The First Computational Theory of Mind and Brain: a Close Look at Mcculloch and Pitts’S ‘‘Logical Calculus of Ideas Immanent in Nervous Activity’’
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nicolas Rashevsky's Mathematical Biophysics
Journal of the History of Biology 37: 333–385, 2004. 333 Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. Nicolas Rashevsky’s Mathematical Biophysics TARA H. ABRAHAM Max Planck Institute for the History of Science Wilhelmstrae 44 10117 Berlin Germany E-mail: [email protected] Abstract. This paper explores the work of Nicolas Rashevsky, a Russian e´ migre´ the- oretical physicist who developed a program in ‘‘mathematical biophysics’’ at the Uni- versity of Chicago during the 1930s. Stressing the complexity of many biological phenomena, Rashevsky argued that the methods of theoretical physics – namely mathematics – were needed to ‘‘simplify’’ complex biological processes such as cell division and nerve conduction. A maverick of sorts, Rashevsky was a conspicuous figure in the biological community during the 1930s and early 1940s: he participated in several Cold Spring Harbor symposia and received several years of funding from the Rockefeller Foundation. However, in contrast to many other physicists who moved into biology, Rashevsky’s work was almost entirely theoretical, and he eventually faced resistance to his mathematical methods. Through an examination of the conceptual, institutional, and scientific context of Rashevsky’s work, this paper seeks to understand some of the reasons behind this resistance. Keywords: Mathematical biology, Neurophysiology, Nicolas Rashevsky, Physiology, Rockefeller Foundation, Theory, University of Chicago, Warren Weaver Introduction The migration of physicists into the biological sciences during the early 20th century has been a topic of interest in the history and philosophy of biology, with associated issues of the disciplinary authority of physics, the autonomy of biology, and the reduction of biological phenomena to physical terms.1 Most often, these migrations 1 The relationship between physics and biology has occupied Anglo-American phi- losophers of science in the 20th century, as they inherited a set of questions posed by logical positivists during the 1930s. -
Constructing Artificial Intelligence Paul Edwards, the Closed World
* c 4 1 v. N > COMPUTERS . discourse »"• "u m com *»» *l't"'tA PAUL N. EDWARDS The Closed World Inside Technology edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor Pinch Wiebe E. Bijker, Of Bicycles, Bahelites, and Bulbs: Toward a Theory of Sociotechnical Change Wiebe E. Bijker and John Law, editors, Shaping Technology/Building Society: Studies m Sociotechnical Change Stuart S. Blume, Insight and Industry: On the Dynamics of Technological Change in Medicine Louis L. Bucciarelli, Designing Engineers Geoffrey C. Bowker, Science on the Run: Information Management and Industrial Geophysics at Schlumberger, 1920-1940 H. M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America Pamela E. Mack, Viewing the Earth: The Social Construction of the Landsat Satellite System Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance Donald MacKenzie, Knowing Machines: Essays on Technical Change The Closed World Computers and the Politics of Discourse in Cold War America Paul N. Edwards The MIT Press Cambridge, Massachusetts London, England ©1996 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Baskerville by Pine Tree Composition, Inc. and printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Edwards, Paul N. The closed world : computers and the politics of discourse in Cold War America / Paul N. -
Outsiders As Innovators in the Life Sciences
Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 12-1-2006 Outsiders as Innovators in the Life Sciences Michael Dietrich Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael, "Outsiders as Innovators in the Life Sciences" (2006). Open Dartmouth: Published works by Dartmouth faculty. 34. https://digitalcommons.dartmouth.edu/facoa/34 This Book Chapter is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. oren harman & michael r. dietrich introduction outsiders as innovators in the life sciences introduction Both intellectually and institutionally, the life sciences oc- cupy a fascinating middle ground between the physical and exact sciences, on the one hand, and the social sciences and humanities on the other. If biology were an animal, it would be a duck- billed platypus— something that appears chimeric, yet is fully rooted in its own historical lineage of accumu- lating adaptations, tinkering, and change. Like that strange aquatic mammal, “half bird, half beast,”1 its features point to its origins and ecol ogy. Biology as a science has come into being as a patchwork, assuming its present visage as a consequence of myriad interactions between diff erent traditions of knowledge, method, and phi- losophy while maintaining an overarching quest for understanding of the natural world. -
From L'homme Machine to Metabolic Closure Steps Towards
Journal of Theoretical Biology 286 (2011) 100–113 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi 50th Anniversary Year Review From L’Homme Machine to metabolic closure: Steps towards understanding life Juan-Carlos Letelier a, Marı´a Luz Ca´rdenas b, Athel Cornish-Bowden b,Ã a Departamento de Biologı´a, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile b Unite´ de Bioe´nerge´tique et Inge´nierie des Prote´ines, Centre National de la Recherche Scientifique, 31 chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France article info abstract Available online 12 July 2011 The nature of life has been a topic of interest from the earliest of times, and efforts to explain it in Keywords: mechanistic terms date at least from the 18th century. However, the impressive development of Origin of life molecular biology since the 1950s has tended to have the question put on one side while biologists (M,R) systems explore mechanisms in greater and greater detail, with the result that studies of life as such have been Autopoiesis confined to a rather small group of researchers who have ignored one another’s work almost Chemoton completely, often using quite different terminology to present very similar ideas. Central among these Self-organization ideas is that of closure, which implies that all of the catalysts needed for an organism to stay alive must be produced by the organism itself, relying on nothing apart from food (and hence chemical energy) from outside. The theories that embody this idea to a greater or less degree are known by a variety of names, including (M,R) systems, autopoiesis, the chemoton, the hypercycle, symbiosis, autocatalytic sets, sysers and RAF sets. -
A Logical Calculus of the Ideas Immanent in Nervous Activity*
Bulletin of Mothemnticnl Biology Vol. 52, No. l/2. pp. 99-115. 1990. oo92-824OjW$3.OO+O.MI Printed in Great Britain. Pergamon Press plc Society for Mathematical Biology A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY* n WARREN S. MCCULLOCH AND WALTER PITTS University of Illinois, College of Medicine, Department of Psychiatry at the Illinois Neuropsychiatric Institute, University of Chicago, Chicago, U.S.A. Because of the “all-or-none” character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed. 1. Introduction. Theoretical neurophysiology rests on certain cardinal assumptions. The nervous system is a net of neurons, each having a soma and an axon. Their adjunctions, or synapses, are always between the axon of one neuron and the soma of another. At any instant a neuron has some threshold, which excitation must exceed to initiate an impulse. This, except for the fact and the time of its occurence, is determined by the neuron, not by the excitation. -
THE INTELLECTUAL ORIGINS of the Mcculloch
JHBS—WILEY RIGHT BATCH Top of ID Journal of the History of the Behavioral Sciences, Vol. 38(1), 3–25 Winter 2002 ᭧ 2002 John Wiley & Sons, Inc. (PHYSIO)LOGICAL CIRCUITS: THE INTELLECTUAL ORIGINS OF THE Base of 1st McCULLOCH–PITTS NEURAL NETWORKS line of ART TARA H. ABRAHAM This article examines the intellectual and institutional factors that contributed to the col- laboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Historians and scientists alike often refer to the McCulloch–Pitts paper as a landmark event in the history of cybernetics, and funda- mental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch–Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Al- though they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch– Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena. ᭧ 2002 John Wiley & Sons, Inc. -
SMB Newsletter Volume 23 #2 - May 2010
SMB Newsletter Volume 23 #2 - May 2010 Inside this Issue: Letter from President.......................................................................................................................................2 2010 SIAM Great Lakes conference on Modeling and Numerical PDEs in Mathematical Biology..............3 VCU/NHLBI Spring 2010 Conference........................................................................................................4-5 African Society for Biomathematics Inaugural Conference........................................................................6-7 Nicolas Rashevsky...........................................................................................................................................7 Systems approaches in immunology: advances and challenges in multi-scale modeling...........................8-9 My Career in Math Biology: Leon Glass.................................................................................................10-11 First International Workshop “Mathematical Methods in Systems Biology”..........................................12-13 Center and Institute Updates....................................................................................................................14-15 Dynamical Systems Applied to Biology and Natural Science................................................................16-17 Positions Available..................................................................................................................................17-19 SMB 2010 Updates....................................................................................................................................20 -
Mathematical Biology, an Interdisciplinary Future
Quarterly newsletter Last quarter 2014 / First quarter 2015 CSIC - UAM - UC3M - UCM EDITORIAL Mathematical Biology, an interdisciplinary future Mathematical Biology is a scientific field devoted to the study networks in epidemiology requires ideas belonging to graph theory; of biological processes using mathematical techniques. It is an combinatorial algebra is applied to systems control in ecology; the area where the interests of biologists and mathematicians mainly topological branch of knot theory describes the way in which a DNA converge, and to a lesser extent those of researchers from other molecule is configured; research into molecular genetics requires branches of knowledge. certain stochastic processes (Markov chains and processes, branching processes, Brownian motion, diffusion processes); Monte Carlo It is without doubt an attractive field that is now on the rise. It has Markov chains and numerical methods based on the theory of large progressed rapidly during the last two decades and has modified deviations are found in the simulation of rare events in biological the controversial, historical relation between experimental science, models; linear and nonlinear models in neurobiology employ Biology, and Mathematics, the latter being characterized by its deterministic and stochastic partial differential equations; in addition, degree of abstraction. Traditionally, biologists have not disguised measured or sampled data lead to goodness of fit and estimation their mistrust in the contributions made by mathematicians, on the procedures in statistics. grounds that the level of complexity of living beings could not be translated into terms provided by a handful of equations. At present, Computational advances in recent decades and the development of the close interaction between professionals belonging to both fields new numerical methods have enabled the diverse challenges faced has made these equations into a mathematical synthesis capable of encapsulating the essential aspects of a biological reality while leaving other superficial considerations aside. -
Computer Simulation of Neural Networks Using Spreadsheets: the Dawn of the Age of Camelot
Педагогiка вищої та середньої школи 2019. Випуск 51. C. 159–191 УДК 004.94:37.091.39 Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot Serhiy O. Semerikov1[0000−0003−0789−0272], Illia O. Teplytskyi1, Yuliia V. Yechkalo2[0000−0002−0164−8365] and Arnold E. Kiv3 1 Kryvyi Rih State Pedagogical University, 54, Gagarina Ave., Kryvyi Rih, 50086, Ukraine [email protected] 2 State Institution of Higher Education “Kryvyi Rih National University”, 11, Vitali Matusevich St., Kryvyi Rih, 50027, Ukraine [email protected] 3 Ben-Gurion University of the Negev, Beer Sheba, Israel [email protected] Abstract. The article substantiates the necessity to develop training methods of computer simulation of neural networks in the spreadsheet environment. The systematic review of their application to simulating artificial neural networks is performed. The authors distinguish basic approaches to solving the problem of network computer simulation training in the spreadsheet environment, joint application of spreadsheets and tools of neural network simulation, application of third-party add-ins to spreadsheets, development of macros using the embedded languages of spreadsheets; use of standard spreadsheet add-ins for non-linear optimization, creation of neural networks in the spreadsheet environment without add-ins and macros. After analyzing a collection of writings of 1890–1950, the research determines the role of the scientific journal “Bulletin of Mathematical Biophysics”, its founder Nicolas Rashevsky and the scientific community around the journal in creating and developing models and methods of computational neuroscience. There are identified psychophysical basics of creating neural networks, mathematical foundations of neural computing and methods of neuroengineering (image recognition, in particular). -
THE RISE of CYBORG CULTURE OR the BOMB WAS a CYBORG David Porush
Document generated on 09/25/2021 8 a.m. Surfaces THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG David Porush SUR LA PUBLICATION ÉLECTRONIQUE Article abstract ON ELECTRONIC PUBLICATION Pictured by the author as a cybernetic rather than an atomic age, the Cold War Volume 4, 1994 is shown to be structured by the quest for a cybernetic modelling of human intelligence capable to eliminate uncertainty. The rise of the cyborg figure in URI: https://id.erudit.org/iderudit/1064963ar science fiction is brought into consideration as an illustration. DOI: https://doi.org/10.7202/1064963ar See table of contents Publisher(s) Les Presses de l’Université de Montréal ISSN 1188-2492 (print) 1200-5320 (digital) Explore this journal Cite this article Porush, D. (1994). THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG. Surfaces, 4. https://doi.org/10.7202/1064963ar Copyright © David Porush, 1994 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG David Porush ABSTRACT Pictured by the author as a cybernetic rather than an atomic age, the Cold War is shown to be structured by the quest for a cybernetic modelling of human intelligence capable to eliminate uncertainty. -
Your Brain Is Like a Computer: Function, Analogy, Simplification
M. Chirimuuta November 2018 draft. Please do not circulate or quote without permission. Comments welcome! Your Brain is Like a Computer: Function, Analogy, Simplification M. Chirimuuta ([email protected]) History & Philosophy of Science, University of Pittsburgh ABSTRACT The relationship between brain and computer is a perennial theme in theoretical neuroscience, but it has received relatively little attention in the philosophy of neuroscience. This paper argues that much of the popularity of the brain-computer comparison (e.g. circuit models of neurons and brain areas since McCulloch and Pitts [1943]) can be explained by their utility as ways of simplifying the brain. More specifically, by justifying a sharp distinction between aspects of neural anatomy and physiology that serve information-processing, and those that are ‘mere metabolic support,’ the computational framework provides a means of abstracting away from the complexities of cellular neurobiology, as those details come to be classified as irrelevant to the (computational) functions of the system. I argue that the relation between brain and computer should be understood as one of analogy, and consider the implications of this interpretation for notions of multiple realisation. I suggest some limitations of our understanding of the brain and cognition that may stem from the radical abstraction imposed by the computational framework. 0. PREAMBLE: LEIBNIZ THE INVENTOR Many histories of computation begin with the unrealised ambition of Gottfried Leibniz to devise a “universal characteristic”, a symbolic language in which factual propositions could be represented and further truths inferred by means of a mechanical calculating device (Davis 2000). Amongst the 20th century pioneers of computer science and artificial intelligence who took Leibniz for an inspirational figure1 were Warren McCulloch and Walter Pitts (Lettvin 2016: xix). -
How Cybernetics Connects Computing, Counterculture, and Design
Walker Art Center — Hippie Modernism: The Struggle for Utopia — Exhibit Catalog — October 2015 How cybernetics connects computing, counterculture, and design Hugh Dubberly — Dubberly Design Office — [email protected] Paul Pangaro — College for Creative Studies — [email protected] “Man is always aiming to achieve some goal language, and sharing descriptions creates a society.[2] and he is always looking for new goals.” Suddenly, serious scientists were talking seriously —Gordon Pask[1] about subjectivity—about language, conversation, and ethics—and their relation to systems and to design. Serious scientists were collaborating to study Beginning in the decade before World War II and collaboration. accelerating through the war and after, scientists This turn away from the mainstream of science designed increasingly sophisticated mechanical and became a turn toward interdisciplinarity—and toward electrical systems that acted as if they had a purpose. counterculture. This work intersected other work on cognition in Two of these scientists, Heinz von Foerster and animals as well as early work on computing. What Gordon Pask, took an interest in design, even as design emerged was a new way of looking at systems—not just was absorbing the lessons of cybernetics. Another mechanical and electrical systems, but also biological member of the group, Gregory Bateson, caught the and social systems: a unifying theory of systems and attention of Stewart Brand, systems thinker, designer, their relation to their environment. This turn toward and publisher of the Whole Earth Catalog. Bateson “whole systems” and “systems thinking” became introduced Brand to von Foerster.[3] Brand’s Whole Earth known as cybernetics. Cybernetics frames the world in Catalog spawned a do-it-yourself publishing revolution, terms of systems and their goals.