Environment Status of Blue Compact Galaxies and Trigger of Star Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projekt Ursa Major
12 θ 11 Draco 14 Lynx 7 13 N 15 51 2722 UGC4593 NGC2985 18 NGC3348 NGC3065 47 EW ι NGC3516 49 24NGC2787 6 ρ κ M82 2 S 4 M81 σUGC4687σ2 π NGC3077 1 1 24 19 α 10 2 λ NGC2976 π2 53 6 23 9 7 8 ο 29 3 τ 5 NGC5216 38 35 32 Lyn 23 30 NGC2880 16 NGC5631 NGC5322 22 NGC2742NGC2816 76 NGC2768 NGC4605 47 NGC4041NGC4036 44 NGC5485 NGC5473 α 27 NGC2950 39 M101 NGC3945 υ 17 θ NGC5474 NGC5278 26 86 84 81 75 NGC3809 25 24 ι 83 74 NGC3894 42 38 80ζ 78 70 NGC3610 NGC3757NGC3690BNGC3690A 18 82 ε NGC3838 NGC3613 71 δ68 4139 37 13 NGC3458 NGC2681 73 66 43 NGC2639 β 36 15 33 NGC3898NGC3888 φ NGC3998 M108 NGC4194 NGC3982 26 λ η 44 UGC5720 θ NGC2841 28 NGC3738 M97 24 γ NGC3310UGC5615B 21 M109 ι 34 7 NGC4102 NGC3729NGC3631 31 5 NGC3953 κ 31 NGC4026 NGC4088 NGC3406 11 35 3 NGC3870 UMa NGC4047 NGC3985NGC3928NGC3893 NGC3583 36 NGC3949 χNGC3769 NGC3595 NGC372660 NGC3198 NGC3009 CVn 3332 19 NGC4051 UGC6187UGC6135 23 20 NGC3938 ψ λ 4 67 59 56 42 NGC367558 ω 19 43 9 β NGC3184 25 1715 µ 10 2 38 αα12 47 6 109 32 σ σ 14 57 49 11 2 1 8 α σ 46 NGC3665 38 σ 3 55 UGC613251 13 4 β 7 57 NGC3941 35 21 61 NGC3813 ιι 34 ρ53 9 NGC3694 τ 1 302827 ρ 46 67 2 61 20 37 46 LMi 33 NGC3878 ν 22 15 3 NGC3994 37 75 β 62 15° 41 ξ 42 23 κ ν Bootes 31 24 Cancer 30 43 γ 9 13 Deep Sky•Objekte in Ursa Major (UMa) Object Type RA Dec Mag Size Surf Br Constellation •••••• •••• •• ••• ••• •••• ••••••• ••••••••••••• M101 Galaxy 14h 03m 25.6s +54° 19' 10" 8.2 28.5'x28.3' 14.0 Ursa Major M108 Galaxy 11h 11m 50.1s +55° 38' 39" 10.6 8.6'x2.4' 13.3 Ursa Major M109 Galaxy 11h 57m 54.0s +53° 20' 35" 10.6 7.5'x4.4' -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques. -
The Molecular Gas Content of Shell Galaxies ? B
Astronomy & Astrophysics manuscript no. shells c ESO 2019 August 23, 2019 The molecular gas content of shell galaxies ? B. Mancillas1, F. Combes1; 2, and P.-A. Duc3 1 Observatoire de Paris, LERMA, PSL University, CNRS, Sorbonne University, UPMC, Paris, France 2 Collège de France, 11 Place Marcelin Berthelot, 75005 Paris 3 Université de Strasbourg, CNRS, Observatoire de Strasbourg, F-67000 Strasbourg, France Received 2019/ Accepted 2019 ABSTRACT Shells are fine stellar structures identified by their arc-like shapes present around a galaxy and currently thought to be vestiges of galaxy interactions and/or mergers. The study of their number, geometry, stellar populations and gas content can help to derive the interaction/merger history of a galaxy. Numerical simulations have proposed a mechanism of shell formation through phase wrapping during a radial minor merger. Alternatively, there could be merely a space wrapping, when particles have not made any radial oscillation yet, but are bound by their radial expansion, or produce an edge-brightened feature. These can be distinguished, because they are expected to keep a high radial velocity. While shells are first a stellar phenomenon, HI and CO observations have revealed neutral gas associated with shells. Some of the gas, the most diffuse and dissipative, is expected to be driven quickly to the center if it is travelling on nearly radial orbits. Molecular gas, distributed in dense clumps, is less dissipative, and may be associated to shells. It can then determine the shell velocity, too difficult to obtain from stars. We present here a search for molecular gas in nine shell galaxies with the IRAM-30m telescope. -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission. -
Im Fokus Hyaden in Den
DAS UMFASSENDE ASTRONOMISCHE JAHRBUCH Himmels- EXTRA 2 | 2016 EXTRA Almanach 2017 DATEN | DETAILLIERTE KARTEN | PRAXISTIPPS TOP-EREIGNISSE 2017 NGC 4513 UGCA 272 UGC 5336 M 81 Arp 300 ρ UGC 4539 64° Bode's Galaxy 64° Holmberg IX NGC 2959 Σ UGC 5028 RV NGC 4108 R 1400 NGC 2961 5 Σ 1573 NGC 3077 5 NGC 4256 NGC 4221 IC 2574 The Garland σ 2 Σ 1349 σ NGC 4332 Coddington's Nebula FBS 0959+685 NGC 2892 1 NGC 4210 Σ 1306 DERNGC 4441 WEGWEISERNGC 3622 NGC 2976 2 63° 3 UGC 4775 63° DRA NGC 4391 Sh 86 π 1 NGC 4125 VY NGC 4521 HCG 49 NGC 4545 NGC 3682 NGC 4510 NGC 4121 Σ 1350 FÜR DAS GESAMTE JAHR π 2 62° NGC 3231 62° 76 6 NGC 4205 ASTRONOMISCHE EREIGNISSE 57 UGC 5188 NGC 4081 NGC 3392 UGC 4159 UGC 7179 38 WOCHE FÜR WOCHE NGC 3394 35 UGC 6316 61° MCG +11-12-10 61° Σ 1559 NGC 2814 TOTALE S NGC 4605 UGC 5576 32 NGC 3259 β 408 NGC 2820 NGC 2805 τ SONNENFINSTERNIS NGC 3266 56 CGCG 292-85 60° NGC 4041 60° RY 28 5 ο BEOBACHTUNGSTIPPS UGC 6534 UGC 5776 NGC 4036 NGC 3668 23 UGC 7406 29 Muscida IN DEN USA UGC 6520 Σ 1351 MCG +11-14-33 T MCG +10-17-64 NGC 2742A MCG +10-18-51VON EXPERTEN NGC 3359 59° NGC 2880 59° NGC 3725 Σ 1315 UGC 6528 16 NGC 4547 VERSTÄNDLICHE ERKLÄRUNGEN RS NGC 3978 NGC 3762 NGC 2654 75 Shk 105 UGC 4289 NGC 3945 α FÜR EINSTEIGER ΟΣ 235 Dubhe MCG +10-12-103 74 TT 58° NGC 3835A NGC 2742 58° β 1077 UMA UGC 4730 NGC 4358 NGC 3471 NGC 4335 NGC 3835 NGC 3796 ΟΣΣ NGC 4500 Shk 124 92 NGC 2726 UGC 4549 M 40 NGC 3435 NGC 3894NGC 3809 Shk 113 NGC 4290 NGC 3895 20 NGC 2768 NGC 4149 Helix Galaxy 57° 57° 70 Arp 336 Abell 28 UGC 7635 Σ 1544 NGC 2685 UGC -
A Search for Ultraviolet Emission from Liners
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server A Search for Ultraviolet Emission from LINERs Aaron J. Barth Department of Astronomy, University of California, Berkeley CA 94720-3411 Luis C. Ho Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Alexei V. Filippenko Department of Astronomy, University of California, Berkeley CA 94720-3411 Wallace L. W. Sargent Palomar Observatory, 105-24 Caltech, Pasadena, CA 91125 ABSTRACT We have obtained Hubble Space Telescope Wide Field and Planetary Camera 2 ul- traviolet (UV) 2200 Aandoptical˚ V-band images of 20 low-luminosity active galactic nuclei, most of which are spectroscopically classified as LINERs, in order to search for a possible photoionizing continuum. Six (30%) of the galaxies are detected in the UV. Two of the detected galaxies (NGC 3642 and NGC 4203) have compact, unresolved nuclear UV sources, while the remaining four UV sources (in NGC 4569, NGC 5005, NGC 6500, and NGC 7743) are spatially extended. Combining our sample with that of Maoz et al. (1995), we find that the probability of detection of a nuclear UV source is greatest for galaxies having low internal reddening and low inclination, and we conclude that dust obscuration is the dominant factor determining whether or not a UV source is detected. Large emission-line equivalent widths and the presence of broad-line emission also increase the likelihood of detection of nuclear UV emission. Our results suggest that the majority of LINERs harbor obscured nuclear UV sources, which may be ei- ther accretion-powered active nuclei or young star clusters. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Arxiv:0911.0720V1 [Astro-Ph.CO] 4 Nov 2009 Hywudnthv Enmse.Lt Ye Star- Type, Late Missed
SPITZER OBSERVATIONS OF PASSIVE AND STAR FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE Pasquale Temi1,2, Fabrizio Brighenti3,4, William G. Mathews3 ABSTRACT We describe the infrared properties of a large sample of early type galaxies, comparing data from the Spitzer archive with Ks-band emission from 2MASS. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-MIPS bands (24, 70 and 160µm) and the Ks-band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate of S0 galaxies estimated from the 24µm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. Star formation rates in the most infrared- luminous S0 galaxies approach 1–10 solar masses per year. Consistently with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late type galaxies. For those early-type galaxies also observed at radio frequencies we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. -
Arxiv:0906.4104V1 [Astro-Ph.GA] 22 Jun 2009 Rn Ta.19) H Hhst Osm 1–100 Consume to Has BH the Disk 1992), Accretion Al
TO APPEAR IN The Astrophysical Journal. Preprint typeset using LATEX style emulateapj v. 26/01/00 RADIATIVELY INEFFICIENT ACCRETION IN NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA To appear in The Astrophysical Journal. ABSTRACT We use new central stellar velocity dispersions and nuclear X-ray and Hα luminosities for the Palomar survey of nearby galaxies to investigate the distribution of nuclear bolometric luminosities and Eddington ratios for their central black holes (BHs). This information helps to constrain the nature of their accretion flows and the physical drivers that control the spectral diversity of nearby active galactic nuclei. The characteristic values of 37 the bolometric luminosities and Eddington ratios, which span over 7–8 orders of magnitude, from Lbol ∼< 10 to 44 −1 −9 −1 3 × 10 erg s and Lbol/LEdd ≈ 10 to 10 , vary systematically with nuclear spectral classification, increasing along the sequence absorption-line nuclei → transition objects → low-ionization nuclear emission-line regions → Seyferts. The Eddington ratio also increases from early-type to late-type galaxies. We show that the very modest accretion rates inferred from the nuclear luminosities can be readily supplied through local mass loss from evolved stars and Bondi accretion of hot gas, without appealing to additional fueling mechanisms such as angular momentum transport on larger scales. Indeed, we argue that the fuel reservoir generated by local processes should produce far more active nuclei than is actually observed. This generic luminosity-deficit problem suggests that the radiative efficiency in these systems is much less than the canonical value of 0.1 for traditional optically thick, geometrically thin accretion disks. -
Arxiv:1612.05272V1 [Astro-Ph.GA] 15 Dec 2016 Structure Line by Van De Hulst in 1944, and Its Detection in the Milky Way (Ewen
HI in the Outskirts of Nearby Galaxies A. Bosma Abstract The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial res- olution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degen- eracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understand- ing the role of gas accretion via galactic fountains. The current L cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rota- tion velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies. 1 Introduction In this review, I will discuss the development of HI imaging in nearby galaxies, with emphasis on the galaxy outskirts, and take stock of the subject just before the start of the new surveys using novel instrumentation enabled by the developments in the framework of the Square Kilometer Array (SKA), which was originally partly inspired by HI imaging (Wilkinson 1991). I refer to other reviews on more spe- cific subjects when appropriate. Issues related to star formation are dealt with by Elmegreen and Hunter (this volume), and Koda and Watson (this volume). -
AE Aurigae, 82 AGN (Active Galactic Nucleus), 116 Andromeda Galaxy
111 11 Index 011 111 Note: Messier objects, IC objects and NGC objects with separate entries in Chapters 2–4 are not listed in the index since they are given in numerical order in the book and are therefore readily found. 0111 AE Aurigae, 82 disk, galaxy (continued) AGN (active galactic nucleus), circumstellar, 19, 97, 224 with most number of globular 116 counter-rotating galactic, 34, clusters, 43 Andromeda galaxy, 20, 58 128, 166, 178 with most number of recorded Antennae, the, 142 Galactic, 4 supernovae, 226 Ap star, 86, 87, 235 globular cluster, 37, 221 Ghost of Jupiter, 119 Deer Lick group, 236 globular cluster, ␦ Scuti type star, 230 central black hole, 14, 231 0111 B 86, 205 DL Cas, 55 closest, 8, 37, 192, 208, 221 Baade’s window, 205, 207 Double Cluster, 68, 69 collapsed-core, 196 Barnard 86, 205 Duck Nebula, 95 containing planetary nebulae, 14, Beehive Cluster, 25, 107 Dumbbell Nebula, 18, 221 17, 214, 231 Be star, 26, 67, 69, 94, 101 fraction that are metal-poor, bipolar planetary nebulae, 18, 37 221 Eagle Nebula, 14, 210 fraction that are metal-rich, dex Black-Eye Galaxy, 34, 178 early-type galaxy, 2, 52 37 blazar, 145 Eridanus A galaxy group, 74 highest concentration of blue 245 Blinking Planetary Nebula, 220 Eskimo Nebula, 98 stragglers in, 19, 232 0111 Blue Flash Nebula, 224 ESO 495-G017, 107 in bulge, 36, 197, 212 Blue Snowball, 239 E.T. Cluster, 62 in disk, 37, 221 In- blue straggler, 94, 95, 212, 213 most concentrated, 14, 208, 231 Bubble Nebula, 238 most luminous, 15, 100, 196 bulge, field star contamination, 9–10, 23,