Standardy W Procesie Digitalizacji Obiektów Dziedzictwa Kulturowego

Total Page:16

File Type:pdf, Size:1020Kb

Standardy W Procesie Digitalizacji Obiektów Dziedzictwa Kulturowego Standardy w procesie digitalizacji obiektów dziedzictwa kulturowego pod redakcją Grzegorza Płoszajskiego Warszawa 2008 Biblioteka Główna Politechniki Warszawskiej Autorzy/współautorzy Grzegorz Płoszajski i Kazimierz Schmidt (rozdz. 1) Grzegorz Płoszajski (rozdz. 2–6) Tomasz Kalota, Dariusz Paradowski, Grzegorz Płoszajski i Kazimierz Schmidt (rozdz. 7) Grzegorz Płoszajski (rozdz. 8–9) Opiniodawca Mirosław Górny Utwór udostępniany na licencji Creative Commons 2.5 Polska w wersji: Uznanie autorstwa Użycie niekomercyjne Na tych samych warunkach Pewne prawa zastrzeżone dla zespołu autorskiego. Pełny tekst licencji dostępny na stronie: http://creativecommons.org/licenses/by-nc-sa/2.5/pl/ Biblioteka Główna Politechniki Warszawskiej Pl. Politechniki 1, 00-661 Warszawa, tel. 022 234 74 00, 022 621 13 70 Biblioteka Cyfrowa www.bg.pw.edu.pl/dlibra ISBN 978-83-7207-797-4 Druk: Oficyna Wydawnicza Politechniki Warszawskiej ul. Polna 50, 00-644 Warszawa, tel. 022 825 75 18, 022 234 75 03, zam. 622/08 Księgarnia internetowa: www.wydawnictwopw.pl, e-mail: [email protected] 2 Spis treści PRZEDMOWA ..................................................................................................................................................... 9 1 WPROWADZENIE .................................................................................................................................. 11 1.1 STANDARDY TECHNICZNE W DIGITALIZACJI — UWAGI WSTĘPNE........................................................ 11 1.2 METADANE OBIEKTÓW CYFROWYCH .................................................................................................. 15 1.3 ZAKRES TEMATYCZNY OPRACOWANIA ............................................................................................... 19 1.4 UWAGI NA TEMAT OBIEKTÓW 3D I OBIEKTÓW ZŁOŻONYCH ................................................................ 22 1.4.1 Obiekty cyfrowe 3D ....................................................................................................................... 22 1.4.2 Obiekty fizyczne złożone ................................................................................................................ 23 2 O DIGITALIZACJI DZIEDZICTWA KULTUROWEGO .................................................................. 24 2.1 DĄŻENIE DO STANDARYZACJI ............................................................................................................. 24 2.1.1 Typowe obiekty digitalizowane ..................................................................................................... 24 2.1.2 Potrzeba standaryzacji .................................................................................................................. 25 2.1.3 Znaczenie metajęzyków XML i SGML ........................................................................................... 26 2.1.4 Standardy a polityka digitalizacji .................................................................................................. 28 2.2 WSTĘPNE UWAGI DOTYCZĄCE PRZYKŁADÓW PODEJŚCIA DO DIGITALIZACJI ....................................... 29 2.2.1 O standardach metadanych ogólnie .............................................................................................. 29 2.2.2 Metadane dla archiwów, bibliotek i muzeów ................................................................................ 30 2.2.2.1 Uwagi dotyczące bibliotek .................................................................................................................. 30 2.2.2.2 Uwagi dotyczące archiwów ................................................................................................................. 31 2.2.2.3 Uwagi dotyczące muzeów ................................................................................................................... 32 2.2.2.4 Object ID — standard informacji o obiektach kultury ........................................................................ 35 2.2.2.5 Europeana — metadane opisowe w formacie opartym na Dublin Core .............................................. 37 2.2.2.6 Sprowadzanie metadanych opisowych do Dublin Core – projekt Matapihi ........................................ 38 2.2.2.7 Metadane opisowe — podsumowanie ................................................................................................. 39 2.2.3 Kwestie techniczne w przypadku plików graficznych .................................................................... 39 2.2.4 Uwagi na temat zapisu struktury informacji ................................................................................. 41 2.2.5 Uwagi na temat rozpoznawania tekstu i jego struktury programami OCR ................................... 41 2.2.6 Wstępne wiadomości o metadanych dla obiektów graficzno-tekstowych ...................................... 43 2.3 STANDARDY PROPONOWANE PRZEZ BIBLIOTEKĘ KONGRESU USA .................................................... 45 2.3.1 MIX................................................................................................................................................ 46 2.3.2 METS ............................................................................................................................................. 47 2.3.3 PREMIS ......................................................................................................................................... 48 2.3.4 TextMD .......................................................................................................................................... 49 2.3.5 MARCXML, MODS i in. — uwagi ................................................................................................ 50 2.4 STANDARDY PROPONOWANE DLA OBIEKTÓW TEKSTOWYCH .............................................................. 51 2.4.1 TEI — Text Encoding Initiative ..................................................................................................... 51 3 2.4.2 SGML ............................................................................................................................................ 53 2.4.3 Uwagi o METS w odniesieniu do obiektów graficzno-tekstowych ................................................ 53 2.4.4 DocBook ........................................................................................................................................ 53 2.4.5 Tekst prosty ................................................................................................................................... 54 2.5 STANDARDY „REGIONALNE” W RAMACH POLITYK/STRATEGII DIGITALIZACJI ..................................... 54 2.5.1 Biblioteka Narodowa Australii ...................................................................................................... 55 2.5.2 AIATSIS — Australian Institute of Aboriginal and Torres Strait Islander Studies ....................... 55 2.5.3 Biblioteka Narodowa Nowej Zelandii ........................................................................................... 55 2.5.4 Biblioteka Narodowa Niemiec....................................................................................................... 56 2.5.5 Biblioteka Narodowa Włoch ......................................................................................................... 57 2.5.6 Prace w Wielkiej Brytanii ............................................................................................................. 57 2.5.7 Biblioteka narodowa Republiki Czeskiej ....................................................................................... 58 2.6 INICJATYWY UNII EUROPEJSKIEJ ........................................................................................................ 59 2.6.1 Minerva ......................................................................................................................................... 59 2.6.2 Erpanet .......................................................................................................................................... 60 2.6.3 Prestospace ................................................................................................................................... 60 2.6.4 Europeana ..................................................................................................................................... 61 2.7 DIGITALIZACJA CZASOPISM — PRZEGLĄD PROJEKTÓW I STANDARDÓW ............................................. 61 2.7.1 National Digital Newspapers Program ......................................................................................... 62 2.7.2 Chronicling America: Historic American Newspapers ................................................................. 63 2.7.3 Biblioteka Narodowa Wielkiej Brytanii......................................................................................... 64 2.7.4 Biblioteka Narodowa Australii ...................................................................................................... 65 2.7.5 Biblioteka Narodowa Nowej Zelandii ........................................................................................... 65 2.7.6 Biblioteka Narodowa Holandii ..................................................................................................... 66 2.8 UWAGI DOTYCZĄCE DIGITALIZACJI CZASOPISM .................................................................................. 66 2.9 TEI, ALTO W POŁĄCZENIU Z INNYMI STANDARDAMI ......................................................................... 67 2.9.1 METS i TEI ...................................................................................................................................
Recommended publications
  • Lesson05 Colorimetry.Pdf
    VIDEO SIGNALS Colorimetry WHAT IS COLOR? Electromagnetic Wave Spectral Power Distribution Illuminant D65 (nm) Reflectance Spectrum Spectral Power Distribution Neon Lamp WHAT IS COLOR? Spectral Power Distribution Illuminant F1 Spectral Power Distribution Under D65 Reflectance Spectrum Spectral Power Distribution Under F1 WHAT IS COLOR? Observer Stimulus WHAT IS COLOR? M L Spectral Ganglion Horizontal Sensibility of the Bipolar Rod S L, M and S Cone Cones Light Light Amacrine Retina Optic Nerve Color Vision Rods Cones Cones and Rods5 THE ELECTROMAGNETIC SPECTRUM Incident light prism SPECTRAL EXAMPLES The light emitte d from a Laser isstitltrictly monochromatic and its spectrum is made from a single line where all the energy is concentrated. Laser He - Ne SPECTRAL EXAMPLES The light emitted from the 3 Blue different phosphors of a traditional color CthdCathode Ray Tube (CRT) green red SPECTRAL EXAMPLES The light emitted from a gas vapour lamp is a set of diffent spectral lines. Their value is linked to the allowed energy steps performed by the excited gas electrons. SPECTRAL EXAMPLES Many objects, when heated, emit light with a spectral distribution close to the “Black body” radiation. It follows the Planck law and its shape depends only on the absolute object temperature. Examples: - the stars, -the sun. - incandenscent lamps THE “BLACK BODY” LAW Planck's law states that: where: I(ν,T) dν is the amount of energy per unit surface area per unit time per unit solid angle emitted in the frequency range between ν and ν + dν by a black body at temperature T; h is the Planck constant; c is the speed of light in a vacuum; k is the Boltzmann constant; ν is frequency of electromagnetic radiation; T is the temperature in Kelvin.
    [Show full text]
  • NEC Multisync® PA311D Wide Gamut Color Critical Display Designed for Photography and Video Production
    NEC MultiSync® PA311D Wide gamut color critical display designed for photography and video production 1419058943 High resolution and incredible, predictable color accuracy. The 31” MultiSync PA311D is the ultimate desktop display for applications where precise color is essential. The innovative wide-gamut LED backlight provides 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3, enabling more accurate colors to be displayed on screen. Utilizing a high performance IPS LCD panel and backed by a 4 year warranty with Advanced Exchange, the MultiSync PA311D delivers high quality, accurate images simply and beautifully. Impeccable Image Performance The wide-gamut LED LCD backlight combined with NEC’s exclusive SpectraView Engine deliver precise color in every environment. • True 4K resolution (4096 x 2160) offers a high pixel density • Up to 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3 • 10-bit HDMI and DisplayPort inputs display up to 1.07 billion colors out of a palette of 4.3 trillion colors Ultimate Color Management The sophisticated SpectraView Engine provides extensive, intuitive control over color settings. • MultiProfiler software and on-screen controls provide access to thousands of color gamut, gamma, white point, brightness and contrast combinations • Internal 14-bit 3D lookup tables (LUTs) work with optional SpectraViewII color calibration solution for unparalleled color accuracy A Perfect Fit for Your Workspace A Better Workflow Future-proof connectivity, great ergonomics, and VESA mount Exclusive,
    [Show full text]
  • Preparing Images for Delivery
    TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives.
    [Show full text]
  • Color Images, Color Spaces and Color Image Processing
    color images, color spaces and color image processing Ole-Johan Skrede 08.03.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides by Fritz Albregtsen today’s lecture ∙ Color, color vision and color detection ∙ Color spaces and color models ∙ Transitions between color spaces ∙ Color image display ∙ Look up tables for colors ∙ Color image printing ∙ Pseudocolors and fake colors ∙ Color image processing ∙ Sections in Gonzales & Woods: ∙ 6.1 Color Funcdamentals ∙ 6.2 Color Models ∙ 6.3 Pseudocolor Image Processing ∙ 6.4 Basics of Full-Color Image Processing ∙ 6.5.5 Histogram Processing ∙ 6.6 Smoothing and Sharpening ∙ 6.7 Image Segmentation Based on Color 1 motivation ∙ We can differentiate between thousands of colors ∙ Colors make it easy to distinguish objects ∙ Visually ∙ And digitally ∙ We need to: ∙ Know what color space to use for different tasks ∙ Transit between color spaces ∙ Store color images rationally and compactly ∙ Know techniques for color image printing 2 the color of the light from the sun spectral exitance The light from the sun can be modeled with the spectral exitance of a black surface (the radiant exitance of a surface per unit wavelength) 2πhc2 1 M(λ) = { } : λ5 hc − exp λkT 1 where ∙ h ≈ 6:626 070 04 × 10−34 m2 kg s−1 is the Planck constant. ∙ c = 299 792 458 m s−1 is the speed of light. ∙ λ [m] is the radiation wavelength. ∙ k ≈ 1:380 648 52 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant. T ∙ [K] is the surface temperature of the radiating Figure 1: Spectral exitance of a black body surface for different body.
    [Show full text]
  • 39 Color Variations in Pseudo Color Processing of Graphical Images
    International Journal of Advanced Research and Development ISSN: 2455-4030 www.newresearchjournal.com/advanced Volume 1; Issue 2; February 2016; Page No. 39-43 Color variations in pseudo color processing of graphical images using multicolor perception 1 Selvapriya B, 2 Raghu B 1 Research Scholar, Department of Computer Science and Engineering, Bharath University, Chennai, India 2 Professor and Dean, Department of Computer Science and Engineering, Sri Raman jar Engineering College, Chennai, India Abstract In digital image processing, image enhancement is employed to give a better look to an image. Color is one of the best ways to visually enhance an image. Pseudo-color image processing assigns color to grayscale images. This is useful because the human eye can distinguish between millions of colures but relatively few shades of gray. Pseudo-coloring has many applications on images from devices capturing light outside the visible spectrum, for example, infrared and X-ray. A Color model is a specification of a color coordinate system and the subset of visible colors in this coordinate system. The key observation in this work is variation of colors in Pseudo color images using multicolor perception. This technique can be successfully applied to a variety of gray scale images and videos. Keywords: Pseudo color, color models, reference grey images, multicolor perception, image processing, computer graphics. 1. Introduction on the observer. Taking these advantages of human visual This paper is based on the idea that the human visual system perception to enhance an image a technique is applied which is more responsive to color than binary or monochrome is called pseudo color.
    [Show full text]
  • Rec. 709 Color Space
    Standards, HDR, and Colorspace Alan C. Brawn Principal, Brawn Consulting Introduction • Lets begin with a true/false question: Are high dynamic range (HDR) and wide color gamut (WCG) the next big things in displays? • If you answered “true”, then you get a gold star! • The concept of HDR has been around for years, but this technology (combined with advances in content) is now available at the reseller of your choice. • Halfway through 2017, all major display manufacturers started bringing out both midrange and high-end displays that have high dynamic range capabilities. • Just as importantly, HDR content is becoming more common, with UHD Blu-Ray and streaming services like Netflix. • Are these technologies worth the market hype? • Lets spend the next hour or so and find out. Broadcast Standards Evolution of Broadcast - NTSC • The first NTSC (National Television Standards Committee) broadcast standard was developed in 1941, and had no provision for color. • In 1953, a second NTSC standard was adopted, which allowed for color television broadcasting. This was designed to be compatible with existing black-and-white receivers. • NTSC was the first widely adopted broadcast color system and remained dominant until the early 2000s, when it started to be replaced with different digital standards such as ATSC. Evolution of Broadcast - ATSC 1.0 • Advanced Television Systems Committee (ATSC) standards are a set of broadcast standards for digital television transmission over the air (OTA), replacing the analog NTSC standard. • The ATSC standards were developed in the early 1990s by the Grand Alliance, a consortium of electronics and telecommunications companies assembled to develop a specification for what is now known as HDTV.
    [Show full text]
  • Color Management the Basics Simply Explained
    How-to: AccurioPro Flux Color management The basics simply explained In this How-to, we explain why color management is necessary and what happens in the background. AccurioPro Flux | Color management: The basics simply explained The colors in a print job can come from different sources: Images from cameras or scanners, as well as graphics, text and layout from various applications. In each source, color can be defined differently. Also the output of each printer is a little different. One printer can print many colors, another only a few. Even printers of the same type and manufacturer always print colors a little differently. In addition, the color rendering is influenced by the toner used and the selected paper. With good color management, it is possible to control the colors in the print job and set up a color-constant printing process. The aim is to achieve a constant color rendering across the various printers and papers according to a predefined standard. If you print a job on different printers with the same paper, you get consistent color rendering. If a customer orders a print job at a later date, they receive an output in the same colors as for the initial order. A few basics in advance for a better understanding: What is a color space A color space includes all the colors that a device or medium can display. The larger a color space is, the more colors can be displayed. Each printer and monitor has its own color space. These color spaces vary in size so that different monitors and printers can display different numbers of colors.
    [Show full text]
  • Display Unit Display Controller
    4-692-870-16 (1) Display Unit Display Controller Operating Instructions Before operating the unit, please read this manual and the supplied Before Using This Unit document thoroughly and retain it for future reference. ZRD-1/ZRD-2 ZRCT-100/ZRCT-200 © 2016 Sony Corporation Table of Contents Please Read This First .............................................. 3 Manual Structure ................................................... 3 Licenses ................................................................. 3 Condensation ......................................................... 3 Security .................................................................. 3 Burn-in ................................................................... 3 Defective pixels ..................................................... 3 General Precautions ............................................... 3 Overview .................................................................... 4 System Configuration Diagram ............................. 4 Parts Identification ................................................... 5 ZRD-1/ZRD-2 Display Unit .................................. 5 ZRCT-100/ZRCT-200 Display Controller ............ 6 Turning the Power On/Off ....................................... 8 Turning the Power On ............................................ 8 Turning the Power Off ........................................... 9 Selecting the Video Input ....................................... 10 Changing the Display Starting Positions of Pictures .............................................................
    [Show full text]
  • GMG Colorserver Tutorial: Creating a New MX4 Color Profile
    Tutorial GMG ColorServer Profile Editor Creation of New MX4 Conversion or Separation Profiles © 2006–2007 GMG GmbH & Co. KG GMG GmbH & Co. KG Moempelgarder Weg 10 72072 Tuebingen Germany This documentation and described products are subject to change without notice. GMG GmbH & Co. KG makes no guaranty as to the accuracy of any and all information and procedures described in this documentation. To the maximum extent permitted by applicable law, in no event shall GMG GmbH & Co. KG or the author be liable for any special, incidental, direct, indirect, or consequential damages whatsoever (including, without limitation, injuries, damages for data loss, loss of business profits, business interruption, loss of business information, or any other pecuniary loss) arising out of the use of or inability to use the software or this documentation or the provision of or failure to provide Support Services, even if GMG GmbH & Co. KG has been advised of the possibility of such damages. Reprinting and copying, as well as other duplication including excerpts of this document, are prohibited without the written permission of GMG GmbH & Co. KG. This also applies to electronic copies. GMG, the GMG Logo, and GMG product names and logos are either registered trademarks or trademarks owned by GMG GmbH & Co. KG. All brand names and trademarks are the property of the respective owner and are expressly recognized as such. If brand names, trademarks, or other material are used without the permission of the respective owners, we request appropriate notification. We will immediately stop use of said items. PANTONE® colors displayed in the software application or in the user documentation may not match PANTONE identified standards.
    [Show full text]
  • Digital Printing Insights #6: Color Space Conversions and Gamut Loss © 2009 Michael E
    Digital Printing Insights #6: Color Space Conversions and Gamut Loss © 2009 Michael E. Gordon “I need to convert an image from AdobeRGB to CMYK, but I’m concerned about color shifts and need to retain 100% of the Adobe RGB gamut (gamut = the entire range of color that can be reproduced within this color space). Is this possible?“ Unfortunately, it is not possible. Any time we convert from a wide gamut color space such as Adobe RGB or ProPhoto RGB to a smaller color space (such as any of the CMYK color spaces), we diminish the color gamut. Take a look at the graphic at left, which compares the Adobe RGB color space with the ProPhoto RGB color space. Here we can see that Adobe RGB (the solid color space) is considerably smaller in gamut compared to the AdobeRGB vs. ProPhotoRGB massive ProPhoto RGB space (represented by the wire frame). Before I proceed any further, let me clarify something which you might already be thinking: “so, I can convert from Adobe RGB to ProPhoto to gain a wider color gamut?” No! We can only convert downward, from a larger color space to a smaller color space. Converting upward will not expand the gamut any further, as it has already been limited by the origin color space (compare this to pixel resolution, whereby interpolating [or "uprezzing"] does not gain us additional data beyond what was already provided by the sensor). Let’s take a look at another comparison (at left), this time Adobe RGB to sRGB, the color space we all view on our monitors.
    [Show full text]
  • And Weighing a Mere 12.5Lb., the Remarkable GD-32X1 Delivers Versatile Performance Anywhere, All the Time
    JVC’s newest communication tool: A high-resolution monitor displaying GD-32X1 32-inch Full HD LCD Monitor enhanced stills and videos to heighten appeal wherever it is used. Boasting advanced technologies and a super-thin, lightweight design, the GD-32X1 is an innovative monitor that can be flexibly and conveniently positioned anywhere. Whether mounted on a wall or even hung from the ceiling, this new monitor is ideal for use in locations such as buildings for the general public, stores and shops, businesses, and academic institutions, as well as for surveillance and medical reference applications. What’s more, the use of fewer material resources in manufacture helps to minimise impact on the environment. I Array of input terminals I Major specifications To suit various applications, the monitor is equipped with a number of connectors Screen size 32-inch from HDMI to D-sub as well as USB and SD card slots to enable playback or Aspect ratio 16:9 reproduction of different sources including Blu-ray, PCs, digital photos, and HD Effective display area (W x H) 698.4 x 392.9mm broadcasting. Number of pixels (horizontal x vertical) 1920 x 1080 Displayable number of colours Approx. 1.073 billion VESA compliant mount Viewing angle 178° (top/bottom and left/right) Contrast ratio 4,000:1 Brightness 400cd/m2 HDMI x 2 (CEC) Analogue RGB (using supplied conversion cable) Input terminals Component/composite (using supplied conversion cable) RS-232C (using supplied conversion cable) Stereo 3.5mm diameter mini-jack D-sub Output terminal Audio for optional speaker AUDIO RS-232C Rated audio output (JEITA) 5w + 5w (using optional speaker at 12 ohms) Photo viewer slot SD/SDHC card , USB-type compliant, JPEG reproduction 100Hz/120Hz Clear Motion Drive III G (ON/OFF) SD card slot USB-type slot Weight 5.7kg Dimensions (W x H x D) 772.4 x 496.1 x 22.5mm (excluding VESA mount) DC28V, AC adaptor 100-240V, 50/60Hz Power requirements (cable lengths: approx.
    [Show full text]
  • Numerical Analysis of the Change in Skin Color Due to Ecchymosis and Petechiae Generated by Cupping: a Pilot Study Soo-Byeong Kim 1, Yong-Heum Lee 2,*
    J Acupunct Meridian Stud 2014;7(6):306e317 Available online at www.sciencedirect.com Journal of Acupuncture and Meridian Studies journal homepage: www.jams-kpi.com - RESEARCH ARTICLE - Numerical Analysis of the Change in Skin Color due to Ecchymosis and Petechiae Generated by Cupping: A Pilot Study Soo-Byeong Kim 1, Yong-Heum Lee 2,* 1 Wellness Technology R&D Center, Human and Culture Convergence Technology R&D Group, Korea Institute of Industrial Technology, Ansan, Republic of Korea 2 Eastern & Western Biomedical System Laboratory, Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea Available online 18 September 2014 Received: Oct 22, 2012 Abstract Revised: Sep 23, 2013 Cupping is one of the various treatment methods used in traditional oriental medicine. Accepted: Sep 26, 2013 Cupping is also used as a diagnostic method and it may cause skin hyperpigmentation. Quantitative measurements and analysis of changes in skin color due to cupping are crit- KEYWORDS ical. The purpose of this study is to suggest an optical technique to visualize and identify acupoint; changes in skin color due to cupping. We suggest the following analysis methods: digital ) cupping; color spaces [red, green, and blue (RGB) and L*a b], the Erythema Index (E.I.), and the ecchymosis; Melanin Index (M.I.). For experiments, we selected and stimulated 10 acupoints at 80 ki- petechiae; lopascals (kPa) per minute. The RGB and L)a)b color spaces were observed to be pigmentation decreased (p < 0.05) after cupping. The E.I. and M.I. were observed to be increased significantly (p < 0.05) after cupping.
    [Show full text]