicpatternofgenerationnumbersshowninFigure1.

22 Atapatchlevel,the“wrong”voltinismtypeinabout11%oflocalpopulations,as wellasreducedpopulationdensityinpatcheswithintermediatethermalenvironments, suggeststhatlocaladaptationisincomplete.Forexample,thenorthfacingslopeofGO

(Fig2)ispredictedtobemostsuitableforaunivoltinepopulationonthebasisof microclimate,whereasbivoltinebutterfliesactuallyoccupythesite(atlowdensity).

Similarly,butterfliesatGFareunivoltine(atlowdensity)whenbivoltinismisexpected.

Incontrast,allnetworksofpatchescontainthevoltinismtypethatisadaptive,basedon theamountofeachthermalenvironmentthatisavailableacrossthewholenetwork.

Thespatialscaleandarrangementofhabitatpatcheswithinthelandscapearelikelyto beimportantdeterminantsofthetraitsthatpredominate(Endler,1992).

Understandingthescaleofadaptationrequiresconsiderationofthepopulation dynamicsaswellasthedispersalbehaviorof A. agestis .

Metapopulation dynamics

Manyspeciesoccurasmetapopulationswherebyentirepopulationsystemspersist throughadynamicequilibriumbetweenextinctionandrecolonization(Hanski,1991;

1999;ThomasandHanski,1997).Patternsofpatchandnetworkoccupancy,observed localandnetworklevelextinctions(Wilson et. al .,2002)andmetapopulation simulationssuggestthatturnoveriscommonin A. agestis metapopulations innorth

Wales.Simulationsandobservationssuggestthatmetapopulationsinsmallpatch networksareextinctionprone,whereasgroupsoflargehabitatpatchesintheCreuddyn peninsula,DulasValleyandtheClwydianHills(Figure1)formextinctionresistant areasimportantforregionalpersistence. 23 Thepopulationgeneticstructurededucedfromallozymeanalysisisentirely consistentwiththispopulationdynamicinterpretation.Populationsperipheraltopatch networksaregeneticallymoredifferentiatedfromtherestofthenetwork,presumably becauseofgeneticdriftand/orfoundereffects,thancentralandwellconnected populations.Foundereventsarelikelytocontributetothesignificant FST valuesfound withineachpatchnetwork(Taneyhilletal.2003).However,isolatedpopulationsdid nothavesignificantlyreducedheterozygosity,whichinitiallyseemssurprisingbecause manyofthesmallandisolatedpopulationsinnorthWalesmusthaveloweffective populationsizes( Ne~<50).Thisisprobablyinpartbecauseheterozygosityis relativelyinsensitivetomildpopulationbottlenecks(Brookesetal.1997),butisalso consistentwithmetapopulationinterpretation:geneticvariationwithinindividual populationsisnotexpectedtodeclineovermanygenerationsbecauseofthehigh populationturnoverrates(Whitlock,1999).Inaconservationcontext,itisusefulto notethatareasofhighpopulationpersistencecouldbededucedfromallozymedatavia studiesof FST ,butnotofheterozygosity.

Giventhepopulationdynamicsofthesystem,itisnotsurprising,then,thatadaptation appearstotakeplaceatthescaleofpatchnetworks,ratherthanindividualpatches.

Localpopulationswiththe"wrong"voltinismapparentlybecomeextinctfasterthan theyachieveaswitchofadaptivepeaktothelocally"correct"voltinismtype.Following localextinction,thepopulationislikelytobereplacedbycolonistsfromthecommoner habitattypewithinthelandscape,eventhoughtheypossessthelocallyincorrect adaptation.Becauseonlyonetypeofvoltinismispresentwithineachnetwork,and

24 localpopulationsareextinctionprone,the“correctadaptation”withineachofthe remaining89%ofpatchesalsoowesmuchmoretopriorcolonizationbyanappropriate phenotypethanitdoestolocaladaptationoncethepopulationisfounded(seeHanski

&Singer2001).

ItislikelythataverysmallfractionofallA. agestis dispersaleventsisresponsiblefor thenetworklevelpatternsofvoltinismobserved.Colonizationofemptypatchesand networks,andmovementsbetweenexistingpopulationsaredistancedependent.Ina markreleaserecapturestudy,themaximumrecordedmovementwaslessthan1km

(Wilson&Thomas2002).Evencorrectingrawdispersaldatabecauseofthefinite natureofthemarkreleaserecapturestudyarea(Wilson&Thomas2002)producesan estimateofonly0.0004%ofbutterfliesmovingthe3.6kmbetweenthehabitatnetworks nearesttooneanotherinthecurrentstudy.Thus,onlytinyfractionsofindividuals probablymovebetweenhabitatnetworks,butthosethatdoappeartoexertan importanteffectontheobserveddistributionofgenotypicandphenotypicvariation.

Reservoirs of neutral and adaptive variation

Networkleveladaptationwouldappeartobesufficienttoexplainpatternsof adaptationinthissystem.But,thebutterfly’spopulationdynamicssuggestthatlong termpersistenceof A. agestis inN.Walesdependsonthreekeynetworks(1,2,and9, andperhapsafourthinAnglesey,whichwasnotmodeled–seeFigures1,5).We thereforesuggestthatadaptationsarelikelytobemaintainedatanevenlargerspatial scale,againbecauseoftheprocessofcolonizationandextinction.Metapopulationsin

25 smallnetworkshaveashortpredictedtimestoextinction(Figure5),and A. agestis has beenobservedtobecomeextinctfromtwonetworksinrecentyears(networks13,14;

Fig1).Metapopulationsinsmallbutsurvivingnetworksprobablyowetheirexistence toproximitytothemostpersistentnetworksinthelandscape,throughveryrare,long distancedispersalevents(Wilson et al .,2002).Ofthepersistentsystems,theCreuddyn peninsula(network1)andDulasValley(network2)areclearlydominatedbythermal environmentssuitableforbivoltine A. agestis ,whereastheClwydianHills(network9) containpredominantlymuchcoolerhabitat,suitableforunivoltineforms.Ultimately, thedistributionoftheadaptivevariationinnorthWalesseemstostemfromthe persistenceofthesekeysystemsandthemetapopulationscaleadaptationsappropriate withinthem.Large,wellconnectedandpersistentsystemsapparentlyalsoactasthe longtermrepositoryofsupposedlyneutralallozymevariationwithintheregion,with smallerandmoreisolatedmetapopulationscontainingincreasinglydivergentallozyme frequencies.Inthelongrun,anynewvariationthatariseswithinasmaller metapopulationislikelytobelost,andtheemptypatchnetworkwillultimatelybe recolonizedfromoneofthepersistentpopulationsystems.

Inthispatchylandscape,extinctionprone,smallmetapopulationsmayswitch voltinismtypefromtimetotime,dependingontheoriginofrecolonists.Forexample, network6iscurrentlypopulatedbyunivoltineforms,andcoolhabitatsappropriatefor univoltineformsareindeedcommonerthanwarmhabitatswithinthenetwork.

Nonetheless,network6containsmorewarm“bivoltinetype”habitatthananyofthe othernetworksexceptfor1and2.Ifthecurrentmetapopulationbecameextinct(which

26 modelssuggestmightoccurontheorderofonceeveryhundredyears),thenetwork couldberecolonizedbyeithervoltinismtype:thenearestpotentialcolonistswouldbe innetworks3and5,whicharebothcurrentlybivoltine(Figure1).

Ourconclusionsareanalogoustosourcesinkandrangeboundaryideasaboutlimits toadaptation(e.g.,Holt1996;KirkpatrickandBarton1997),butinanonequilibrium system.Inanequilibriumcontext,rangeandadaptiveboundarymodelsusuallyimply thatasymmetricgeneflowfrombetter(coretype)toworse(marginaltype)habitatscan preventtheestablishmentofadaptationstothemarginalenvironmentbecauseofgene swamping.Thisismostlikelywhenlevelsofmovementarehigh;incontrast,per generationratesof A. agestis movementseemrathertoolow.Butinmetapopulation systemswhereentirepatchnetworksbecomeextinctandarerecolonizedfromcore areas,theeffectiverateofmigration/geneflowmaybeordersofmagnitudegreater thanexpectedfromongoingmeasuresof“normal”dispersal.Becausemanyother speciesalsohavelandscapescalepopulationdynamicsandpatternsofpersistence

(Hanski1999),keyareaswithindistributionsmayoftenholdthekeytothemaintenance ofbothadaptiveandneutraltraits.Thisevolutionary/populationdynamicmodelis similartoascaleddown(over10sofkilometersand100sofyears;forthesebutterflies) versionoftheconceptualframeworkusedtoexplaingeneticpatternswithinspecies thatexperiencemajordistributionshiftsinresponsetoglacialinterglacialcycles(over

1000sofkilometers,and10000sofyears).Insuchsystems,itiscommonplacetoreferto

“refugia”thatretainandaccumulateneutralandadaptivevariationwithinpersistent partsofthegeographicdistribution(e.g.,Hewitt1993,1996,1999);refugiaarethe

27 equivalentofthepersistentmetapopulationswithinnorthWales.Areasofpopulation persistencewithingenerallyunstablepopulationsystemsmaydominatepatternsof adaptationoversurprisinglylargeareas.

Acknowledgments

WethankRobWhitehead,JamesBaker,DavidBlakeley,MarkLineham,Rosa

Menéndez,AtteMoilanenforassistancewithfieldworkandanalysis,andtheNERC

EDGEprogramforfinancialsupport.

Literature Cited

Aagaard,K.,Hindar,K.,Pullin,A.S.,James,C.H.,Hammerstedt,O.,Balstad,T.&

Hanseen,O.2002.Phylogeneticrelationshipsinbrownargusbutterflies

(Lepidoptera:Lycaenidae: Aricia )fromnorthwesternEurope.BiologicalJournalof

theLinneanSociety75(1):2737.

Barton,N.H.&Whitlock,M.C.1997.Theevolutionofmetapopulations.In:

MetapopulationBiology:Ecology,Genetics,andEvolution(I.Hanski&M.E.Gilpin

Eds)pp.183210.AcademicPress,SanDiego.

Brookes,M.I.,Graneau,Y.A.,King,P.,Mallet,J.L.B.,Rose,O.C.&Thomas,C.D.(1997)

Thegeneticconsequencesofartificialintroductionsandnaturalcolonizationsinthe

Britishbutterfly Plebejus argus .ConservationBiology11:648661.

Cowley,M.J.R.,C.D.Thomas,D.B.Roy,R.J.Wilson,J.L.LeónCortés,D.Gutiérrez,

C.R.Bulman,R.M.Quinn,D.Moss,&K.J.Gaston.2001a . Density–distribution 28 relationshipsinBritishbutterfliesI:theeffectofmobilityandspatialscale.Journalof

AnimalEcology70:410425.

Cowley,M.J.R.,C.D.Thomas,R.J.Wilson,J.L.LeónCortés,D.Gutiérrez,andC.R.

Bulman.2001b. ThedensityanddistributionofBritishbutterfliesII:anassessmentof

mechanisms.JournalofAnimalEcology70:426441.

Endler,J.A.1992.Geneticheterogeneityandecology.In:GenesinEcology(R.J.Berry,

T.J.Crawford&G.M.HewittEds).Blackwell,Oxford,pp534.

Ford,E.B.1945.Butterflies.Collins,London.

Hanski,I.1991.Singlespeciesmetapopulationdynamics.In:Metapopulation

Dynamics:EmpiricalandTheoreticalInvestigations(M.Gilpin&I.HanskiEds),pp

17–38.AcademicPress,London.

Hanski,I.1994.Apracticalmodelofmetapopulationdynamics. JournalofAnimal

Ecology63:151162.

Hanski,I.1999.MetapopulationEcology.OxfordUniversityPress,Oxford.

Hanski,I.&Gilpin,M.E.(Eds)1997.MetapopulationDynamics:Ecology,Geneticsand

Evolution.AcademicPress,London.

Hanski,I.&Ovaskainen,O.2000.Themetapopulationcapacityofafragmented

landscape.Nature404:755758.

29 HanskiI.&SingerM.C.2001.Extinctioncolonizationdynamicsandhostplantchoice

inbutterflymetapopulations.AmericanNaturalist158:341353.

Held,C.&Spieth,H.R.1999.FirstevidenceofpupaldiapauseinPierisbrassicaeL.:the

evolutionoflocaladaptedness.JournalofInsectPhysiology45:587598.

Hewitt,G.M.1993Postglacialdistributionandspeciessubstructure:lessonsfrom

pollen,insectsandhybridzones.In Evolutionary patterns and processes (eds.D.R.

Lees&D.Edwards).TheLinneanSocietyofLondonSymposiumSeries14: 97

123.

Hewitt,G.M.1996Somegeneticconsequencesoficeages,andtheirroleindivergence

andspeciation.BiologicalJournaloftheLinneanSociety58: 247276.

Hewitt,G.M.1999PostglacialrecolonizationofEuropeanbiota.BiologicalJournalof

theLinneanSociety68: 87112.

Higley,L.G.,Pedigo,L.P.&Ostlie,K.R.(1986)DEGDAY:aprogramforcalculating

degreedays,andassumptionsbehindthedegreedayapproach.Environmental

Entomology,15:9991016.

HøeghGuldberg,O.1966.NorthernEuropeangroupsof Aricia allous G.Hb:their

variabilityandrelationshipto A. agestis (Schiff.)NaturaJutland13:9116.

Holt,R.D.(1996)Adaptiveevolutioninsourcesinkenvironments:directandindirect

effectsofdensitydependenceonnicheevolution.Oikos75:182192.

30 Jarvis,F.V.L.1966.Thegenus Aricia (Lep.Rhopalocera)inBritain.Proc.Transactionsof

theSouthLondonEntomologyandNaturalHistorySociety1966:3760

Kirkpatrick,M.&BartonN.H.(1997)Evolutionofaspecies’range.American

Naturalist150:123.

Lenormand,T.(2002)Geneflowandthelimitstonaturalselection.TrendsinEcology

andEvolution17:183189.

Mallet,J.(2001)GeneFlow.In:InsectMovement:MechanismsandConsequences(I.P.

Woiwod,D.R.Reynolds&C.D.ThomasEds),pp337360.CABIPublishing,

Wallingford,Oxon.

Mallet,J.&Joron,M.1999.Evolutionofdiversityinwarningcolorandmimicry:

polymorphisms,shiftingbalanceandspeciation.AnnualReviewofEcologyand

Systematics30:201233.

Mallet,J.,Korman,A.,Heckel,D.G.&King,P.1993.Biochemicalgeneticsof Heliothis

and Helicoverpa (Lepidoptera:Noctuidae)andevidenceforafoundereventin

Helicoverpa zea .Genetics86(2):189197.

Moilanen,A.1999.Patchoccupancymodelsofmetapopulationdynamics:efficient

parameterestimationusingimplicitstatisticalinference.Ecology80:10311043.

Moilanen,A.,andNieminen,M.2002.Simpleconnectivitymeasuresfor

metapopulationstudies.Ecology 83:11311145.

31 Nagelkerke,N.J.D.1991.Anoteonageneraldefinitionofthecoefficientof

determination.Biometrika78:691692.

Nei,M.1972.Geneticdistancebetweenpopulations.AmericanNaturalist,106:283292.

Norusis,M.J.1993SPSS forWindows TM AdvancedStatisticsRelease6.0.SPSSInc.,

Chicago,USA.

Pollard,E.&Yates,T.J.1993.MonitoringButterfliesforConservation.Chapmanand

Hall,London.

Raymond,M&Rousset,F.1995.GENEPOP(version1.2):populationgeneticssoftware

forexacttestsandecumenicism.JournalofHeredity86:248249.

Richardson,B.J.,Baverstock,P.R.andAdams,M.1986.AllozymeElectrophoresis.

AcademicPress,Sydney,pp410.

Simon,C.,Frati,F.,Beckenback,A.,Crespi.,B.J.,Lui.,H.andFlook,P.1994.Evolution,

weightingandphylogeneticutilityofmitochondrialgenesequencesanda

compilationofconservedpolymerasechainreactionprimers.Annalsofthe

EntomologicalSocietyofAmerica87:651701.

Shaw,M.W.1995.Simulationofpopulationexpansionandspatialpatternwhen

individualdispersaldistributionsdonotdeclineexponentiallywithdistance.

ProceedingsoftheRoyalSocietyofLondonSeriesB259:243248.

32 Singer,M.C.&Thomas,C.D.1996.Evolutionaryresponsesofabutterfly

metapopulationtohumanandclimatecausedenvironmentalvariation.American

Naturalist 148:S9S39.

Slatkin,M.&Barton,N.H.1989.Acomparisonofthreeindirectmethodsofestimating

averagelevelsofgeneflow.Evolution43:13491368.

Slatkin,M.1993.Isolationbydistanceinequilibriunandnobequilibriumpopulations.

Evolution47(1):264179.

Taneyhill,D.E.,J.B.Mallet,I.Wynne,S.Burke,A.S.Pullin,R.J.Wilson,R.K.Butlin,

M.J.Hatcher,B.Shorrocks,andC.D.Thomas.2003.Estimatingratesofgeneflowin

endemicbutterflyraces:theeffectofmetapopulationdynamics.In:Genesinthe

Environment(R.S.Hails,J.E.Beringer&H.C.J.Godfray,eds).pp.325.Blackwell

Science,Oxford.

Thomas,C.D.&Hanski,I.1997.Butterflymetapopulations.In:MetapopulationBiology:

Ecology,Genetics,andEvolution(I.Hanski&M.E.GilpinEds)pp.359386.

AcademicPress,SanDiego.

Thomas,C.D.,Thomas,J.A.&Warren,M.S.1992.Distributionsofoccupiedandvacant

butterflyhabitatsinfragmentedlandscapes.Oecologia92:563567.

Thomas,J.A.1983a.Aquickmethodforestimatingbutterflynumbersduringsurveys.

BiologicalConservation 27:195211.

33 Thomas,J.A.1983b.Theecologyandconservationof Lysandra bellargus (Lepidoptera:

Lycaenidae)inBritain.JournalofAppliedEcology20:5983.

Tuda,M&Iwasa,Y.1998.Evolutionofcontestcompetitionanditseffectonhost

parasitoiddynamics.EvolutionaryEcology12:855870.

Wahlberg,N.,A.Moilanen,andI.Hanski.1996.Predictingtheoccurrenceof

endangeredspeciesinfragmentedlandscapes.Science273:15361538.

Walsh,S.P.,Metzger,D.A.,&Higuchi,R.1991.Chelex100asamediumforsimple

extractionofDNAforPCRbasedtypingfromforensicmaterial.BioTechniques10:

506513.

Weir,B.S.&Cockerham,C.C.1984.EstimatingFstatisticsfortheanalysisofpopulation

structure.Evolution,38:13581370.

Whitlock,M.C.1992.Temporalfluctuationsindemogrphicparametresandthegenetic

varianceamongpopulations.Evolution46(3):608615.

Whitlock,M.C.1999.Indirectmeasuresofgeneflowandmigration: FST ≠1/(4Nm+1).

Heredity82:117125.

Wilson,R.J.1999.Thespatiotemporaldynamicsofthreelepidopteranherbivoresof

Helianthemum chamaecistus .PhDthesis,UniversityofLeeds.

34 Wilson, R.J. & Thomas, C.D. 2002. Dispersal and the spatial dynamics of butterfly

populations. Pp. 257278 in: Dispersal Ecology (Ed. J. Bullock, R. Kenward & R.

Hails).BlackwellScience,Oxford.

Wilson,R.J.,Ellis,S.,Baker,J.S.,Lineham,M.E.,Whitehead,R.&Thomas,C.D.2002.

Largescalepatternsofdistributionandpersistenceattherangemarginsofa

butterfly.Ecology83(12):33573368.

Wright,S.1978.EvolutionandthegeneticsofPopulations,Vol4.Variabilitybetween

andamongnaturalpopulations.UniversityofChicagoPress,Chicago.

Wynne,I.R.&Brookes,C.P.1992.Adeviceforproducingmultipledeepfrozensamples

forallozymeelectrophoresis.In:GenesinEcology(R.J.Berry,T.J.Crawford&G.M.

HewittEds).Blackwell,Oxford,pp534.

Wynne,I.R.,Loxdale,H.D.&Brookes,C.P.1992.Useofacelluloseacetatesystemfor

allozymeelectrophoresis.In:GenesinEcology(R.J.Berry,T.J.Crawford&G.M.

HewittEds).Blackwell,Oxford,pp534.

35 Table1.Linearregressionsofmonthlydaydegrees>10°Cagainstaspectandaltitude.

Month n R2 F a(constant) b (aspect +) c (altitude ^)

Jan 10 0.57 4.70 NS 15.92 NS 0.043 NS 0.082 NS

Feb 10 0.63 6.03* 8.47 NS 0.020 NS 0.046 NS

Mar 8 0.94 38.18*** 49.06** 0.110** 0.250*

Apr 7 0.70 4.66 NS 102.54 NS 0.247 NS 0.381 NS

May 19 0.52 8.69** 165.38*** 0.281** 0.515*

Jun 19 0.42 5.88* 230.19*** 0.246* 0.541*

Jul 19 0.57 10.72** 324.84*** 0.429** 0.569*

Aug 19 0.55 12.14*** 320.59*** 0.437*** 0.507*

Sep 16 0.62 10.44** 207.86*** 0.502*** 0.306 NS

Oct 15 0.79 22.18*** 103.36*** 0.304*** 0.213 NS

Nov 14 0.76 17.30*** 17.15*** 0.072*** 0.021 NS

Dec 9 0.48 2.72 NS 5.13 NS 0.017 NS 0.024 NS

Notes:n=numberofdataloggerswithtwoyears’dataforeachmonth; + degrees differencefrom185; ^metresabovesealevel;significancelevelsNS P>0.05,* P<0.05,

** P<0.01,*** P<0.001.

36

Table2. Logisticregressionmodelsforthevoltinismof Aricia agestis populations,based on1.Modeledthermalenvironment,2Thermalconnectivitydifference(measuredto warmandcool habitats ),3.Populationconnectivitydifference(measuredtobivoltine andunivoltinebutterfly populations ).

Model 2LL # R2 Model DF Significance

Chi 2

1.Thermalenvironment + 98.76 0.70 113.78 1 <0.001

2.Thermalconnectivity 29.53 0.93 183.01 1 <0.001 difference ^

3.Populationconnectivity 0 1 212.54 1 <0.001 difference *

Notes:n=68univoltinepopulations,87bivoltinepopulations; # 2LLrepresentsmodel

–2log elikelihood;R 2calculatedasinNagelkerke(1991); +Thermalenvironmentis modeledannualdaydegreesabove10 °C; ^=(connectivitytopatchespredictedby model1tobebivoltine)–(connectivitytopatchespredictedtobeunivoltine); *=

(connectivitytobivoltinepopulations)–(connectivitytounivoltinepopulations).

37 Table3.Occupancystatus,thermalenvironmentandmodeledtimetometapopulation extinctionof A. agestis networksinnorthWales.

Network Status Area“warm” Area“cool” Mediangenerations

(ha) # (ha) # toextinction +

1 Bivoltine 201.4 5.3 >200

2 Bivoltine 92.6 1.9 >200

3 Bivoltine 1.3 0 5

4 Unoccupied 0.2 0 2

5 Bivoltine 5.8 0 12.5

6 Univoltine 9.0 35.5 83.5

7 Unoccupied 0.03 2.4 7

8 Univoltine 0.03 11.7 33.5

9 Univoltine 0.1 132.6 >200

10 Univoltine 0.5 0.7 4

11 Unoccupied 0.02 0.1 1

12 Univoltine 0 0.7 4

13 Unoccupied 0.01 2.0 7

14 Unoccupied 4.1 4.6 110

Notes: #Area“warm”hasmodeledthermalenvironment>782annualdaydegrees>

10 °C,area“cool”has<782daydegrees>10 °C. +From100IncidenceFunctionmodel simulationsstartingwithallpatchesoccupied. 38

Table4.Standardizedgenefrequencyvariance FST amongunivoltine,bivoltineandall populationsof Aricia inNorthWalesforsevenpolymorphicloci.

Locus Bivoltine Univoltine All

Pgi 0.0870 0.0709 0.0971

Pgm 0.0913 0.0825 0.0926

Me 0.0301 0.0498 0.0693

Got-f 0.1887 0.0436 0.1226

G6pd 0.0889 0.1163

αGpd 0.0272 0.0130 0.0373

Mdh-f 0.0772 0.0697 0.0854

All 0.0881 0.0643 0.0934

39

Figure legends

Figure1. (a) Thedistributionofbivoltine(black)andunivoltine(gray)populationsof A. agestis innorthWales,andofsuitablebutunoccupiedhabitatpatches(white).Symbol sizesgreatlyexaggeratepatchsize,andareproportionaltologpatcharea.Theline showsthenorthcoastofWales.Placenamesandnumbersareasreferredtointhetext.

(b)Adultemergencepatternsforunivoltine(n=4)andbivoltine(n=24)populations.

Figure2.Samplelocalitiesforunivoltine(opentriangles)andbivoltine(closedcircles)

A. agestis populationsinNorthWales.Grayareasshowthedistributionoflimestone.

ForakeytosamplecodesseeMaterialsandMethods.

Figure3.Peakpopulationdensity atunivoltine(opentriangles)andbivoltine(solid circles)populations,plottedagainstmodeledthermalenvironment(annualmodeled daydegrees>10 °C).

Figure4. Modeledthermalenvironment(annualmodeleddaydegrees>10 °C)against connectivitydifferenceforunivoltine(opentriangles)andbivoltine(solidcircles) populations.Populationswithpositiveconnectivitydifferencewerebetterconnectedto bivoltinepopulationsthantounivoltinepopulations,andviceversa.Dashedlines show:horizontal–themodeledthermalenvironment(782 °daydegrees>10 °C)at whichlogisticregressionpredictsa50%probabilityofeithervoltinismtype;vertical– zeroconnectivitydifference(i.e.equallywellconnectedtounivoltineandbivoltine populations).

40 Figure5.SurvivalovertimeofIncidenceFunctionmetapopulationsimulationsforeach habitatnetwork.a)networkscontainingbivoltineA. agestis ;b)networkscontaining univoltine A. agestis ;c)networksunoccupiedby A. agestis duringthestudy.Network numberscorrespondtothoseonFigure1a.

Figure6.Relationshipbetweengeneticsimilarity(Nm +1)anddistance(km+1)in A. agestis populationsinnorthWales:bivoltinexbivoltine(solidcircles),univoltinex univoltine(solidtriangles)andbivoltinexunivoltine(opencircles)pairwise comparisons.NotetheuseofLog 10scales.

Figure7.Relationshipbetweengeneticsimilarity,Nm +1(ofindividualpopulationsto withinvoltinismmeanfrequency),andconnectivity(ofpatchestowithinvoltinismtype patchnetwork)forunivoltine(opentriangles)andbivoltine(closedcircles)populations.

41

Figure 1. a Creuddyn Peninsula (1) Anglesey

6 7 Dulas Valley (2)

3 5 8

4

20 km 9 11

b 10 1 12 Clwydian Hills 0.75 13 0.5

0.25 Proportionofpeak

0 4/14 5/12 6/9 7/7 8/4 9/1 14 Date

43 Figure 2.

BA MD GO MP BE GH PQ TF GF MHW PYB LN MM PCB OF BM GT LX LOG CF AB PG CW EYS

PW

Surface Limestone

000 101010 202020 Km

44 Figure 3.

100

10

1

0.1 Peak populationPeak / density m 100

0.01 200 400 600 800 1000 1200 1400 Modeled thermal environment

45 Figure 4.

1600

1200

800

400 Number of day degrees > 10 degreesday> Number of

0 -20 -10 0 10 20 Connectivity difference

46 Figure 5.

a 100% 1, 2

50%

5 3

% simulations surviving simulations % 0% 0 50 100 Year of simulation

b 100% 9

6 50%

8 10, 12 % simulations surviving simulations % 0% 0 50 100 Year of simulation

c 100%

14

50%

7, 13

% simulations surviving simulations % 4, 11 0% 0 50 100 Year of simulation

47 Figure 6.

100

10 Nm+1

1 1 10 100 Distance (km+1)

48 Figure 7.

100

10 Nm+1

1 0 1 2 3 4 Connectivity

49 Electronic enhancements. Appendix material: Allozyme allele frequencies

Allele frequencies for eight polymorphic loci in (A) bivoltine and (B) univoltine populations of Aricia . Also provided are the numberofindividualssampled(N),observed(Obs.),Expected(Exp.)andmeanHeterozygosity(*indicatesasignificantdeviation fromHardyWeinbergexpectations, P<0.05). A ______

MD BA PQ GO MP MHW PYB LN BE MM TF PCB BM GT ______

Pgi (N) 50 30 30 52 50 50 59 50 49 25 50 42 51 21 A .300 .267 .350 .519 .530 .390 .398 .560 .408 .180 .240 .119 .245 .048 B .240 .183 .350 .240 .150 .140 .314 .200 .214 .200 .220 .286 .010 .310 C .010 .050 .067 .077 .110 .310 .127 .070 .214 .500 .350 .369 .206 .548 D .450 .500 .233 .163 .210 .160 .161 .170 .163 .120 .190 .226 .539 .095 E Het: Obs. .540 .600 .633 .750 .440* .620 .831 .680 .735 .680 .780 .762 .647 .571 Exp. .640 .643 .696 .640 .640 .707 .701 .613 .715 .663 .735 .717 .607 .593

Pgm (N) 50 30 30 52 50 50 59 50 49 25 50 42 51 21 A .200 .267 .233 .020 .017 .010 .080 .090 .083 B .650 .683 .667 .769 .530 .410 .542 .580 .439 .520 .580 .488 .912 .405 C .150 .050 .100 .173 .320 .510 .347 .270 .398 .400 .320 .369 .595 D .058 .130 .080 .093 .150 .153 .010 .060 .088 Het: Obs. .380* .567 .467 .385 .580 .480 .712* .600 .571 .600 .560 .524* .176 .429 Exp. .515 .459 .491 .375 .599 .565 .576 .568 .626 .563 .553 .615 .161 .482

Me (N) 50 30 30 51 50 49 51 50 43 25 50 42 51 21 A .460 .317 .533 .676 .670 .531 .657 .590 .628 .700 .580* .560 .667 .452 B .540 .683 .467 .324 .330 .469 .343 .410 .372 .300 .420 .440 .333 .548 Het: Obs. .480 .433 .600 .569 .580 .612 .451 .460 .512 .280 .680 .643 .510 .524 Exp. .497 .433 .498 .438 .442 .498 .451 .484 .467 .420 .487 .493 .444 .495

50 Got-f (N) 50 30 30 52 50 50 59 50 49 25 50 42 51 21 A B .650 .717 .683 .933 .890 1.000 .958 .920 .959 .740 .850 .810 .618 .238 C .350 .283 .317 .067 .110 .042 .080 .041 .260 .150 .190 .382 .762 Het: Obs. .540 .300 .367 .135 .180 .000 .085 .160 .082 .360 .260 .238 .490 .381 Exp. .455 .406 .433 .126 .196 .000 .081 .147 .078 .385 .255 .308 .472 .363

G6pd (N) 50 30 30 52 50 50 59 50 49 25 50 42 51 21 A .260 .167 .083 .100 .020 .068 .133 .040 .010 .060 B .740 .833 .917 1.000 .900 .980 .932 1.000 .867 .960 .990 .940 1.000 1.000 C Het: Obs. .440 .333 .167 .000 .200 .040 .136 .000 .265 .080 .020 .071 .000 .000 Exp. .385 .278 .153 .000 .180 .039 .126 .000 .230 .077 .020 .112 .000 .000

αααGPD (N) 47 30 30 50 50 49 51 50 47 23 50 41 50 21 A 1.000 .883 .900 .940 .980 .990 .961 .980 1.000 .913 .990 .988 .950 1.000 B .117 .100 .060 .020 .010 .039 .020 .087 .010 .012 .050 Het: Obs. .000 .167 .200 .120 .040 .020 .078 .040 .000 .174 .020 .024 .100 .000 Exp. .000 .206 .180 .113 .039 .020 .075 .039 .000 .159 .020 .024 .095 .000

Mdh-f (N) 50 30 30 48 48 49 51 50 45 25 50 42 51 20 A B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .912 1.000 C .088 D Het: Obs. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .176 .000 Exp. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .161 .000

Mean Exp. .313 .303 .306 .211 .262 .229 .251 .231 .265 .283 .259 .284 .243 .242 ______

51

B ______

GF OF GH LX LOG CF AB PG BHQ EYS CW PW ______

Pgi (N) 41 54 50 30 20 50 50 60 50 50 18 50 A .573 .241 .420 .317 .150 .180 .220 .183 .180 .170 .194 .050 B .220 .370 .280 .183 .550 .370 .350 .550 .410 .580 .389 .570 C .024 .030 .167 .050 .110 .083 .080 .130 .417 .130 D .183 .389 .270 .333 .250 .450 .320 .183 .330 .120 .250 E Het: Obs. .634 .630 .620 .733 .750 .620 .700 .633 .700 .640 .611 .660 Exp. .589 .654 .671 .727 .610 .628 .715 .623 .684 .603 .637 .593

Pgm (N) 42 54 50 30 20 50 50 60 50 50 18 50 A .012 .074 .140 .033 .175 .160 .075 .030 .070 .111 .020 B .440 .491 .410 .583 .525 .580 .470 .575 .600 .570 .806 .150 C .440 .435 .440 .367 .300 .230 .440 .300 .300 .320 .083 .830 D .107 .010 .017 .030 .090 .050 .070 .040 Het: Obs. .548 .407 .620 .500 .600 .580 .600 .567 .380* .540 .333 .300 Exp. .600 .564 .619 .524 .604 .584 .577 .571 .544 .566 .332 .288

Me (N) 42 54 49 29 19 50 50 59 50 50 18 50 A .250 .269 .367 .517 .421 .380 .490 .424 .400 .400 .167 .650 B .750 .731 .633 .483 .579 .620 .510 .576 .600 .600 .833 .350 Het: Obs. .500* .389 .571 .483 .526 .480 .540 .508 .520 .520 .333 .380 Exp. .375 .393 .465 .499 .488 .471 .500 .488 .480 .480 .278 .455

Got-f (N) 42 53 50 30 20 50 49 60 49 50 18 50 A B .810 .717 .910 .733 .625 .610 .816 .650 .612 .710 .583 .580 C .190 .283 .090 .267 .375 .390 .184 .350 .388 .290 .417 .420 Het: Obs. .333 .377 .180 .400 .450 .460 .204* .467 .531 .500 .389 .520 Exp. .308 .406 .164 .391 .469 .476 .300 .455 .475 .412 .486 .487

52 G6pd (N) 42 54 50 30 20 50 50 60 50 50 18 50 A B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 C Het: Obs. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 Exp. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

αααGPD (N) 42 52 50 30 20 50 49 60 49 50 18 49 A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .975 1.000 1.000 1.000 1.000 B .025 Het: Obs. .000 .000 .000 .000 .000 .000 .000 .050 .000 .000 .000 .000 Exp. .000 .000 .000 .000 .000 .000 .000 .049 .000 .000 .000 .000

Mdh-f (N) 42 53 48 29 19 47 48 60 47 50 18 49 A B 1.000 1.000 1.000 1.000 .789 .862 .969 .933 .957 .920 .778 .969 C .211 .138 .031 .067 .043 .080 .222 .031 D Het: Obs. .000 .000 .000 .000 .211 .277 .063 .133 .085 .160 .444 .061 Exp. .000 .000 .000 .000 .332 .238 .061 .124 .081 .147 .346 .059

Mean Exp. .234 .252 .240 .268 .313 .300 .269 .289 .283 .276 .260 .235 ______

53 Appendix material: Metapopulation modeling methods

Incidence function model (IFM)

TheIncidenceFunctionModel(Hanski1994,1999)isaspatiallyrealistic metapopulationmodel,basedontheassumptionsthatpopulationextinction rateisnegativelyrelatedtohabitatpatcharea,andthatpatchcolonization rateispositivelyrelatedtopatchconnectivity.

Connectivityforpatch i (Si) isdefinedas Si= ∑exp(αdij ) Ajbwhere αisthe slopeofthedispersalkernel(thecumulativeproportionofpergeneration dispersaloverdistance d kmorgreatercorrespondstoexp αdforanegative exponentialdispersalkernel); dij isthedistancetopatch i fromeachoccupied sourcepatch j (where i≠j);and Ajisthearea(ha)ofeachpatch j.Sourcepatch emigrationratescaleswithpatchareatothepower b.

IFMisbasedontheequation(Hanski1994,1999):

 J   i  ln  = − ln(ey) + x ln Ai + 2ln Si 1− J i 

where Jiistheincidenceorlongtermprobabilityofoccupancyofpatch i, Ai and Si arerespectivelytheareaandconnectivityofpatch i, and e, yand x are parametersofextinctionandcolonization.Theannualcolonization probabilityofpatch iis Ci= Si2 / (Si2 + y2);andannualextinctionprobability,

Ei =(e/ Aix)(1Ci).Inthemodel,patcheswithhighconnectivity( Si)aremore likelytobecolonizedthanpatcheswithlowconnectivity,andpatcheswith

54 largearea( Ai)arelesslikelytogoextinctthansmallpatches.Patcheswith highannualcolonizationprobabilityaremorelikelythanisolatedpatchesto be“rescued”fromextinction,andextinctionrateismultipliedby1Citotake accountoftherescueeffect.Theriskofextinctionisunitywhereminimum patcharea A0= e1/x .Thus, A0, eand xscaletherelationshipbetweenpatch areaandextinction,and y determinestherelationshipbetweenconnectivity andcolonizationprobability.

Weestimated e, y,and xusing1997occupancydatafortheCreuddyn

Peninsula,wherewewereconfidentthatmostifnotallhabitatpatcheshad beenidentified(n=89),andwherethedistributionoflimestonegrasslandhas beenrelativelystableforthelast100years(9%decline,Cowleyetal.1999).

Weusedthemethoddescribedinsoftwareavailablefromthewebsiteat http://www.helsinki.fi/science/metapop/ (seeHanski1994,1999,Moilanen

1999).For A. agestis weusedanegativeexponentialdispersalkernelof α=2, ashasbeenusedforspecieswithsimilardispersalratesdeterminedbymark releaserecapturestudies(e.g.,Hanski1994,Wahlbergetal.1996,Wilsonand

Thomas2002).Percapitaemigrationratetendstodeclinewithincreasing patcharea(ThomasandHanski1997,Hanskietal.2000),andparameter b wassetto0.5(A.Moilanenpersonalcommunication).Minimumpatcharea

(A0)wasestimatedfromfieldobservationstobe0.05ha.Theprobabilityof colonizationfromoutsidethenetworkwassettozero,becausethenearest habitatpatcheswere5kmaway,wellbeyondtheempiricallyobserved maximumdispersaldistancesof A. agestis (WilsonandThomas2002).

55 Regionalstochasticitywassettozero,basedondatawhichshowed asynchronousdynamicsof A. agestis inpatcheslessthan1kmapart(Wilson

1999).TheMonteCarloMarkovChain(MCMC)methodwasusedforthe finalparameterestimation,with1000functionevaluationsininitiationand

4000functionevaluationsinestimation(Moilanen1999).

Incidencefunctionparametersestimatedfromthedistributionofoccupied andvacanthabitatpatchesintheCreuddynPeninsulawere:x=0.604(95%

C.I.s0.3061.314),ey 2 =0.329(95%C.I.s0.1070.466),e=0.164,y=1.418.To estimatemetapopulationpersistence,weran100IFMsimulationsofupto200 generationsforeachhabitatnetwork,usingestimatedvaluesof e, y,and x, andtheabovevaluesfor α, band A0.Weset100%patchoccupancyinthe firstyearofeachsimulation,andzeroregionalstochasticity,soestimated extinctionratesshouldbeconservative.

56