Journal of Mathematical Modeling Vol. 7, No. 2, 2019, pp. 221-229 JMM On some applicable approximations of Gaussian type integrals Christophe Chesneauy∗ and Fabien Navarroz yLMNO, University of Caen, Caen, France email:
[email protected] zCREST, ENSAI, Rennes, France Emails:
[email protected],
[email protected] Abstract. In this paper, we introduce new applicable approximations for Gaussian type integrals. A key ingredient is the approximation of the func- tion e−x2 by the sum of three simple polynomial-exponential functions. Five special Gaussian type integrals are then considered as applications. Approximation of the so-called Voigt error function is investigated. Keywords: Exponential approximation, Gauss integral type function, Voigt error function. AMS Subject Classification: 26A09, 33E20, 41A30. 1 Motivation Gaussian type integrals play a central role in various branches of mathemat- ics (probability theory, statistics, theory of errors . ) and physics (heat and mass transfer, atmospheric science . ). The most famous example of this class of integrals is the Gauss error function defined by y 2 Z 2 erf(y) = p e−x dx: π 0 As for the erf(y), plethora of useful Gaussian type integral have no an- alytical expression. For this reason, a lot of approximations have been ∗Corresponding author. Received: 26 March 2019 / Revised: 28 May 2019 / Accepted: 28 May 2019. DOI: 10.22124/jmm.2019.12897.1250 c 2019 University of Guilan http://jmm.guilan.ac.ir 222 C. Chesneau, F. Navarro developed, more or less complicated, with more or less precision (for the erf(y) function, see [6] and the references therein). In this paper, we aim to provide acceptable and applicable approxi- mations for possible sophisticated Gaussian type integrals.