Functional Redundancy of DICER Cofactors TARBP2 and PRKRA During Murine Embryogenesis Does Not Involve Mirna Biogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Functional Redundancy of DICER Cofactors TARBP2 and PRKRA During Murine Embryogenesis Does Not Involve Mirna Biogenesis | INVESTIGATION Functional Redundancy of DICER Cofactors TARBP2 and PRKRA During Murine Embryogenesis Does Not Involve miRNA Biogenesis Sri Ramulu N. Pullagura,*,† Bill Buaas,* Nichelle Gray,* Lindsey C. Krening,* Anuj Srivastava,* and Robert E. Braun*,†,1 *The Jackson Laboratory, Bar Harbor, Maine 04609 and †Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469 ABSTRACT Several in vitro studies have suggested that canonical microRNA (miRNA) biogenesis requires the DICER cofactors TARBP2 and PRKRA for processing of pre-miRNAs to mature miRNAs. To investigate the roles of TARBP2 and PRKRA in miRNA biogenesis in vivo, and to determine possible functional redundancy, we first compared the phenotypes of Tarbp2 and Prkra single and double mutants. In contrast to Dicer 2/2 embryos, which die by embryonic day 7.5 (E7.5), single Tarbp2 2/2 and Prkra 2/2 mice survive beyond E7.5 and either die perinatally or survive and exhibit cranial/facial abnormalities, respectively. In contrast, only a few Tarbp2 2/2; Prkra 2/2 double mutants survived beyond E12.5, suggesting genetic redundancy between Tarbp2 and Prkra during embryonic development. Sequencing of miRNAs from single-mutant embryos at E15.5 revealed changes in abundance and isomiR type in Tarbp2 2/2, but not Prkra 2/2,embryos, demonstrating that TARBP2, but not PRKRA, functions in miRNA biogenesis of a subclass of miRNAs, and suggesting that functional redundancy between TARBP2 and PRKRA does not involve miRNA biogenesis. KEYWORDS TARBP2; PRKRA; PACT; DICER; miRNA ICRORNAS (miRNAs) are a large family of endoge- human genome is estimated to encode 1900 miRNA genes, Mnously encoded 22 nucleotide (nt) noncoding RNAs with many exhibiting developmental and stage-specificexpres- that modulate post-transcriptional gene regulation through sion patterns (Landgraf et al. 2007; Griffiths-Jones et al. 2008). translational control and the decay of messenger RNAs (mRNAs) Mammalian DICER is the principal cytoplasmic enzyme that (Krol et al. 2010). Target specificity of a miRNA is conferred by generates miRNAs and, in association with its double-stranded the seed sequence, which comprises nucleotides 2–8ofthe RNA-Binding Protein (dsRBP) cofactors TARBP2 and PRKRA, 22-nt small RNA (Lewis et al. 2003, 2005; Doench and Sharp binds the 70-nt-long pre-miRNA “hairpin” and cleaves the loop 2004; Grimson et al. 2007; Wee et al. 2012). Extensive base to produce a double-stranded RNA (dsRNA) duplex (Bernstein pairing of the miRNA seed sequence to the target mRNA leads et al. 2001; Grishok et al. 2001; Hutvagner et al. 2001; Ketting to translational repression and mRNA degradation, with 50% et al. 2001; Knight and Bass 2001; Chendrimada et al. 2005; of all protein-coding genes predicted to be miRNA targets (Baek Haase et al. 2005; Lee et al. 2006; Kok et al. 2007; Koscianska et al. 2008; Selbach et al. 2008; Friedman et al. 2009). The et al. 2011). The fully processed duplex RNA is loaded into the RNA-induced silencing complex (RISC), where one strand is Copyright © 2018 Pullagura et al. degraded leaving the guide strand (Kawamata and Tomari doi: https://doi.org/10.1534/genetics.118.300791 Manuscript received December 12, 2017; accepted for publication February 10, 2018; 2010). In TARBP2, the double-stranded RNA-binding domain published Early Online February 21, 2018. (dsRBD) motif is present in two copies along with a C-terminal Available freely online through the author-supported open access option. – “ ” This is an open-access article distributed under the terms of the Creative Commons protein protein Medipal interaction domain that binds Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), DICER (Lee et al. 2004; Laraki et al. 2008; Daniels et al. which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2009). Several in vitro studies have shown that the DICER- Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10. TARBP2 complex exhibits ATP-independent dynamic diffusion 1534/genetics.118.300791/-/DC1. 1Corresponding author: The Jackson Laboratory, 600 Main St., Bar Harbor, ME 4609. along the length of pre-miRNA until it encounters a hairpin E-mail: [email protected] structure, which determines the site of cleavage by DICER Genetics, Vol. 208, 1513–1522 April 2018 1513 (Koh et al. 2012, 2017; Wilson et al. 2015). Prkra is the only was carried out as recommend by the Jackson Laboratory mammalian Tarbp2 paralog and encodes a protein with high mutant repository. sequence similarity and structure to TARBP2. Like TARBP2, PRKRA contains two dsRBDs and a C-terminal Medipal do- High-throughput sequencing of fetal small RNAs main that interacts with DICER (Laraki et al. 2008; Daniels E15.5 C57BL/6J-Tarbp2 tm1reb and C57BL/6J-Prkra lear1J em- and Gatignol 2012). In vitro biochemical and cell culture bryos were generated through timed mating intercrosses of experiments suggest that loss of the DICER cofactors TARBP2 heterozygous male and female mutant mice. Embryos were and PRKRA disrupts pre-miRNA processing, RISC loading of dissected at 15.5 days postcoitum and the associated yolk miRNAs, and RNA interference (RNAi) activity (Chendrimada sac was used for genotyping. The developmental stage was et al. 2005; Haase et al. 2005; Chakravarthy et al. 2010; Daniels confirmed using Theiler staging criteria for mouse embryo and Gatignol 2012). Apart from miRNA biogenesis, TARBP2 is development. Embryos were decapitated and both body reported to bind dsRNA directly and destabilize it (Goodarzi and head were immediately immersed in RNAlater (Thermo et al. 2014), whereas PRKRA regulates translation by activat- Fisher). Whole fetuses (head and body) were homogenized ing protein kinase (PKR) (Daniels and Gatignol 2012), a global in TRIzol followed by purification of total RNA using a inhibitor of translation. TARBP2 also promotes translation by QIAGEN miRNeasy kit (Valencia, CA). High-throughput se- binding and inhibiting PKR during human immunodeficiency quencing libraries containing small noncoding RNAs (e.g., virus infection, thereby assisting in viral replication (Daniels miRNAs or Piwi-interacting RNAs) were generated using and Gatignol 2012). 1 mg of total RNA and an Illumina TruSeq small RNA library Maternally supplied Dicer mRNA is expressed in murine preparation kit (Illumina, Inc.). Individually barcoded fetal oocytes, reaching its highest levels in germinal vesicle-stage libraries were pooled and sequenced (100 bp-end reads) on oocytes, and then falling to its lowest detectable level in a single HiSequation 2000 flow cell lane running version eight-cell-stage embryos (Murchison et al. 2007). Condi- 3 chemistry. Illumina CASAVA software was used to carry tional ablation of Dicer in oocytes using Zp3Cre results arrest out BCL to Fastq conversion. All the samples were passed in meiosis I as a consequence of spindle dysfunction and defects through quality control and sequences with poor base quali- in chromosome congression (Murchison et al. 2007; Tang et al. ties were removed. The adaptor sequences were removed 2007). Loss of zygotic Dicer mRNA, which normally begins to be using the clip_adaptors.pl module of mirdeep (v2.0.0.5) expressed in blastocyst-stage embryos (Murchison et al. 2007), (Friedlander et al. 2012). Raw reads were collapsed based leads to early developmental defects and embryonic arrest on sequence identity using the collapse_reads_md.pl module shortly after gastrulation around embryonic day 7.5 (E7.5) of mirdeep2. Collapsed reads were further annotated for (Bernstein et al. 2003). Furthermore, conditional gene targeting miRNA by mapping to miRBase version 21 (Griffiths-Jones has revealed that DICER functions in the development or homeo- et al. 2008; Kozomara and Griffiths-Jones 2011; Friedlander stasis of embryonic and fetal organs including the cardiovascular, et al. 2012) using the miraligner module of seqbuster genitourinary, musculoskeletal, and nervous systems (Bernstein (Pantano et al. 2010). IsomiRs were identified using the et al. 2003; O’Rourke et al. 2007; Saal and Harvey 2009; Zehir R isomiRs (v1.3.0) package of seqbuster. Pairwise differential et al. 2010; Small and Olson 2011). These data are consistent expression was performed among different groups using with a model where miRNAs function in the proper development DESEQ2 (v1.12.4) (Love et al. 2014). of numerous mammalian organs, and disruptions in this small RNA biogenesis pathway can result in congenital birth defects Quantitative RT-PCR and Taqman assays and in extreme cases fetal death. The mouse Tarbp2 gene en- codes a 365-amino acid protein that is localized predominantly Adult tissues were used for total RNA extraction (TRIzol; to the cytoplasm, and Tarbp2 2/2 mice on a hybrid background Invitrogen, Carlsbad, CA), followed by the production of are viable but have reduced body size and are male sterile random primed cDNA (18080051; Invitrogen). Real-time (Zhong et al. 1999). Previously characterized Prkra mutant mice PCR using SYBR green (ABI 7500; Thermo Fisher) and the are homozygous viable with cranial/facial defects (Rowe et al. 2006; ddCT method for calculating relative gene expression were Dickerman et al. 2011) and, like Tarbp2 mutants, exhibit postnatal used to determine Prkra and Tarbp2 transcript levels. b-actin growth retardation on several genetic backgrounds, including amplification was used as an endogenous control. For miRNA C57BL/6J. The similar but different phenotypes of Tarbp2 2/2 Taqman assays, total RNA is extracted (TRIzol extraction; and Prkra 2/2 mutants led us to investigate their role as DICER Invitrogen) from transformed mouse embryonic fibroblasts cofactors in vivo. (MEFs), followed by production of cDNA specific to each miRNA (4427975; Thermo Fisher) using a Taqman miRNA reverse transcription kit (4366596; Thermo Fischer). Taq- Materials and Methods man PCR using Taqman Universal Master Mix II (4440042; Thermo Fisher) and the ddCT method for calculating rela- Mouse mutants tive transcript expression were used to determine mature Tarbp2tm1reb (Zhong et al.
Recommended publications
  • Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay
    bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, Myles Hochman1,2,3, Brian D. Dill5, Henrik Molina5, Hamed S. Najafabadi6,7, Claudio Alarcon8,9, Hani Goodarzi1,2,3* 1 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA 2 Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA 3 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 4 Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 5 Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 6 Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7 7 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1 8 Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA 9 Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA *Corresponding author: Hani Goodarzi 600 16th St. San Francisco, CA 94158 Phone: 415-230-5189 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Mir-125 in Normal and Malignant Hematopoiesis
    Leukemia (2012) 26, 2011–2018 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu SPOTLIGHT REVIEW MiR-125 in normal and malignant hematopoiesis L Shaham1,2, V Binder3,4,NGefen1,5, A Borkhardt3 and S Izraeli1,5 MiR-125 is a highly conserved microRNA throughout many different species from nematode to humans. In humans, there are three homologs (hsa-miR-125b-1, hsa-miR-125b-2 and hsa-miR-125a). Here we review a recent research on the role of miR-125 in normal and malignant hematopoietic cells. Its high expression in hematopoietic stem cells (HSCs) enhances self-renewal and survival. Its expression in specific subtypes of myeloid and lymphoid leukemias provides resistance to apoptosis and blocks further differentiation. A direct oncogenic role in the hematopoietic system has recently been demonstrated by several mouse models. Targets of miR-125b include key proteins regulating apoptosis, innate immunity, inflammation and hematopoietic differentiation. Leukemia (2012) 26, 2011–2018; doi:10.1038/leu.2012.90 Keywords: microRNA; hematopoiesis; hematological malignancies; acute myeloid leukemia; acute lymphoblastic leukemia MicroRNAs (miRNAs) are 21–23-nucleotide non-coding RNAs that nucleotides with the seed region of miR-125b (ebv-miR-BART21-5p, have crucial roles in fundamental biological processes by ebv-miR-BART8 and rlcv-miR-rL1-25). In humans, as in most of the regulating the levels of multiple proteins. They are transcribed genomes, there are two paralogs (hsa-miR-125b-1 on chromosome as primary miRNAs and processed in the nucleus by the RNase III 11 and hsa-miR-125b-2 on chromosome 21), coding for the same endonuclease DROSHA to liberate 70-nucleotide stem loops, the mature sequence.
    [Show full text]
  • Identification of Sequence Variants
    Wang et al. BMC Medical Genomics (2019) 12:28 https://doi.org/10.1186/s12920-019-0475-x RESEARCH ARTICLE Open Access Identification of sequence variants associated with severe microtia-astresia by targeted sequencing Pu Wang1, Yibei Wang1, Xinmiao Fan1, Yaping Liu2, Yue Fan1, Tao Liu3, Chongjian Chen3, Shuyang Zhang4*† and Xiaowei Chen1*† Abstract Background: Microtia-atresia is characterized by abnormalities of the auricle (microtia) and aplasia or hypoplasia of the external auditory canal, often associated with middle ear abnormalities. To date, no causal genetic mutations or genes have been identified in microtia-atresia patients. Methods: We designed a panel of 131 genes associated with external/middle or inner ear deformity. Targeted genomic capturing combined with next-generation sequencing (NGS) was utilized to screen for mutations in 40 severe microtia-atresia patients. Mutations detected by NGS were filtered and validated. And then mutations were divided into three categories—rare or novel variants, low-frequency variants and common variants—based on their frequency in the public database. The rare or novel mutations were prioritized by pathogenicity analysis. For the low-frequency variants and common variants, we used association studies to explore risk factors of severe microtia-atresia. Results: Sixty-five rare heterozygous mutations of 42 genes were identified in 27 (67.5%) severe microtia-atresia patients. Association studies to determine genes that were potentially pathogenic found that PLEC, USH2A, FREM2, DCHS1, GLI3, POMT1 and GBA genes were significantly associated with severe microtia-atresia. Of these, DCHS1 was strongly suggested to cause severe microtia-atresia as it was identified by both low-frequency and common variants association studies.
    [Show full text]
  • Genome-Wide Recommendation of RNA–Protein Interactions Gianluca Corrado1,*, Toma Tebaldi2, Fabrizio Costa3, Paolo Frasconi4 and Andrea Passerini1,*
    Bioinformatics, 32(23), 2016, 3627–3634 doi: 10.1093/bioinformatics/btw517 Advance Access Publication Date: 8 August 2016 Original Paper Data and text mining RNAcommender: genome-wide recommendation of RNA–protein interactions Gianluca Corrado1,*, Toma Tebaldi2, Fabrizio Costa3, Paolo Frasconi4 and Andrea Passerini1,* 1Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy, 2Centre for Integrative Biology, University of Trento, Trento 38123, Italy, 3Department of Computer Science, Albert- Ludwigs-Universitaet Freiburg, Freiburg 79110, Germany and 4Dipartimento di Ingegneria dell’Informazione, University of Florence, Florence 50139, Italy Associate Editor: Ivo Hofacker *To whom correspondence should be addressed. Received on March 17, 2016; revised on July 29, 2016; accepted on August 2, 2016 Abstract Motivation: Information about RNA–protein interactions is a vital pre-requisite to tackle the dissec- tion of RNA regulatory processes. Despite the recent advances of the experimental techniques, the currently available RNA interactome involves a small portion of the known RNA binding proteins. The importance of determining RNA–protein interactions, coupled with the scarcity of the available information, calls for in silico prediction of such interactions. Results: We present RNAcommender, a recommender system capable of suggesting RNA targets to unexplored RNA binding proteins, by propagating the available interaction information taking into account the protein domain composition and the RNA predicted secondary structure. Our re- sults show that RNAcommender is able to successfully suggest RNA interactors for RNA binding proteins using little or no interaction evidence. RNAcommender was tested on a large dataset of human RBP-RNA interactions, showing a good ranking performance (average AUC ROC of 0.75) and significant enrichment of correct recommendations for 75% of the tested RBPs.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Dissertation
    Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay.
    [Show full text]
  • Bioinformatics Approach to Probe Protein-Protein Interactions
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes;Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. Mesay Habtemariam Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Bioinformatics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2997 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Mesay A. Habtemariam 2013 All Rights Reserved Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes; Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. By Mesay Habtemariam B.Sc. Arbaminch University, Arbaminch, Ethiopia 2005 Advisors: Glen Eugene Kellogg, Ph.D. Associate Professor, Department of Medicinal Chemistry & Institute For Structural Biology And Drug Discovery Danail Bonchev, Ph.D., D.SC. Professor, Department of Mathematics and Applied Mathematics, Director of Research in Bioinformatics, Networks and Pathways at the School of Life Sciences Center for the Study of Biological Complexity. Virginia Commonwealth University Richmond, Virginia May 2013 ኃይልን በሚሰጠኝ በክርስቶስ ሁሉን እችላለሁ:: ፊልጵስዩስ 4:13 I can do all this through God who gives me strength.
    [Show full text]
  • Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, M
    bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, Myles Hochman1,2,3, Brian D. Dill5, Henrik Molina5, Hamed S. Najafabadi6,7, Claudio Alarcon8,9, Hani Goodarzi1,2,3* 1 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA 2 Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA 3 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 4 Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 5 Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 6 Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7 7 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1 8 Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA 9 Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA *Corresponding author: Hani Goodarzi 600 16th St. San Francisco, CA 94158 Phone: 415-230-5189 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Specific Aim # 2A to Determine If Mir-122 Down-Regulates OCLN In
    NOVEL ROLES OF MICRORNAS IN HEPATITIS C by Hossein Sendi A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Charlotte 2013 Approved by: ______________________________ Dr. Mark G. Clemens ______________________________ Dr. Herbert L. Bonkovsky ______________________________ Dr. Laura W. Schrum _____________________________ Dr. Valery Grdzelishvili ____________________________ Dr. Kent E. Curran ii ©2013 Hossein Sendi ALL RIGHTS RESERVED iii ABSTRACT HOSSEIN SENDI. Novel roles of microRNAs in hepatitis C. (Under the direction of MARK CLEMENS and HERBERT BONKOVSKY) Approximately, 170 million people are infected by hepatitis C virus (HCV) worldwide, and of these, nearly 85% will develop chronic hepatitis C (CHC). Despite finding new anti-viral treatment that increase response rate from 45 % to 65-70 %, investigations continue to find more effective treatments for hepatitis C because of side effects and limitations of current treatment. It is known that miR-122 enhances HCV replication by binding to two closely spaced target sites in the 5’-UTR of the viral genome, which leads to an increase in abundance of HCV RNA. We found that miR-122 down- regulates Occludin (OCLN), one of the key HCV receptors, by directly targeting 3’-UTR of OCLN mRNA. We also found that interaction of miR-122 with 3’-UTR of OCLN mRNA eventually results in a decrease in HCV entry. In accordance with our in vitro study, we found an inverse correlation between pre-treatment levels of miR-122 and HCV RNA levels in patients with CHC. This is a new finding of our study which is consonant with our hypothesis that miR-122 may play an antiviral role in uninfected hepatocytes and early stages of HCV infection.
    [Show full text]
  • A Catalogue of Stress Granules' Components
    Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration Master in Oncobiology – Molecular Mechanisms of Cancer This work was done under the supervision of: Clévio Nóbrega, Ph.D UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 i ii A catalogue of Stress Granules’ Components: Implications for neurodegeneration Declaração de autoria de trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. I declare that I am the author of this work, that is original and unpublished. Authors and works consulted are properly cited in the text and included in the list of references. _______________________________ (Catarina Nunes) iii Copyright © 2019 Catarina Nunes A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos. iv Part of the results of this thesis were published in Nunes,C.; Mestre,I.; Marcelo,A. et al. MSGP: the first database of the protein components of the mammalian stress granules. Database (2019) Vol. 2019. (In annex A). v vi ACKNOWLEDGEMENTS A realização desta tese marca o final de uma etapa académica muito especial e que jamais irei esquecer.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Interferon-Inducible Antiviral Effectors
    REVIEWS Interferon-inducible antiviral effectors Anthony J. Sadler and Bryan R. G. Williams Abstract | Since the discovery of interferons (IFNs), considerable progress has been made in describing the nature of the cytokines themselves, the signalling components that direct the cell response and their antiviral activities. Gene targeting studies have distinguished four main effector pathways of the IFN-mediated antiviral response: the Mx GTPase pathway, the 2′,5′-oligoadenylate-synthetase-directed ribonuclease L pathway, the protein kinase R pathway and the ISG15 ubiquitin-like pathway. As discussed in this Review, these effector pathways individually block viral transcription, degrade viral RNA, inhibit translation and modify protein function to control all steps of viral replication. Ongoing research continues to expose additional activities for these effector proteins and has revealed unanticipated functions of the antiviral response. Pattern-recognition Interferon (IFN) was discovered more than 50 years ago in components of the IFNR signalling pathway (STAT1 receptors as an agent that inhibited the replication of influenza (signal transducer and activator of transcription 1), TYK2 (PRRs). Host receptors that can virus1. The IFN family of cytokines is now recognized as (tyrosine kinase 2) or UNC93B) die of viral disease, with sense pathogen-associated a key component of the innate immune response and the the defect in IFNAR (rather than IFNGR) signalling molecular patterns and initiate 6–9 signalling cascades that lead to first line of defence against viral infection. Accordingly, having the more significant role . an innate immune response. IFNs are currently used therapeutically, with the most The binding of type I IFNs to the IFNAR initiates a These can be membrane bound noteworthy example being the treatment of hepatitis C signalling cascade, which leads to the induction of more (such as Toll-like receptors) or virus (HCV) infection, and they are also used against than 300 IFN-stimulated genes (ISGs)10.
    [Show full text]