An Illustrated Dictionary of Optoelectronics and Photonics: Important Terms and Effects

Total Page:16

File Type:pdf, Size:1020Kb

An Illustrated Dictionary of Optoelectronics and Photonics: Important Terms and Effects An Illustrated Dictionary of Optoelectronics and Photonics: Important Terms and Effects Safa Kasap University of Saskatchewan, Canada Harry Ruda University of Toronto, Canada Yann Boucher École Nationale d’Ingénieurs de Brest, France Ali Javan and his associates William Bennett Jr. and Donald Herriott at Bell Labs were first to successfully demonstrate a continuous wave (cw) helium-neon laser operation (1960). (Courtesy of Bell Labs, Lucent Technologies.) Concise Second Student Edition Version 1.3.1 (February 2002) Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics ( 1999 S.O. Kasap) 2 PREFACE The title An Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics reflects exactly the contents of this dictionary. It is not meant to be an encyclopedia in this field but rather a self- contained semiquantitative description of terms and effects that frequently turn up in optoelectronics and photonics courses at the undergraduate level. We have missed many terms but we have also described many; though, undoubtedly, our own biased selection. In our own view there is very little difference between optoelectronics and photonics, except that in the latter there may not be any electronics involved. Today, photonics is a more fashionable term than the old optoelectronics term which usually conjectures images of LEDs, solar cells, optoisolators etc, whereas photonics is closely associated with optical communications and optical signal processing. Please feel free to email us your comments for improving the dictionary for its next edition. Although we may not be able to reply individually, we do read all our email messages and take note of suggestions and comments. S.O. Kasap, Saskatoon, Canada H. Ruda, Toronto, Canada Y. Boucher, Brest, France “I know you believe you understand what you think I said, but I am not sure you realize that what you heard is not what I meant” Alan Greenspan Chairman of US Federal Reserve WARNING All material in this publication is copyrighted. It is unlawful to duplicate any part of this publication. © The authors reserve all rights. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author . © S.O. Kasap, 1996, 1997, 1998 © S.O. Kasap, H. Ruda and Y. Boucher, 1999, 2000 Version 1.3 (October 2000) Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics ( 1999 S.O. Kasap) 3 Absorption coefficient α characterizes the loss of photons as light propagates along a certain direction in a medium. It is the fractional change in the intensity of light per unit distance along the propagation direction, that is, δ α =− I δ I x where I is the intensity of the radiation. The absorption coefficient depends on the photon energy or wavelength λ. Absorption coefficient α is a material property. Most of the photon absorption (63%) occurs over a distance 1/α and 1/α is called the penetration depth δ. Photon energy (eV) 5 4 3 2 1 0.9 0.8 0.7 1 108 Ge 1 107 In0.7Ga0.3As0.64P0.36 In Ga As Si 0.53 0.47 1 106 GaAs (m-1) InP 1 105 a-Si:H 1 104 1 103 0.2 0.4 0.6 0.81.0 1.2 1.4 1.6 1.8 Wavelength ( m) Absorption coefficient ( ) vs. wavelength ( ) for various semiconductors (Data selectively collected and combined from various sources.) Absorption is the loss in the power of an electromagnetic radiation that is traveling in a medium. The loss is due to the conversion of light energy to other forms of energy, e.g. lattice vibrations (heat) during the polarization of the molecules of the medium, local vibrations of impurity ions, excitation of electrons from the valence band to the conduction band etc. Acceptance angle, or the maximum acceptance angle is the largest possible light launch angle from the fiber axis. Light waves within the acceptance angle that enter the fiber become guided along the fiber core. If NA is the numerical aperture of a step index fiber, and light is launched from a α medium of refractive index no, then maximum acceptance angle max is given by α = NA sin max no Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics ( 1999 S.O. Kasap) 4 Total acceptance angle is twice the maximum acceptance angle and is the total angle around the fiber axis within which all light rays can be launched into the fiber. Acceptance cone is a cone with its height aligned with the fiber axis and its apex angle twice the acceptance angle so that light rays within this cone can enter the fiber and then propagate along the fiber. Acceptance cone α 2 max Optical fiber Acceptor atoms are dopants that have one less valency than the host atom. They therefore accept electrons from the valence band (VB) and thereby create holes in the VB which leads to p > n and hence to a p-type semiconductor. Acousto-optic modulator makes use of the photoelastic effect to modulate a light beam. Suppose that we generate traveling acoustic or ultrasonic waves on the surface of a piezoelectric crystal (such as LiNbO3) by attaching an interdigital electrodes onto its surface and applying a modulating voltage at radio frequencies (RF). The piezoelectric effect is the phenomenon of generation of strain in a crystal by the application of an external electric field. The modulating voltage V(t) at electrodes will therefore generate a surface acoustic wave (SAW) via the piezoelectric effect. These acoustic waves propagate by rarefactions and compressions of the crystal surface region which lead to a periodic variation in the density and hence a periodic variation in the refractive index in synchronization with the acoustic wave amplitude. Put differently, the periodic variation in the strain S leads to a periodic variation in n owing to the photoelastic effect. We can simplistically view the crystal surface region as alternations in the refractive index. An incident light beam will be diffracted by this periodic variation in the refractive index. If the acoustic wavelength is Λ, then the condition that gives the angle θ for a diffracted beam to exist is given by the Bragg diffraction condition, 2Λsinθ = λ/n where n is refractive index of the medium. Suppose that ω is the angular frequency of the incident optical wave. The optical wave reflections occur from a moving diffraction pattern which moves with a velocity vacoustic. As a result of the Doppler effect, the diffracted beam has either a slightly higher or slightly lower frequency depending on the direction of the traveling acoustic wave. If Ω is the frequency of the acoustic wave then the diffracted beam has a Doppler shifted frequency given by ω′ = ω ± Ω When the acoustic wave is traveling towards the incoming optical beam, then the diffracted optical beam frequency is up-shifted, i.e. ω′ = ω + Ω. If the acoustic wave is traveling away from the incident optical beam then the diffracted frequency is down-shifted, ω′ = ω − Ω. It is apparent that we can modulate the frequency (wavelength) of the diffracted light beam by modulating the frequency of the of the acoustic waves. (The diffraction angle is then also changed.) Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics ( 1999 S.O. Kasap) 5 Acoustic absorber Induced diffraction grating Diffracted light Incident light Traveling acoustic waves Acoustic create a harmonic variation wave Through light in the refractive index and fronts thereby create a diffraction grating that diffracts the Piezoelectric incident beam through an crystal angle 2 . Interdigitally electroded Modulating RF voltage transducer Incident optical beam Diffracted optical beam Acoustic A A' wave x x B B' n min O n max P Q Acoustic n min sin sin wave fronts O' nmax vacoustic n n n nmin nmax nmin max Simplified Actual Consider two coherent optical waves A and B being "reflected" (strictly, scattered) from two adjacent acoustic wavefronts to become A' and B'. These reflected waves can only constitute the diffracted beam if they are in phase. The angle is exaggerated (typically this is a few degrees). Activation energy is the potential energy barrier that prevents a system from changing from state to another. For example, if two atoms A and B get together to form a product AB, the activation energy is the potential energy barrier against the formation of this product. It is the minimum energy which the reactant atom or molecule must have to be able to reach the activated state and hence form the product. The probability that a system has an energy equal to the activation energy is proportional to − the Boltzmann factor: exp( EA/kT), where EA is the activation energy, k is the Boltzmann constant and T is the temperature (Kelvins). Active device is a device that exhibits gain (current or voltage or both) and has a directional function. Transistors are active devices whereas resistors, capacitors and inductors are passive devices. Active region is the region in a medium where direct electron hole pair (EHP) recombination takes place. For LEDs it is the region where most EHP recombination takes place. In the laser diode it is Illustrated Dictionary of Important Terms and Effects in Optoelectronics and Photonics ( 1999 S.O. Kasap) 6 the region where stimulated emissions exceeds spontaneous emission and absorption. It is the region where coherent emission dominates. Airy disk is the central white spot in the Airy ring pattern Airy rings represent a diffraction pattern from a circular aperture illuminated by a coherent beam of light.
Recommended publications
  • B.Sc. Mechatronics Specialization: Photonic Engineering
    Study plan for: B.Sc. Mechatronics Specialization: Photonic Engineering Faculty of Mechatronics Study plan for reference only; may be subject to change. Semester 1 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Patents and Intelectual Property 30 2 Optics and Photonics Applications 30 15 3 Calculus I 30 45 7 Algebra and Geometry 15 30 4 Engineering Graphics 15 30 2 Materials 30 2 Computer Science I 30 30 6 Engineering Physics 30 30 4 Total ECTS 30 Semester 2 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Economics 30 2 Elective Lecture 1/Virtual and 30 3 Augmented Reality Calculus II 30 30 5 Engineering Graphics ‐ CAD 30 2 Computer Science II 15 15 5 Mechanics I i II 45 45 6 Mechanics of Structures I 30 15 4 Electric Circuits I 30 15 3 Total ECTS 30 1 Study Plan for B.Sc. Mechatronics (Spec. Photonic Engineering) Semester 3 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 0 Foreign Language 60 4 Elective Lecture 2/Introduction to 30 3 MEMS Calculus III 15 30 6 Mechanics of Structures II 15 15 4 Manufacturing Technology I 30 4 Fine Machine Design I 15 30 3 Electric Circuits II 30 3 Basics of Automation and Control I 30 15 4 Total ECTS 31 Semester 4 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Foreign Language 60 4 Elective Lecture 3/Photographic 30 3 techniques in image acqusition Elective Lecture 4 30 3 /Enterpreneurship Optomechatronics 30 30 5 Electronics I 15 15 2 Electronics II 15 1 Fine Machine Design II 15 15 3 Manufacturing Technology 30 2 Metrology 30 30 4 Total ECTS 27 Semester 5 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 0 Foreign Language 60 4 Marketing 30 2 Elective Lecture 5/ Electric 30 2 2 Study Plan for B.Sc.
    [Show full text]
  • Read About the Future of Packaging with Silicon Photonics
    The future of packaging with silicon photonics By Deborah Patterson [Patterson Group]; Isabel De Sousa, Louis-Marie Achard [IBM Canada, Ltd.] t has been almost a decade Optics have traditionally been center design. Besides upgrading optical since the introduction of employed to transmit data over long cabling, links and other interconnections, I the iPhone, a device that so distances because light can carry the legacy data center, comprised of many successfully blended sleek hardware considerably more information off-the-shelf components, is in the process with an intuitive user interface that it content (bits) at faster speeds. Optical of a complete overhaul that is leading to effectively jump-started a global shift in transmission becomes more energy significant growth and change in how the way we now communicate, socialize, efficient as compared to electronic transmit, receive, and switching functions manage our lives and fundamentally alternatives when the transmission are handled, especially in terms of next- interact. Today, smartphones and countless length and bandwidth increase. As the generation Ethernet speeds. In addition, other devices allow us to capture, create need for higher data transfer speeds at as 5G ramps, high-speed interconnect and communicate enormous amounts of greater baud rate and lower power levels between data centers and small cells will content. The explosion in data, storage intensifies, the trend is for optics to also come into play. These roadmaps and information distribution is driving move closer to the die. Optoelectronic will fuel multi-fiber waveguide-to-chip extraordinary growth in internet traffic interconnect is now being designed interconnect solutions, laser development, and cloud services.
    [Show full text]
  • Merging Photonics and Artificial Intelligence at the Nanoscale
    Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale Kan Yao1,2, Rohit Unni2 and Yuebing Zheng1,2,* 1Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA 2Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA *Corresponding author: [email protected] Abstract: Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks. Keywords: deep learning; (nano)photonic neural networks; inverse design; optimization. 1. Introduction Nanophotonics studies light and its interactions with matters at the nanoscale [1]. Over the past decades, it has received rapidly growing interest and become an active research field that involves both fundamental studies and numerous applications [2,3].
    [Show full text]
  • Experimental Photonics Multiple Post-Doctoral Positions Experimental Expertise in Any One of the Following Topics/Areas Is Highly Desired
    Experimental Photonics Multiple Post-Doctoral Positions Experimental Expertise in any one of the following topics/areas is highly desired . Single photon level measurements , quantum communications . Computational imaging, super-resolution imaging, biomedical imaging . Quantum dots, 2D materials, quantum devices, quantum transport . Single molecule spectroscopy/imaging . Fluorescence microscopy . Optical manipulation of spin , ODMR, Magnetometry, NV centers . Nanofabication (Metasurfaces, plasmonics,silicon photonics) . Streak camera or time-correlated single photon counting experiments . Ultrafast spectroscopy, pump-probe measurements . Single nanoparticle/nanoantenna experiments . Coupling of single quantum emitters to nanophotonic structures . Cold atoms and quantum optics . Infrared spectroscopy, thermal emission measurements Please send your full CV and three representative publications to: [email protected] Prof. Zubin Jacob Birck Nanotechnology Center School of Electrical and Computer Engineering Purdue University, U.S.A. www.electrodynamics.org Zubin Jacob Research Group: Purdue University www.electrodynamics.org About the group Google Scholar Page: https://scholar.google.ca/citations?user=8FXvN_EAAAAJ&hl=en Main Research Areas: Casimir forces, quantum nanophotonics, plasmonics, metamaterials, Vacuum fluctuations, open quantum systems Weblink: www.electrodynamics.org Theory and Experiment Twitter: twitter.com/zjacob_group • Opportunity to closely interact with theorists and experimentalists within the group • Opportunity to travel
    [Show full text]
  • Photonics Engineer
    Photonics Engineer Antelope company Antelope DX develops a point-of-need diagnostic platform that allows consumers and healthcare professionals to have on-the-spot access to key health parameters. The Antelope technology aims to offer clinical lab performance with the ease-of-use of a pregnancy test at a consumer price tag. The platform is based on an innovative lab-on-chip technology that can perform a sensitive test on any bodily fluid, without requiring complex user operations or sample preparation. Role The Antelope Photonics Engineer is responsible for the design & development of the silicon photonic chip, located inside the Antelope consumable. He/she will also contribute largely to the optics and photonics aspects of associated hardware such as the Antelope reader. He/she will need to perform these product developments in a way that is compatible to IVD industry standards, including the generation of associated documentation. Responsibilities and duties • Photonics design & optimization of the sensing circuits. • Set up an optical/photonic system model to better predict and understand deviations from the norm by e.g. manufacturing tolerances. • Setting up characterisation, verification and QC equipment and methodologies for the photonic wafers & chips. • Support the design of the optical components of the read-out system. • Support the developmentt of the algorithmic framework that processes the optical signals to a diagnostic answer. • Support the development of R&D tools & methodologies from a system perspective to increase R&D efficiency, throughput and data generation. • Support the improvement of the R&D experimental setups, used to generate assay results. • Setting up testing and verification planning.
    [Show full text]
  • Chapter 5 Optical Properties of Materials
    Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water
    [Show full text]
  • Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
    Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]).
    [Show full text]
  • Negative Refractive Index in Artificial Metamaterials
    1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures
    [Show full text]
  • Illuminating the History and Expanding Photonics Education
    Illuminating the History and Expanding Photonics Education An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science by Nicholas Marshall Brandon McLaughlin Date: 2nd June 2020 Report Submitted to: Worcester Polytechnic Institute Quinsigamond Community College Professor Douglas Petkie Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. ​ Abstract Photonics today is on the cusp of revolutionizing computing, just as it has already revolutionized communication, and becoming to this century what electricity was to the last (Sala, 2016). As the manifestation of mankind's millenia-spanning obsession with light, photonics evolved from optics, which itself developed over the long course of human history. That development has accelerated in the last several centuries, and today optics and photonics act as enablers for a variety of fields from biology to communication. Even so, most people don’t know just how essential optics and photonics are, and today those fields face a major staffing shortage. Most people don’t even know the basic principles of light’s behavior, with few formal education programs that focus on optics and photonics. In order to combat this, various initiatives have strived to drum up more interest in optics and photonics, with several focusing on pre-college age groups in order to get students involved sooner.
    [Show full text]
  • The Role of Nanostructures in Integrated Photonics
    The role of Nanostructures in Integrated Photonics James S. Harris Department of Electrical Engineering Stanford University 3rd U.S.-Korea Forum on Nanotechnology Seoul, Korea April 3 & 4, 2006 U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 1 1993 Photonic Integrated Circuit Soref, Proc. IEEE, 1687 (1993) z Waveguide architecture with butt coupled fibers and edge emitting lasers z Hybrid bonding (non-monolithic) of different structures z Mostly III-V devices, very little electronics U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 2 First Photonic Crystal Device DBR (Distributed Bragg Reflector z Single longitudinal mode emission, z 20-40 quarter wavelength independent of temperature and current injection different index layers (~70 nm) z Circular beam pattern z One-dimensional photonic crystal z Vertical emission--2-D array U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 3 Dimensional Mismatch Between Optics and Electronics U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 4 Unique Photonic Crystal Functionality Electric Field Strength U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 5 Nanoscale Plasmonic Waveguides z 90° bends and splitters can be designed with 100% transmission from microwave to optical frequencies z Provides bridge between dimensions of electronics and photonics z Provides design flexibility for optoelectronic ICs U.S.-Korea Forum on Nanotechnology-Korea-4/3/06 JSH 6 A New Si-Based Optical Modulator Quantum-confined Stark effect (QCSE) z Strongest high-speed optical modulation mechanism z Used today for high-speed, low power telecommunications optical modulators but in III-V semiconductors z QCSE in germanium quantum wells on silicon substrates z Fully compatible with CMOS fabrication z Surprises z works in “indirect gap” semiconductor actually better than in III-V z higher speed (100 GHz) possible Y.
    [Show full text]
  • Photonics and Electro-Optical Engineering
    Photonics and Electro-Optical Engineering The science and technology of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification, and most importantly, the utilization of light as a tool for the benefit of mankind Electro-optics (interaction between light and electrical fields) Optoelectronics (study and application of electronic devices Subfields: that source, Quantum detect, and control Biomedical Optics optics light) Remote Sensing Lightwave Nanophotonics technology Photonics for Energy Neurophotonics Photonics and Electro-Optical Engineering Photonics is an enabling technology1 with general-purpose characteristics applications in : • Communications, information processing and data storage • Health and medicine • Energy • Defense and homeland security • Advanced manufacturing • Advanced metrology 1 enabling general-purpose technology – technology that advances foster innovations across a broad spectrum of applications in a diverse array of economic sectors. Other examples of general-purpose enabling technologies are the transistor and the integrated circuit. Photonics engineering –an enabling technology Not always seen but it is ubiquitous . Consider for example using a smartphone to perform an Internet search. Where is the optics? Efficient Flash light Smart Camera High resolution display cell tower Microprocessor fabricated using optical lithographic techniques fiber optic network Chips inspected with photonics techniques more than 1 million lasers involved in the data signaling Data center 20km of fibers Photonics and Electro-Optical Engineering in the 21st century The term of photonics was coined in analogy with electronics: Electronics involves the control of electric-charge flow (in vacuum or matter); Photonics involves the control of photons (in free space and matter) It is expected that the 21st century will depend as much on photonics as the 20th century depended on electronics1.
    [Show full text]
  • Course Description Learning Objectives/Outcomes Optical Theory
    11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light
    [Show full text]