Glacial Landscapes Lesson 3 Geological Time Lines Worksheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climatic Events During the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil Joseh C
Quaternary International 72 (2000) 73}85 Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil JoseH C. Stevaux* Universidade Federal do Rio Grande do Sul - Instituto de GeocieL ncias - CECO, Universidade Estadual de Maringa& - Geography Department, 87020-900 Maringa& ,PR} Brazil Abstract Most Quaternary studies in Brazil are restricted to the Atlantic Coast and are mainly based on coastal morphology and sea level changes, whereas research on inland areas is largely unexplored. The study area lies along the ParanaH River, state of ParanaH , Brazil, at 223 43S latitude and 533 10W longitude, where the river is as yet undammed. Paleoclimatological data were obtained from 10 vibro cores and 15 motor auger holes. Sedimentological and pollen analyses plus TL and C dating were used to establish the following evolutionary history of Late Pleistocene and Holocene climates: First drier episode ?40,000}8000 BP First wetter episode 8000}3500 BP Second drier episode 3500}1500 BP Second (present) wet episode 1500 BP}Present Climatic intervals are in agreement with prior studies made in southern Brazil and in northeastern Argentina. ( 2000 Elsevier Science Ltd and INQUA. All rights reserved. 1. Introduction the excavation of Sete Quedas Falls on the ParanaH River (today the site of the Itaipu dam). Barthelness (1960, Geomorphological and paleoclimatological studies of 1961) de"ned a regional surface in the Guaira area de- the Upper ParanaH River Basin are scarce and regional in veloped at the end of the Pleistocene (Guaira Surface) nature. King (1956, pp. 157}159) de"ned "ve geomor- and correlated it with the Velhas Cycle. -
Assessing the Chronostratigraphic Fidelity of Sedimentary Geological Outcrops in the Pliocene–Pleistocene Red Crag Formation, Eastern England
Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 Research article Journal of the Geological Society Published online August 14, 2019 https://doi.org/10.1144/jgs2019-056 | Vol. 176 | 2019 | pp. 1154–1168 Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene–Pleistocene Red Crag Formation, eastern England Neil S. Davies1*, Anthony P. Shillito1 & William J. McMahon2 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 2 Faculty of Geosciences, Utrecht University, Princetonlaan 8a, Utrecht 3584 CB, Netherlands NSD, 0000-0002-0910-8283; APS, 0000-0002-4588-1804 * Correspondence: [email protected] Abstract: It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but the implications that this has for interpreting sedimentary outcrop have received little attention. Here we consider how time is preserved at outcrop using the Neogene–Quaternary Red Crag Formation, England. The Red Crag Formation hosts sedimentological and ichnological proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, as ancient depositional environments fluctuated between states of deposition, erosion and stasis. We use these to estimate how much time is preserved at outcrop scale and find that every outcrop provides only a vanishingly small window onto unanchored weeks to months within the 600–800 kyr of ‘Crag-time’. Much of the apparently missing time may be accounted for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not been lost, but is hidden. The time-completeness of the Red Crag Formation at outcrop appears analogous to that recorded in much older rock units, implying that direct comparison between strata of all ages is valid and that perceived stratigraphic incompleteness is an inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful chronicle of Earth history. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2019 Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleontology Commons Recommended Citation Simpson, Emily, "Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia" (2019). Electronic Theses and Dissertations. Paper 3590. https://dc.etsu.edu/etd/3590 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia ________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences with a concentration in Paleontology _______________________________ by Emily Michelle Bruff Simpson May 2019 ________________________________ Dr. Chris Widga, Chair Dr. Blaine W. Schubert Dr. Andrew Joyner Key Words: Paleoecology, land-use, grassy balds, stable isotope ecology, Whitetop Mountain ABSTRACT Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia by Emily Michelle Bruff Simpson Land-use, feeding habits, and response to seasonality by Quaternary megaherbivores in Saltville, Virginia, is poorly understood. Stable isotope analyses of serially sampled Bootherium and Equus enamel from Saltville were used to explore seasonally calibrated (δ18O) patterns in megaherbivore diet (δ13C) and land-use (87Sr/86Sr). -
Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects. -
Formal Ratification of the Subdivision of the Holocene Series/ Epoch
Article 1 by Mike Walker1*, Martin J. Head 2, Max Berkelhammer3, Svante Björck4, Hai Cheng5, Les Cwynar6, David Fisher7, Vasilios Gkinis8, Antony Long9, John Lowe10, Rewi Newnham11, Sune Olander Rasmussen8, and Harvey Weiss12 Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries 1 School of Archaeology, History and Anthropology, Trinity Saint David, University of Wales, Lampeter, Wales SA48 7EJ, UK; Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DB, UK; *Corresponding author, E-mail: [email protected] 2 Department of Earth Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario LS2 3A1, Canada 3 Department of Earth and Environmental Sciences, University of Illinois, Chicago, Illinois 60607, USA 4 GeoBiosphere Science Centre, Quaternary Sciences, Lund University, Sölveg 12, SE-22362, Lund, Sweden 5 Institute of Global Change, Xi’an Jiaotong University, Xian, Shaanxi 710049, China; Department of Earth Sciences, University of Minne- sota, Minneapolis, MN 55455, USA 6 Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada 7 Department of Earth Sciences, University of Ottawa, Ottawa K1N 615, Canada 8 Centre for Ice and Climate, The Niels Bohr Institute, University of Copenhagen, Julian Maries Vej 30, DK-2100, Copenhagen, Denmark 9 Department of Geography, Durham University, Durham DH1 3LE, UK 10 -
Geological Time Scale Lecture Notes
Geological Time Scale Lecture Notes dewansEddy remains validly. ill-judged: Lefty is unhelpable: she leaf her she reinsurers phrases mediates inattentively too artfully?and postmarks Ruthenic her and annual. closed-door Fabio still crenellate his Seventh grade Lesson Geologic Time Mini Project. If i miss a lecture and primitive to copy a classmate's notes find a photocopying. Geologic Time Scale Age of free Earth subdivided into named and dated intervals. The Quaternary is even most recent geological period for time in trek's history spanning the unique two million. Geologic Time and Earth Science Lumen Learning. Explaining Events Study arrangement 3 in Figure B Note that. Do not get notified when each lecture notes to be taken in fact depends on plate boundaries in lecture notes with it was convinced from? Coloured minerals introduction to mining geology lecture notes ppt Mining. The geologic record indicates several ice surges interspersed with periods of. Lecture Notes Geologic Eras Geologic Timescale The geologic timetable is divided into 4 major eras The oldest era is called the Pre-Cambrian Era. 4 Mb Over long periods of debate many rocks change shape and ease as salary are. A Geologic Time Scale Measures the Evolution of Life system Review NotesHighlights Image Attributions ShowHide Details. Lecture notes lecture 26 Geological time scale StuDocu. You are encouraged to work together and review notes from lectures to flex on. These lecture notes you slip and indirect evidence of rocks, and phases and geological time scale lecture notes made by which help you? Index fossil any homicide or plant preserved in the department record write the bond that is characteristic of behavior particular complain of geologic time sensitive environment but useful index. -
Late Quaternary Changes in Climate
SE9900016 Tecnmcai neport TR-98-13 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karien Department of Physical Geography Stockholm University December 1998 Svensk Kambranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 30- 07 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karlen Department of Physical Geography, Stockholm University December 1998 Keywords: Pleistocene, Holocene, climate change, glaciation, inter-glacial, rapid fluctuations, synchrony, forcing factor, feed-back. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports fromi 977-1978 {TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB. Abstract This review concerns the Quaternary climate (last two million years) with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature (up to October 1998) comprising more than 200 scientific papers. -
2.11 Paleontological Resources
2.11 Paleontological Resources 2.11 Paleontological Resources This section discusses existing conditions and potential impacts to paleontological resources resulting from implementation of the proposed project. The analysis is based on a review of existing paleontological resources; technical data; and applicable laws, regulations, and guidelines, and identifies measures to mitigate impacts to paleontological resources. Comments received in response to the Notice of Preparation (NOP) did not pertain to paleontological resources. A copy of the NOP and comment letters received in response to the NOP is included in Appendix A of this EIR. 2.11.1 Existing Conditions Paleontological resources are the remains and/or traces of prehistoric life, exclusive of remains from human activities, and include the localities where fossils were collected and the sedimentary rock formations from which they were obtained/derived. The defining character of fossils is their geologic age. Fossils or fossil deposits are generally regarded as older than 10,000 years, the generally accepted temporal boundary marking the end of the last Late Pleistocene glacial event and the beginning of the current period of climatic amelioration of the Holocene (County of San Diego 2009). A unique paleontological resource is any fossil or assemblage of fossils, or paleontological resource site or formation that meets any one of the following criteria (County of San Diego 2009): The best example of its kind locally or regionally; Illustrates a paleontological or evolutionary principle -
Mid-Pliocene Onset of Quaternary-Style Climates Mid-Pliocene Shifts in Ocean Overturning M
Clim. Past Discuss., 5, 251–285, 2009 www.clim-past-discuss.net/5/251/2009/ Climate of the Past CPD © Author(s) 2009. This work is distributed under Discussions 5, 251–285, 2009 the Creative Commons Attribution 3.0 License. Climate of the Past Discussions is the access reviewed discussion forum of Climate of the Past Mid-Pliocene onset of Quaternary-style climates Mid-Pliocene shifts in ocean overturning M. Sarnthein et al. circulation and the onset of ∗ Title Page Quaternary-style climates Abstract Introduction M. Sarnthein1,2, M. Prange3, A. Schmittner4, B. Schneider1, and M. Weinelt1 Conclusions References 1Institute for Geosciences, University of Kiel, 24098 Kiel, Germany Tables Figures 2Institute for Geology and Paleontology, University of Innsbruck, 6020, Austria 3 MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, J I University of Bremen, 28334 Bremen, Germany 4College of Ocean and Atmospheric Sciences, Oregon State University, J I Corvallis OR 97331-5503, USA Back Close Received: 11 December 2008 – Accepted: 11 December 2008 – Published: 26 January 2009 Full Screen / Esc Correspondence to: M. Sarnthein ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion ∗Invited contribution by M. Sarnthein, EGU Milutin Milankovic Medal winner 2006 251 Abstract CPD A major tipping point of Earth’s history occurred during the mid-Pliocene: the onset of major Northern Hemisphere Glaciation (NHG) and pronounced, Quaternary-style 5, 251–285, 2009 cycles of glacial-to-interglacial climates, that contrast with more uniform climates over 5 most of the preceding Cenozoic, that and continue until today. -
WIAS Discussion Paper No.2018-001 Proboscidean Fossils (Mammalia
WIAS Discussion Paper No.2018-001 Proboscidean fossils (Mammalia) from the Quaternary deposits on Stegodon Cave, Thungwa, Satun Province, southern Thailand November 23, 2018 Jaroon Duangkrayom Nakhon Ratchasima Rajabhat University Yuichiro Nishioka Waseda Institute for Advanced Study, Waseda University Chen Shaokun Chongqing China Three Gorges Museum Pratueng Jintasakul Nakhon Ratchasima Rajabhat University Narongrit Thungprue Thungwa District Rattapong Worawansongkham Manang District 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan Tel: 03-5286-2460 ; Fax: 03-5286-2470 WIAS Discussion Paper No.2018-001 --------------------------------------------- Proboscidean fossils (Mammalia) from the Quaternary deposits on Stegodon Cave, Thungwa, Satun Province, southern Thailand Jaroon Duangkrayom1, Yuichiro Nishioka2*, Chen Shaokun3, Pratueng Jintasakul1, Narongrit Thungprue4, Rattapong Worawansongkham5 Abstract The mammalian fossil assemblage was newly discovered from Quaternary deposits on Stegodon Cave, Thungwa District, Satun Province, southern Thailand. The fossil-bearing laterite is distributed on the floor throughout the cave, which had been possibly transported and reworked several times by tidal stream-flow in the cave, and yields many dental and bone fossils of mammals. The mammalian fossil assemblage is preliminarily classified into six genera belonging to three orders: Proboscidea (Stegodon, Elephas), Perissodactyla (Rhinoceros), and Artiodactyla (Bubalus, Capricornis, Cervus/Rusa). Stegodon molars have irregular enamel folding with scallop chevrons and low amplitude, which are similar to S. orientalis from East Asia rather than S. trigonocephalus from Java. Elephas sp. is indeterminate taxonomically in a species level, but it is somewhat more primitive than extant E. maximus, in having molars with thicker enamel, higher enamel amplitude folding, and lower number of laminae. These characteristics are observed in Pleistocene species of Elephas, such as E. -
Concept of Time in Geology 5
74 [Vol. 21, 14. Concept of Time in Geology 5. Time Scale of the Diluviwm and the Relation among various kinds of Time in Historical Sciences. By Teiichi KOBAYASHI. (Comm.by H. YABE, M.I.A., Jan. 12, 1945.) Diluvium inclusive of Alluvium is a special instant, i. e., a special zone-time of the Phanerozoic eon, in which the time-scale of Historia naturalis merges with that of Historia civfilis. From the geological point of view it can be said that it is a unique zone-time of which the internal structure is exposed. Fight estimations for the length of the Ice Age1) published from 1863 to 1914 varied widely from 0.1 to 0.8 million years. Since then, it has become possible, through the glaciological method, to make a reliable estimation. Many geologists now consider the duration to be from 0.8 to 1 million years. At least %t is beyond doubt that the Quaternary period, which Le Conte once called an era in his proposal for a P s?Jchozoic era is neither an era nor even a period. It {,acted o more than a million years, or a single zone-time, while the Tertiary period, the neat order, covers some GJ million ycas. because such great discrepancy in tine-length easily leads to confusion in the ge~lo •ists' concept of thne, I think, in agreement with Sch_uclert and others, it is anpropriate to elin',in`e e the Qaater?ary from the series of periods in Geclogy. There is further the, definite reason foi• its elimination.