Escape Velocity: Why the Prospect of Extreme Human Life Extension Matters Now Aubrey D

Total Page:16

File Type:pdf, Size:1020Kb

Escape Velocity: Why the Prospect of Extreme Human Life Extension Matters Now Aubrey D CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Book Review/Science in the Media Escape Velocity: Why the Prospect of Extreme Human Life Extension Matters Now Aubrey D. N. J. de Grey he biogerontologist David Kass retorted that science isn’t like Sinclair and the bioethicist that: modest success tends to place the TLeon Kass recently bit between our teeth and can often locked horns in a radio debate result in advances far exceeding our (http:⁄⁄www.theconnection.org/ expectations. shows/2004/01/20040106_b_main. Coping with Methuselah consists of asp) on human life extension that seven essays, mostly on the economics was remarkable for one thing: on the of life extension but also including one key issue, Kass was right and Sinclair essay surveying the biology of aging and wrong. Sinclair suggested, as have one on the ethics of life extension. The other experts, including his mentor Lenny Guarente and the National Copyright: © 2004 Aubrey D. N. J. de Grey. This is an open-access article distributed under the terms of Institute on Aging advisory council the Creative Commons Attribution License, which member Elizabeth Blackburn, that permits unrestricted use, distribution, and reproduc- tion in any medium, provided the original work is Kass and other bioconservatives properly cited. are creating a false alarm about life extension, because only a modest (say, Abbreviations: AEV, actuarial escape velocity 30%) increase in human life span is Aubrey D. N. J. de Grey is in the Department of Genet- achievable by biomedical intervention, ics at the University of Cambridge, Cambridge, United Kingdom. E-mail: [email protected] whereas Kass’s apprehensions concern extreme or indefi nite life extension. DOI: 10.1371/journal.pbio.0020187 PLoS Biology | http://biology.plosjournals.org June 2004 | Volume 2 | Issue 6 | Page 0723 economic issues addressed are wide anything beyond this degree of life The second oversight made both ranging, including detailed analysis of extension is inconceivable. by the contributors to Coping with the balance between wealth creation by I agree with these predictions in Methuselah and by other commentators the employed and wealth consumption two respects: that the degree of life is demographic. Life expectancy is in pensions and health care; most extension achieved by fi rst-generation typically defi ned in terms of what chapters focus on the United States, drugs of this sort may well approach the demographers call a period survival but the closing chapter discusses these (currently unknown) amount elicitable curve, which is a purely artifi cial issues in a global context. Each essay by caloric restriction itself in humans, construction derived from the is followed by a short commentary and that it is unlikely to be much proportions of those of each age by another distinguished author. exceeded by later drugs that work the at the start of a given year who die Within their own scope, all of these same way. In two other ways, however, I during that year. The ‘life expectancy’ contributions are highly informative claim they are incorrect. The fi rst error of the ‘population’ thus described and rigorous. Dishearteningly, is the assumption of proportionality: I is that of a hypothetical population however, all echo Sinclair’s views about have recently argued (de Grey 2004), whose members live all their lives the limited prospects for life extension from evolutionary considerations, with the mortality risk at each age in the coming decades. In my opinion, that longer-lived species will show that the real people of that age they make three distinct oversights. a smaller maximal proportional experienced in the year of interest. The fi rst concerns current science. life-span extension in response to The remaining life expectancy of Sinclair and several other prominent starvation, probably not much more someone aged N in that year is more gerontologists are presently seeking than the same absolute increase seen than this life expectancy minus N for human therapies based on the in shorter-lived species. The second two reasons: one mathematical (what long-standing observation that error is the assertion that no other one actually wants, roughly, is the age lifelong restriction of caloric intake type of intervention can do better. In to which the probability of survival considerably extends both the healthy concert with other colleagues whose is half that of survival to N) and one and total life span of nearly all species areas of expertise span the relevant biomedical (mortality rates at each in which it has been tried, including fi elds, I have described (de Grey et al. age, especially advanced ages, tend rodents and dogs. Drugs that elicit the 2002, 2004) a strategy built around the to fall with time). My spirits briefl y gene expression changes that result actual repair (not just retardation of rose on reading Aaron and Harris’s from caloric restriction might, these accumulation) of age-related molecular explicit statement (p. 69) of the latter workers assert, extend human life span and cellular damage—consisting of just reason. Unfortunately, they didn’t by something approaching the same seven major categories of ‘rejuvenation discuss what would happen if age- proportion as seen in rodents—20% therapy’ (Table 1)—that appears specifi c mortality rates fell by more is often predicted—without impacting technically feasible and, by its nature, than 2% per year. An interesting quality of life, and even when is indefi nitely extensible to greater scenario was thus unexplored: that in administered starting in middle age. life spans without recourse to further which mortality rates fall so fast that They assiduously stress, however, that conceptual breakthroughs. people’s remaining (not merely total) Table 1. Strategies for Engineered Negligible Senescence Type of Age-Related Damage Suggested In Proposed Repair (Or Obviation) Cell loss, cell atrophy Brody 1955 Stem cells, growth factors, exercise (Rao and Mattson 2001) Senescent/toxic cells Hayfi ck 1965 Ablation of unwanted cells (Barzilai et al. 1999) Nuclear mutations/epimutations Szilard 1959, Whole-body interdiction of lengthening of telomeres (only cancer matters) Cutler 1982 (de Grey et al. 2004) Mitochondrial mutations Harman 1972 Allotopic expression of 13 proteins (Manfredi et al. 2002) Extracellular cross-links Monnier and AGE-breaking molecules (Kass et al. 2001) Cerami 1981 Extracellular aggregates Alzheimer 1907 Immune-mediated phagocytosis (Schenk et al. 1999) Lysosomal aggregates Strehler 1959 Transgenic microbial hydrolases (de Grey 2002) The seven categories of accumulating molecular or cellular side effects of metabolism whose possible contribution to age-related mammalian physical or cognitive decline is an established school of thought within contemporary biogerontology, and the foreseeable therapies that can repair or obviate them. DOI: 10.1371/journal.pbio.0020187.t001 PLoS Biology | http://biology.plosjournals.org June 2004 | Volume 2 | Issue 6 | Page 0724 life expectancy increases with time. Is this unimaginably fast? Not at all: it is simply the ratio of the mortality rates at consecutive ages (in the same year) in the age range where most people die, which is only about 10% per year. I term this rate of reduction of age- specifi c mortality risk ‘actuarial escape velocity’ (AEV), because an individual’s remaining life expectancy is affected by aging and by improvements in life- DOI: 10.1371/journal.pbio.0020187.g002 extending therapy in a way qualitatively very similar to how the remaining life Figure 1. Physical and Actuarial Escape Velocities expectancy of someone jumping off a Remaining life expectancy follows a similar trajectory whether one walks off a cliff or merely ages: the time scales differ, but one’s prognosis worsens with time. Mild cliff is affected by, respectively, gravity mitigation of this (whether by jet propulsion or by rejuvenation therapies) merely and upward jet propulsion (Figure 1). postpones the outcome, but suffi ciently aggressive intervention overcomes the force of The escape velocity cusp is closer gravity or frailty and increasingly distances the individual from a sticky end. Numbers than you might guess. Since we are denote plausible ages, at the time fi rst-generation rejuvenation therapies arrive, of people following the respective trajectories. already so long lived, even a 30% increase in healthy life span will give the fi rst benefi ciaries of rejuvenation whenever they arrive, will surely rejuvenation therapies for humans for therapies another 20 years—an build on a string of prior laboratory at least 25 years, and it could certainly eternity in science—to benefi t achievements. Those achievements, be 100 years. But given the present from second-generation therapies it seems to me, will have progressively status of the therapies listed in Table 1, that would give another 30%, and worn down humanity’s evidently we have, in my view, a high probability so on ad infi nitum. Thus, if fi rst- desperate determination to close its of reaching the mouse life extension generation rejuvenation therapies were eyes to the prospect of defeating its milestone just described (which I call universally available and this progress foremost remaining scourge anytime ‘robust mouse rejuvenation’) within in developing rejuvenation therapy soon. The problem (if we can call it just ten years, given adequate and could be indefi nitely maintained, these that) is that this wearing-down may focused funding (perhaps $100 million advances would put us beyond AEV. have been completed long before the per year). And nobody in Coping with Universal availability might be thought rejuvenation therapies arrive. There Methuselah said so. This timeframe economically and sociopolitically will come an advance—probably a could be way off, of course, but as implausible (though that conclusion single laboratory result—that breaks Wade notes (p. 57), big advances often may be premature, as I will summarise the camel’s back and forces society occur much sooner than most experts below), so it’s worth considering the to abandon that denial: to accept expect.
Recommended publications
  • Biogerontology: a Novel Tool to Stay Healthy in Old Age
    MoPAct Policy Brief: 5 Biogerontology: a novel tool to stay healthy in old age Policy priority Healthy lifestyle interventions in particular regarding nutrition and vaccination need to be implemented early in life with a lifecourse perspective. Summary: Key findings: • Accumulating evidence from experimental studies shows that aging is not inevitably linked with the development of chronic diseases. • Only 20-25% of healthy life expectancy (HLE) is predetermined by genes; lifestyle and environment play a major role. • Age-associated accumulation of molecular and cellular damage can be prevented or greatly delayed by lifestyle interventions e.g. dietary manipulations. • Classical strategies (e.g. nutrition, exercise, vaccination) require broad communication to public. • Novel strategies (e.g. dietary interventions, novel drugs, stem cells) need successful translation from the understanding of molecular mechanism to animal models to clinic. • To be successful interventions need to be started early Figure 1. Strategies to increase HLE. (1) Classical interventions include nutrition, exercise, vaccination, no smoking/alcohol/drugs. (2) Novel interventions include in life with a life-course perspective. dietary interventions, clearance of senescent and damaged cells, mitohormetics, stem cells, drugs against inflammation, rejuvenation factors from blood, telomeres, Background: epigenetic drugs, chaperons and proteolytic systems (novel interventions adapted from López-Otín et al., Cell 2013). Population aging is progressing fast in all developed countries. Aging is associated with the development of multiple serious chronic illnesses, including type 2 diabetes, hypertension, heart Prevention disease, stroke, cancer, cognitive impairment and increased Prevention prior to the development of age-associated diseases morbidity and mortality from infectious diseases. As people is key for successful aging.
    [Show full text]
  • Mixing Old and Young: Enhancing Rejuvenation and Accelerating Aging
    Mixing old and young: enhancing rejuvenation and accelerating aging Ashley Lau, … , James L. Kirkland, Stefan G. Tullius J Clin Invest. 2019;129(1):4-11. https://doi.org/10.1172/JCI123946. Review Donor age and recipient age are factors that influence transplantation outcomes. Aside from age-associated differences in intrinsic graft function and alloimmune responses, the ability of young and old cells to exert either rejuvenating or aging effects extrinsically may also apply to the transplantation of hematopoietic stem cells or solid organ transplants. While the potential for rejuvenation mediated by the transfer of youthful cells is currently being explored for therapeutic applications, aspects that relate to accelerating aging are no less clinically significant. Those effects may be particularly relevant in transplantation with an age discrepancy between donor and recipient. Here, we review recent advances in understanding the mechanisms by which young and old cells modify their environments to promote rejuvenation- or aging-associated phenotypes. We discuss their relevance to clinical transplantation and highlight potential opportunities for therapeutic intervention. Find the latest version: https://jci.me/123946/pdf REVIEW The Journal of Clinical Investigation Mixing old and young: enhancing rejuvenation and accelerating aging Ashley Lau,1 Brian K. Kennedy,2,3,4,5 James L. Kirkland,6 and Stefan G. Tullius1 1Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 2Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. 3Singapore Institute for Clinical Sciences, Singapore. 4Agency for Science, Technology and Research (A*STAR), Singapore.
    [Show full text]
  • Longevity Extension from a Socioeconomic Perspective: Plausibility, Misconceptions, and Potential Outcomes
    Sound Decisions: An Undergraduate Bioethics Journal Volume 2 Issue 1 Article 4 2016-12-15 Longevity Extension from a Socioeconomic Perspective: Plausibility, Misconceptions, and Potential Outcomes Eric Ralph University of Puget Sound Follow this and additional works at: https://soundideas.pugetsound.edu/sounddecisions Part of the Bioethics and Medical Ethics Commons Recommended Citation Ralph, Eric (2016) "Longevity Extension from a Socioeconomic Perspective: Plausibility, Misconceptions, and Potential Outcomes," Sound Decisions: An Undergraduate Bioethics Journal: Vol. 2 : Iss. 1 , Article 4. Available at: https://soundideas.pugetsound.edu/sounddecisions/vol2/iss1/4 This Article is brought to you for free and open access by the Student Publications at Sound Ideas. It has been accepted for inclusion in Sound Decisions: An Undergraduate Bioethics Journal by an authorized editor of Sound Ideas. For more information, please contact [email protected]. Ralph: Longevity Extension Longevity Extension from a Socioeconomic Perspective: Plausibility, Misconceptions, and Potential Outcomes Eric Ralph Introduction In the last several decades, a significant amount of progress has been made in pursuits to better understand the process of aging and subsequently gain some level of control over it. Current theories of aging are admittedly lacking, but this has not prevented biogerontologists from drastically increasing the longevity of yeast, drosophilae, worms, and mice (Vaiserman, Moskalev, & Pasyukova 2015; Tosato, Zamboni et al. 2007; Riera & Dillin 2015). Wide-ranging successes with gene therapy and increased comprehension of the genetic components of aging have also recently culminated in numerous successes in extending the longevity of animals and the first human trial of a gene therapy to extend life through telomerase manipulation is already underway, albeit on a small scale (Mendell et al.
    [Show full text]
  • Worms Under Stress: Unravelling Genetic Complex Traits Through Perturbation
    Worms under stress: unravelling genetic complex traits through perturbation Miriam Rodriguez Sanchez Thesis committee Promotor Prof. Dr Jaap Bakker Professor of Nematology Wageningen University Co-promotor Dr Jan E. Kammenga Associate professor, Laboratory of Nematology Wageningen University Other members Prof. Dr Bas J. Zwaan, Wageningen University Prof. Dr Hendrik.C. Korswagen, Hubrecht Institute, Utrecht Prof. Dr Ellen Nollen, European Research Institute for the Biology of Ageing (ERIBA), Groningen Dr Gino B. Poulin, University of Manchester, United Kingdom This research was conducted under the auspices of the Graduate School of Production Ecology and Resource Conservation (PE&RC). Worms under stress: unravelling genetic complex traits through perturbation Miriam Rodriguez Sanchez Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 14 March 2014 at 11 a.m. in the Aula. Miriam Rodriguez Sanchez Worms under stress: unravelling genetic complex traits through perturbation 130 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-851-6 A mi padre CONTENTS Contents Chapter 1 General Introduction ........................................................................... 3 Chapter 2 C. elegans stress response and its relevance to complex human disease and aging ................................................. 15 Chapter 3 Uncovering genotype specific variation of Wnt signaling in C. elegans .................................................................... 33 Chapter 4 Genetic variation for stress-response hormesis in C. elegans life span ......................................................................... 55 Chapter 5 Molecular confirmation of trans-regulatory eQTL in C.
    [Show full text]
  • SENS-Research-Foundation-2019
    by the year 2050, cardiovascular an estimated 25-30 the american 85 percent of adults disease years and older age 85 or older remains the most population will suffer from common cause of 2 1 2 dementia. death in older adults. triple. THE CLOCK IS TICKING. By 2030, annual direct The estimated cost of medical costs associated dementia worldwide was 62% of Americans with cardiovascular $818 billion diseases in the united over age 65 have in 2015 and is states are expected to more than one expected to grow to rise to more than chronic condition.1 3 $2 trillion $818 billion. by 2030.1 References: (1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732407/, (2) https://www.who.int/ageing/publications/global_health.pdf, (3) https://www.cdcfoundation.org/pr/2015/heart-disease-and-stroke-cost-america-nearly-1-billion-day-medical-costs-lost-productivity sens research foundation board of directors Barbara Logan Kevin Perrott Bill Liao Chairperson Treasurer Secretary Michael Boocher Kevin Dewalt James O’Neill Jonathan Cain Michael Kope Frank Schuler 02 CONTENTS 2019 Annual Report 04 Letter From The CEO 06 Outreach & Fundraising 08 Finances 09 Donors erin ashford photography 14 Education 26 Investments 20 Conferences & Events 30 Research Advisory Board 23 Speaking Engagements 31 10 Years Of Research 24 Alliance 32 MitoSENS 34 LysoSENS 35 Extramural Research 38 Publications 39 Ways to Donate cover Photo (c) Mikhail Leonov - stock.adobe.com special 10th anniversary edition 03 FROM THE CEO It’s early 2009, and it’s very late at night. Aubrey, Jeff, Sarah, Kevin, and Mike are sitting around a large table covered in papers and half-empty food containers.
    [Show full text]
  • World Population Ageing 2019
    World Population Ageing 2019 Highlights ST/ESA/SER.A/430 Department of Economic and Social Affairs Population Division World Population Ageing 2019 Highlights United Nations New York, 2019 The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. The Population Division of the Department of Economic and Social Affairs provides the international community with timely and accessible population data and analysis of population trends and development outcomes for all countries and areas of the world. To this end, the Division undertakes regular studies of population size and characteristics and of all three components of population change (fertility, mortality and migration). Founded in 1946, the Population Division provides substantive support on population and development issues to the United Nations General Assembly, the Economic and Social Council and the Commission on Population and Development. It also leads or participates in various interagency coordination mechanisms of the United Nations system.
    [Show full text]
  • Shared Ageing Research Models (Sharm): a New Facility to Support Ageing Research
    Biogerontology (2013) 14:789–794 DOI 10.1007/s10522-013-9457-0 METHOD Shared Ageing Research Models (ShARM): a new facility to support ageing research Adele L. Duran • Paul Potter • Sara Wells • Tom Kirkwood • Thomas von Zglinicki • Anne McArdle • Cheryl Scudamore • Qing-Jun Meng • Gerald de Haan • Anne Corcoran • Ilaria Bellantuono Received: 5 July 2013 / Accepted: 16 August 2013 / Published online: 2 October 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract In order to manage the rise in life expec- Wellcome Trust, open to all investigators. It collects, tancy and the concomitant increased occurrence of stores and distributes flash frozen tissues from aged age-related diseases, research into ageing has become murine models through its biorepository and provides a strategic priority. Mouse models are commonly a database of live ageing mouse colonies available in utilised as they share high homology with humans and the UK and abroad. It also has an online environment show many similar signs and diseases of ageing. (MICEspace) for collation and analysis of data from However, the time and cost needed to rear aged communal models and discussion boards on subjects cohorts can limit research opportunities. Sharing of such as the welfare of ageing animals and common resources can provide an ethically and economically endpoints for intervention studies. Since launching in superior framework to overcome some of these issues July 2012, thanks to the generosity of researchers in but requires dedicated infrastructure. Shared Ageing UK and Europe, ShARM has collected more than Research Models (ShARM) (www.ShARMUK.org) 2,500 tissues and has in excess of 2,000 mice regis- is a new, not-for-profit organisation funded by tered in live ageing colonies.
    [Show full text]
  • Viewer Comments
    Article Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis Graphical abstract Authors Christopher D. Wiley, Rishi Sharma, Sonnet S. Davis, ..., Marco Demaria, Arvind Ramanathan, Judith Campisi Correspondence [email protected] (C.D.W.), [email protected] (A.R.), [email protected] (J.C.) In brief Senolytics, transgenic, and pharmacological interventions that selectively kill senescent cells are currently in clinical trials aiming to treat age-related degenerative pathologies. Here, Wiley et al. discover that senescent cells produce multiple signaling lipids known as oxylipins. One oxylipin, dihomo-15d-PGJ2, promotes features of senescence by activating RAS and is released from cells during senolysis, serving as the first biomarker of the Highlights process in culture and in vivo. d Senescent cells make several oxylipins, dihomo- prostaglandins, and leukotrienes d Dihomo-15d-PGJ2 is intracellular during senescence and released during senolysis d Dihomo-15d-PGJ2 activates RAS, promoting senescence and the SASP d Positive feedback between prostaglandins, RAS, and p53 maintains senescence Wiley et al., 2021, Cell Metabolism 33, 1–13 June 1, 2021 ª 2021 Published by Elsevier Inc. https://doi.org/10.1016/j.cmet.2021.03.008 ll Please cite this article in press as: Wiley et al., Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis, Cell Metabolism (2021), https://doi.org/10.1016/j.cmet.2021.03.008 ll Article Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis Christopher D. Wiley,1,2,* Rishi Sharma,1 Sonnet S. Davis,1 Jose Alberto Lopez-Dominguez,1 Kylie P. Mitchell,1 Samantha Wiley,1 Fatouma Alimirah,1 Dong Eun Kim,1 Therese Payne,1 Andrew Rosko,1 Eliezer Aimontche,1 Sharvari M.
    [Show full text]
  • Read Our New Annual Report
    The seeds of a concept. The roots of an idea. The potential of a world free of age-related disease. Photo: Sherry Loeser Photography SENS Research Foundation Board of Directors Barbara Logan, Chair Bill Liao, Secretary Kevin Perrott, Treasurer Michael Boocher Jonathan Cain Kevin Dewalt Michael Kope Jim O’Neill Frank Schüler Sherry Loeser Photography 2 Contents CEO Letter (Jim O’Neill) 4 Finances 5 Donors 6 - 7 Fundraising & Conferences 8 - 9 Around the World with Aubrey de Grey 10 Outreach 11 Founding CEO Tribute & Underdog Pharmaceuticals 12 - 13 Investments 14 Welcome New Team Members 15 Education 16 - 17 Publications & Research Advisory Board 18 Research Summaries 19 - 22 Ways to Donate 23 The SRF Team Front row: Anne Corwin (Engineer/Editor), Amutha Boominathan (MitoSENS Group Lead), Alexandra Stolzing (VP of Research), Aubrey de Grey (Chief Science Officer), Jim O’Neill (CEO), Bhavna Dixit (Research Associate). Center row: Caitlin Lewis (Research Associate), Lisa Fabiny-Kiser (VP of Operations), Gary Abramson (Graphics), Maria Entraigues-Abramson (Global Outreach Coordinator), Jessica Lubke (Administrative Assistant). Back row: Tesfahun Dessale Admasu (Research Fellow), Amit Sharma (ImmunoSENS Group Lead), Michael Rae (Science Writer), Kelly Protzman (Executive Assistant). Not Pictured: Greg Chin (Director, SRF Education), Ben Zealley (Website/Research Assistant/ Deputy Editor) Photo: Sherry Loeser Photography, 2019 3 From the CEO At our 2013 conference at Queens College, Cambridge, I closed my talk by saying, “We should not rest until we make aging an absurdity.” We are now in a very different place. After a lot of patient explanation, publication of scientific results, conferences, and time, our community persuaded enough scientists of the feasibility of the damage repair approach to move SENS and SENS Research Foundation from the fringes of scientific respectability to the vanguard of a mainstream community of scientists developing medical therapies to tackle human aging.
    [Show full text]
  • Age-Dependent Deterioration of Nuclear Pore Assembly in Mitotic
    RESEARCH ARTICLE Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics Irina L Rempel1, Matthew M Crane2, David J Thaller3, Ankur Mishra4, Daniel PM Jansen1, Georges Janssens1, Petra Popken1, Arman Aks¸it1, Matt Kaeberlein2, Erik van der Giessen4, Anton Steen1, Patrick R Onck4, C Patrick Lusk3, Liesbeth M Veenhoff1* 1European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands; 2Department of Pathology, University of Washington, Seattle, United States; 3Department of Cell Biology, Yale School of Medicine, New Haven, United States; 4Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands Abstract Nuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells. Our images of single yeast cells during aging, show that the abundance of several NPC components and NPC assembly factors decreases. Additionally, the single-cell life histories reveal that cells that better maintain those components are longer lived. The presence of herniations at the nuclear envelope of aged cells suggests that misassembled NPCs are accumulated in aged cells. Aged cells show decreased dynamics of transcription factor shuttling and increased nuclear compartmentalization. These functional changes are likely caused by the presence
    [Show full text]
  • HCB 524 — Transhumanism
    HCB 524 Special Topic in Bioethics Fall Semester, 2019. Tuesdays 6-8:30pm. Instructor of Record: Adam Sepe, MA, MLS(ASCP)cm [email protected] Course Description: Transhumanism and [Human?] Dignity. Throughout human history — and prehistory for that matter — technological advancement has drastically altered every aspect of human life. Most of us will say that many advents — such as cooking and the wheel — have been largely, if not entirely, beneficial. Would we say the same of all technology? Surely each of us can list technologies that have, in the very least, some considerable downsides. So while history and experience can tell us that some technologies are beneficial and that some other technologies are harmful, how can we know what kind of impact future technology will have? For now we can’t, and so all we can do is try, to the best of our ability, to imagine such futures and develop our technology with these considerations in mind. ‘Transhumanism’ refers a diverse collection of ideas that have one at least thing in common: through future technology, humanity will be fundamentally altered to an unprecedented degree. Some even believe there will come a time when, through our own action, the word ‘human’ will be obsolete; that we will be succeeded by entities (or an entity) for which ‘human’ does not apply. Most people who identify as transhumanists are, to varying degrees, proponents of such technology. They are in favor of such alterations and they argue that these will be beneficial. In this course, we will take a critical look at transhumanist claims.
    [Show full text]
  • Transhumanism, Metaphysics, and the Posthuman God
    Journal of Medicine and Philosophy, 35: 700–720, 2010 doi:10.1093/jmp/jhq047 Advance Access publication on November 18, 2010 Transhumanism, Metaphysics, and the Posthuman God JEFFREY P. BISHOP* Saint Louis University, St. Louis, Missouri, USA *Address correspondence to: Jeffrey P. Bishop, MD, PhD, Albert Gnaegi Center for Health Care Ethics, Saint Louis University, 3545 Lafayette Avenure, Suite 527, St. Louis, MO 63104, USA. E-mail: [email protected] After describing Heidegger’s critique of metaphysics as ontotheol- ogy, I unpack the metaphysical assumptions of several transhu- manist philosophers. I claim that they deploy an ontology of power and that they also deploy a kind of theology, as Heidegger meant it. I also describe the way in which this metaphysics begets its own politics and ethics. In order to transcend the human condition, they must transgress the human. Keywords: Heidegger, metaphysics, ontology, ontotheology, technology, theology, transhumanism Everywhere we remain unfree and chained to technology, whether we passionately affirm or deny it. —Martin Heidegger I. INTRODUCTION Transhumanism is an intellectual and cultural movement, whose proponents declare themselves to be heirs of humanism and Enlightenment philosophy (Bostrom, 2005a, 203). Nick Bostrom defines transhumanism as: 1) The intellectual and cultural movement that affirms the possibility and desirability of fundamentally improving the human condition through applied reason, especially by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities. 2) The study of the ramifications, promises, and potential dangers of technologies that will enable us to overcome fundamental human limitations, and the related study of the ethical matters involved in developing and using such technologies (Bostrom, 2003, 2).
    [Show full text]