Microarray Expression Profile of Mrnas and Long Noncoding Rnas

Total Page:16

File Type:pdf, Size:1020Kb

Microarray Expression Profile of Mrnas and Long Noncoding Rnas Yang et al. Cell Div (2021) 16:1 https://doi.org/10.1186/s13008-020-00069-y Cell Division RESEARCH Open Access Microarray expression profle of mRNAs and long noncoding RNAs and the potential role of PFK-1 in infantile hemangioma Kaiying Yang1, Xuepeng Zhang2, Linwen Chen3, Siyuan Chen2* and Yi Ji1* Abstract Background: Infantile hemangioma (IH) is the most common benign tumor in children. Long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis. However, the expression levels and biological functions of lncRNAs in IH have not been well-studied. This study aimed to analyze the expression profle of lncRNAs and mRNAs in proliferating and involuting IHs. Methods: The expression profles of lncRNAs and mRNAs in proliferating and involuting IHs were identifed by micro- array analysis. Subsequently, detailed bioinformatics analyses were performed. Finally, quantitative real-time polymer- ase chain reaction (qRT-PCR) and immunohistochemistry (IHC) analyses were conducted to validate the microarray results. Results: In total, 146 diferentially expressed (DE) lncRNAs and 374 DE mRNAs were identifed. The DE mRNAs were enriched mostly in angiogenesis-related biological processes (BPs) and pathways by bioinformatics analysis. In addi- tion, metabolism-related BPs (e.g., “glycogen biosynthetic process” and “metabolic process”) and pathways (e.g., “oxida- tive phosphorylation”) were identifed. A lncRNA-mRNA co-expression network was constructed from 42 DE lncRNAs and 217 DE mRNAs. Twelve lncRNAs were predicted to have cis-regulated target genes. The microarray analysis results were validated by qRT-PCR using 5 randomly selected lncRNAs and 13 mRNAs. The IHC results revealed that both LOXL2 and FPK-1 exhibited higher protein expression levels in proliferating IH than in involuting IH. Moreover, inhibi- tion of PFK-1 could suppress hemangioma-derived endothelial cell proliferation and migration, induce cell arrest, and reduce glucose uptake and lactate and ATP production. Conclusions: The fndings suggest that the identifed DE lncRNAs and mRNAs may be associated with the patho- genesis of IH. The data presented herein can improve our understanding of IH development and provide direction for further studies investigating the mechanism underlying IH. Keywords: Infantile hemangioma, Long noncoding RNA, mRNA, PFK-1, Microarray, Bioinformatics analysis Introduction Infantile hemangioma (IH) is the most common benign tumor in children, with a prevalence of 4–5% [1]. IH is predominantly found in female children; the female:male *Correspondence: [email protected]; [email protected] 1 Division of Oncology, Department of Pediatric Surgery, West China ratio ranges from 1.4:1 to 3:1 [2]. IH is usually absent Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu 610041, at birth and exhibits a characteristic growth pattern China with a proliferating phase lasting for 1 year after birth, 2 Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China with the most rapid growth at 5–8 weeks, followed by Full list of author information is available at the end of the article spontaneous involution lasting up to 5 years [3]. In the © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Yang et al. Cell Div (2021) 16:1 Page 2 of 17 proliferating phase, the IH will enlarge, become more ele- of all patients. All IH tissues were obtained surgically at vated and develop a rubbery consistency; in contrast, in the West China Hospital of Sichuan University. In total, the involuting phase, the IH will fatten and shrink from tissues from six proliferating IHs and four involuting IHs the center outward [4]. IHs are most frequently found in were collected, and all specimens were stored at − 80 °C the head and neck, followed by the trunk and extremi- after excision. Detailed information on the ten patients is ties. Indications for treatment include disfgurement, presented in Additional fle 1: Table S1. impaired function and/or a threat to life [5]. Both vasculogenesis and angiogenesis are widely Cell culture accepted to contribute to the mechanism of IH develop- Hemangioma-derived endothelial cell (HemEC) isola- ment [6]. Several signaling pathways that regulate vascu- tion was performed as described previously [16–18]. Te logenesis and angiogenesis have been demonstrated to HemECs were cultured with Endothelial basal medium be associated with the pathogenesis of IH [7, 8] primarily (EBM-2, Lonza, Walkersville, MD, USA) containing 10% including the vascular endothelial growth factor (VEGF) fetal bovine serum (Gibco), SingleQuot (Lonza), peni- and VEGF receptor pathways, notch pathway, mamma- cillin (Gibco) and streptomycin (Gibco). Te cells were lian target of rapamycin pathway, β-adrenergic signaling grown in a humidifed atmosphere containing 5% CO2 in pathway and angiopoietin and Tie2 signaling pathway [7] the air at 37 °C. [8],. However, the exact pathogenesis of IH has not been fully elucidated. RNA extraction Long noncoding RNAs (lncRNAs) are most commonly Total RNA was extracted from frozen tissues using the defned as transcripts longer than 200 nucleotides with- TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and was out protein-coding function [9]. LncRNAs were pre- further purifed with a miRNeasy Mini Kit (QIAGEN, viously considered transcriptional “noise”. However, Valencia, CA, USA) according to the manufacturer’s accumulated studies indicate that lncRNAs play a critical instructions. RNA quantity and quality were measured role in multiple biological processes (BPs), including the with a NanoDrop 2000 spectrophotometer (Termo regulation of gene expression at the chromatin modifca- Scientifc, Wilmington, DE, USA), and RNA purity and tion level, transcriptional and posttranscriptional pro- integrity were assessed by agarose gel electrophoresis. cessing, and cell diferentiation and development [9, 10]. Ten, RNA samples were stored at -80 °C until further Recently, lncRNAs have attracted increasing attention use. in tumorigenesis for their important roles in stemness acquisition and maintenance, growth and metastasis of Microarray analysis cancer cells, as well as in vascular diseases [11]. Moreo- LncRNA and mRNA expression profling were per- ver, lncRNAs have been demonstrated to play a critical formed using the Afymetrix GeneChip Human Tran- role in endothelial cell (EC) diferentiation and angiogen- scriptome Array 2.0 platform (Afymetrix, Inc., Santa esis [12]. Clara, CA, USA). Tis high-resolution array contains Several studies have reported that lncRNAs are impli- more than 6 million distinct probes, including over cated in IH [13–15]. However, the association between 245,000 mRNA and 40,000 lncRNA probes. Raw micro- IH and the expression levels and biological functions array data were extracted by using the Agilent Feature of lncRNAs remains unclear. Tis study aimed to ana- Extraction (v. 10.7), summarized, normalized and qual- lyze the expression profle of lncRNAs and mRNAs in ity-controlled using the GeneSpring GX program soft- proliferating and involuting IH by microarray analy- ware (v. 12.6.1) package (Agilent Technologies) and R sis. Additionally, using Gene Ontology (GO) and Kyoto program. Ten microarray analysis was performed via Encyclopedia of Genes and Genomes (KEGG) pathway the Gene-Cloud of Biotechnology Information (GCBI, analysis, we identifed the clinical signifcance of diferen- Shanghai, China; https ://www.gcbi.com.cn) platform. tially expressed (DE) lncRNAs and mRNAs and validated Briefy, the DE lncRNAs and mRNAs between the pro- their expression using quantitative real-time polymerase liferating group and the involuting group were frst chain reaction (qRT-PCR) and immunohistochemistry identifed. Second, GO enrichment and KEGG pathway (IHC) staining. analyses were performed with the DE genes. Finally, the DE lncRNAs and mRNAs were used to construct a Materials and methods lncRNA-mRNA co-expression network. LncRNAs and Samples mRNAs signifcantly DE between the two groups were Tis study was approved by the Institutional Review identifed by fltering with an adjusted P value < 0.05 and Board of the West China Hospital of Sichuan University. fold change > 1.5 using SAM analysis. A volcano plot was Written informed consent was obtained from the parents generated to distinguish the signifcantly DE lncRNAs Yang et al. Cell Div (2021) 16:1 Page 3 of 17 and mRNAs. Hierarchical clustering was applied to dis- qRT‑PCR validation play the expression profles of signifcantly DE lncRNAs qRT-PCR analysis was performed using SYBR qPCR and mRNAs between the two groups. Master Mix (Vazyme, Nanjing, China) according to the manufacturer’s protocol. Te qRT-PCR conditions were GO and KEGG pathway analyses as follows: 95 °C for 30 s, followed by 40 cycles at 95 °C for 15 s and 60 °C for 30 s. All experiments were per- GO analysis was used to categorize and describe the bio- formed in triplicate. Te expression levels of lncRNAs logical functions of the signifcantly DE genes using the ΔΔCt and mRNAs were quantifed using the 2− method cellular component (CC), molecular function (MF) and and normalized to GAPDH expression. All the prim- BP categories.
Recommended publications
  • Rnase 2 Sirna (H): Sc-92235
    SANTA CRUZ BIOTECHNOLOGY, INC. RNase 2 siRNA (h): sc-92235 BACKGROUND PRODUCT RNase 2 [ribonuclease, RNase A family, 2 (liver, eosinophil-derived neuro- RNase 2 siRNA (h) is a pool of 2 target-specific 19-25 nt siRNAs designed toxin)], also known as non-secretory ribonuclease, EDN (eosinophil-derived to knock down gene expression. Each vial contains 3.3 nmol of lyophilized neurotoxin), RNase UpI-2 or RNS2, is a 161 amino acid protein that belongs siRNA, sufficient for a 10 µM solution once resuspended using protocol to the pancreatic ribonuclease family. Localizing to lysosome and cytoplasmic below. Suitable for 50-100 transfections. Also see RNase 2 shRNA granules, RNase 2 is expressed in leukocytes, liver, spleen, lung and body Plasmid (h): sc-92235-SH and RNase 2 shRNA (h) Lentiviral Particles: fluids. RNase 2 functions as a pyrimidine specific nuclease, and has a slight sc-92235-V as alternate gene silencing products. preference for uracil. RNase 2 is capable of various biological activities, For independent verification of RNase 2 (h) gene silencing results, we including mediation of chemotactic activity and endonucleolytic cleavage of also provide the individual siRNA duplex components. Each is available as nucleoside 3'-phosphates and 3'-phosphooligonucleotides. The gene encoding 3.3 nmol of lyophilized siRNA. These include: sc-92235A and sc-92235B. RNase 2 maps to human chromosome 14q11.2. STORAGE AND RESUSPENSION REFERENCES Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least 1. Yasuda, T., Sato, W., Mizuta, K. and Kishi, K. 1988. Genetic polymorphism one year from the date of shipment.
    [Show full text]
  • GRAS Notice 653, Lysophospholipase from Aspergillus Nishimurae
    GRAS Notice (GRN) No. 653 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION 000001 AB Enzymes GmbH – Feldbergstrasse 78 , D-64293 Darmstadt May 5, 2016 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GRAS NOTICE FOR lysophospholipase Enzyme Preparation From Trichoderma reesei Pursuant to proposed 21 C.F.R § 170.36, AB Enzymes GmbH is providing in electronic media format (determined to be free of computer viruses), based on scientific procedures – a generally recognized as safe (GRAS) notification for lysophospholipase enzyme preparation from Trichoderma reesei for use as a processing aid used in starch processing. The lysophospholipase enzyme preparation described herein when used as described above and in the attached GRAS notice is exempt from the premarket approval requirements applicable to food additives set forth in Section 409 of the Food, Drug, and Cosmetic Act and corresponding regulations. Please contact the undersigned by telephone or email if you have any questions or additional information is required. Candice Cryne Regulatory Affairs Manager 1 647-919-3964 [email protected] 000002 ~ AB Enzymes AB Enzymes GmbH - Feldbergstrasse 78, 0 -64293 Darmstadt ... AUf'~- 3 GR ·N000(,5 {~g~~~\§\Eli] May 5, 2016 Mfl.'< 21 201S Office of Food Additive Safety (HFS-255), OFFICE OF Center for Food Safety and Applied Nutrition, FOOD ADDITIVE SAFEi'f l Food and Drug Administration, L 5100 Paint Branch Parkway, College Park, MD 20740. RE: GRAS NOTICE FOR lysophospholipase Enzyme Preparation From Trichoderma reesei Pursuant to proposed 21 C.F.R § 170.36, AB Enzymes GmbH is providing in electronic media format (determined to be free of computer viruses), based on scientific procedures- a generally recognized as safe (GRAS) notification for lysophospholipase enzyme preparation from Trichoderma reesei for use as a processing aid used in starch processing .
    [Show full text]
  • Cutinases from Mycobacterium Tuberculosis
    Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis Luc Dedieu, Carole Serveau-Avesque, Ste´phane Canaan* CNRS - Aix-Marseille Universite´ - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France Abstract The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.
    [Show full text]
  • Universal Riboclone™ Cdna Synthesis System
    TECHNICAL MANUAL Universal RiboClone™ cDNA Synthesis System Instructions for Use of Product C4360 Revised 4/21 TM038 Universal RiboClone™ cDNA Synthesis System All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Manual. E-mail Promega Technical Services if you have questions on use of this system: [email protected] 1. Description .........................................................................................................................................2 2. Product Components and Storage Conditions ........................................................................................3 3. General Considerations .......................................................................................................................4 3.A. Methods of cDNA Synthesis .........................................................................................................4 3.B. Choice of Primers .......................................................................................................................4 3.C. cDNA Cloning ............................................................................................................................4 3.D. Choice of Vector .........................................................................................................................8 3.E. RNA Preparation and Handling ...................................................................................................8
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Evidence for Extensive Heterotrophic Metabolism, Antioxidant Action, and Associated Regulatory Events During Winter Hardening In
    Collakova et al. BMC Plant Biology 2013, 13:72 http://www.biomedcentral.com/1471-2229/13/72 RESEARCH ARTICLE Open Access Evidence for extensive heterotrophic metabolism, antioxidant action, and associated regulatory events during winter hardening in Sitka spruce Eva Collakova1, Curtis Klumas2, Haktan Suren2,3,ElijahMyers2,LenwoodSHeath4, Jason A Holliday3 and Ruth Grene1* Abstract Background: Cold acclimation in woody perennials is a metabolically intensive process, but coincides with environmental conditions that are not conducive to the generation of energy through photosynthesis. While the negative effects of low temperatures on the photosynthetic apparatus during winter have been well studied, less is known about how this is reflected at the level of gene and metabolite expression, nor how the plant generates primary metabolites needed for adaptive processes during autumn. Results: The MapMan tool revealed enrichment of the expression of genes related to mitochondrial function, antioxidant and associated regulatory activity, while changes in metabolite levels over the time course were consistent with the gene expression patterns observed. Genes related to thylakoid function were down-regulated as expected, with the exception of plastid targeted specific antioxidant gene products such as thylakoid-bound ascorbate peroxidase, components of the reactive oxygen species scavenging cycle, and the plastid terminal oxidase. In contrast, the conventional and alternative mitochondrial electron transport chains, the tricarboxylic acid cycle, and redox-associated proteins providing reactive oxygen species scavenging generated by electron transport chains functioning at low temperatures were all active. Conclusions: A regulatory mechanism linking thylakoid-bound ascorbate peroxidase action with “chloroplast dormancy” is proposed. Most importantly, the energy and substrates required for the substantial metabolic remodeling that is a hallmark of freezing acclimation could be provided by heterotrophic metabolism.
    [Show full text]
  • Direct Interaction Between Hnrnp-M and CDC5L/PLRG1 Proteins Affects Alternative Splice Site Choice
    Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond To cite this version: David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond. Direct interaction be- tween hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Reports, EMBO Press, 2010, 11 (6), pp.445 - 451. 10.1038/embor.2010.64. hal-03027049 HAL Id: hal-03027049 https://hal.archives-ouvertes.fr/hal-03027049 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. scientificscientificreport report Direct interaction between hnRNP-M and CDC5L/ PLRG1 proteins affects alternative splice site choice David Lle`res1*, Marco Denegri1*w,MarcoBiggiogera2,PaulAjuh1z & Angus I. Lamond1+ 1Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK, and 2LaboratoriodiBiologiaCellulareandCentrodiStudioperl’IstochimicadelCNR,DipartimentodiBiologiaAnimale, Universita’ di Pavia, Pavia, Italy Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an and affect the fate of heterogeneous nuclear RNAs by influencing their abundant nuclear protein that binds to pre-mRNA and is a structure and/or by facilitating or hindering the interaction of their component of the spliceosome complex.
    [Show full text]
  • GRAS Notice 756, Endo-1,4-Beta-Glucanase from Trichoderma Reesei
    GRAS Notice (GRN) No. 756 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm AB Enzymes AB Enzymes GmbH - Feldbergstrasse 78, D-64293 Darmstadt January 5, 2018 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GR GRAS Notification for an endo-1,4-13- glucanase from a genetically modified Trichoderma reesei AB Enzymes GmbH, we are submitting for FDA review, Form 3667, one paper copy, and the enclosed CD, free of viruses, containing a GRAS notification for endo-1,4-13- glucanase. The attached documentation contains the specific information that addresses the safe human food uses for the subject notified substances as discussed in GRAS final rule, 21 CFR Part 170.30 (a)(b), subpart E. Please contact the undersigned by telephone or email if you have any questions or additional information is required. We look forward to your feedback. Candice Cryne Regulatory Affairs Manager 1 647-919-3964 Candi [email protected] Form Approved: 0MB No. 0910-0342 ; Expiration Date: 09/30/2019 (See last page for 0MB Statement) FDA USE ONLY GRN NUMBER DATE OF,~ CEIPT ~(!)t:) "76@ I '2..11-J 2o g DEPARTMENT OF HEAL TH AND HUMAN SERVICES ESTIMATED DAILY INTAKE INTENDED USE FOR INTERNET Food and Drug Administration GENERALLY RECOGNIZED AS SAFE - NAME FOR INTERNET (GRAS) NOTICE (Subpart E of Part 170) KEYWORDS Transmit completed form and attachments electronically via the Electronic Submission Gateway (see Instructions); OR Transmit completed form and attachments in paper format or on physical media to: Office of Food Additive Safety (HFS-200), Center for Food Safety and Applied Nutrition, Food and Drug Administration,5001 Campus Drive, College Park, MD 20740-3835.
    [Show full text]
  • Escherichia Coli and Other Gram-Negative Bacteria
    Biochimica et Biophysica A cta, 737 (1983) 51 - 115 51 Elsevier Biomedical Press BBA 85241 MOLECULAR ARCHITECTURE AND FUNCTIONING OF THE OUTER MEMBRANE OF ESCHERICHIA COLI AND OTHER GRAM-NEGATIVE BACTERIA BEN LUGTENBERG a,, and LOEK VAN ALPHEN h " Department of Molecular Cell Biology' and Institute for Molecular Biology', State University, Transitorium 3, Padualaan 8, 3584 CH Utrecht and h Laboratorium voor de Gezondheidsleer, University of Amsterdam, Mauritskade 57, 1092 AD Amsterdam (The Netherlands) (Received July 26th, 1982) Contents Introduction ............................................................................. 52 A. Scope of this review ...................................................................... 52 B. Ecological considerations relevant to structure and functioning of the outer membrane of Enterobacteriaceae ........ 53 C. General description of the cell envelope of Gram-negative bacteria ..................................... 53 II. Methods for the isolation of outer membranes ...................................................... 58 A. E. coli and S. typhimurium ................................................................. 58 1. Isolation of peptidoglycan-less outer membranes after spheroplast formation ............................ 58 2. Isolation of outer membrane-peptidoglycan complexes ........................................... 58 3. Differential membrane solubilization using detergents ............................................ 59 4. Membrane separation based on charge differences of vesicles ......................................
    [Show full text]
  • The Influence of Adenoviral Infection and the Group VIA Calcium- Independent Phospholipase A2 on Hepatic Lipid Metabolism
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2007 The Influence of Adenoviral Infection and the Group VIA Calcium- Independent Phospholipase A2 on Hepatic Lipid Metabolism William Palmer Wilkins III Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1369 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © William Palmer Wilkins, III, 2008 All Rights Reserved THE INFLUENCE OF ADENOVIRAL INFECTION AND THE GROUP VIA CALCIUM-INDEPENDENT PHOSPHOLIPASE A2 ON HEPATIC LIPID METABOLISM A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. by WILLIAM PALMER WILKINS, III Bachelor of Science, Hampden-Sydney College, 1996 Director: SUZANNE E. BARBOUR, PHD PROFESSOR, DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY Virginia Commonwealth University Richmond, Virginia MAY 2008 ii Acknowledgement I wish to thank my thesis advisor Dr. Suzanne Barbour for her consistent support, guidance and belief in my abilities as a scientist during my years of graduate study. I wish to acknowledge my mother Brenda Burke McGehee, father William Palmer Wilkins, Jr. and close friends for their support and encouragement throughout my life. I wish to thank the following committee members for their efforts during my training: Dr. Shobha Ghosh, Dr.
    [Show full text]
  • I STRUCTURE and FUNCTION of the PALMITOYLTRANSFERASE
    STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Martin Ian Paguio Malgapo December 2019 i © 2019 Martin Ian Paguio Malgapo ii STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 Martin Ian Paguio Malgapo, Ph.D. Cornell University 2019 My graduate research has focused on the enzymology of protein S-palmitoylation, a reversible posttranslational modification catalyzed by DHHC palmitoyltransferases. When I started my thesis work, the structure of DHHC proteins was not known. I sought to purify and crystallize a DHHC protein, identifying DHHC20 as the best target. While working on this project, I came across a protein of unknown function called metallo-β-lactamase domain-containing protein 2 (MBLAC2). A proteomic screen utilizing affinity capture mass spectrometry suggested an interaction between MBLAC2 (bait) and DHHC20 (hit) in HEK-293 cells. This finding interested me initially from the perspective of finding an interactor that could help stabilize DHHC20 into forming better quality crystals as well as discovering a novel protein substrate for DHHC20. I was intrigued by MBLAC2 upon learning that this protein is predicted to be palmitoylated by multiple proteomic screens. Additionally, sequence analysis predicts MBLAC2 to have thioesterase activity. Taken together, studying a potential new thioesterase that is itself palmitoylated was deemed to be a worthwhile project. When the structure of DHHC20 was published in 2017, I decided to switch my efforts to characterizing MBLAC2.
    [Show full text]