The Languages of Neurons: an Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information

Total Page:16

File Type:pdf, Size:1020Kb

The Languages of Neurons: an Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information Entropy 2009, 11, 782-797; doi:10.3390/e11040782 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article The Languages of Neurons: An Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information Morris H. Baslow Nathan S. Kline Institute for Psychiatric Research, Center for Neurochemistry, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail: [email protected]; Tel.: +1-845-398-5471; Fax: +1-845-398-5472 Received: 17 August 2009 / Accepted: 30 October 2009 / Published: 4 November 2009 Abstract: In this paper evidence is provided that individual neurons possess language, and that the basic unit for communication consists of two neurons and their entire field of interacting dendritic and synaptic connections. While information processing in the brain is highly complex, each neuron uses a simple mechanism for transmitting information. This is in the form of temporal electrophysiological action potentials or spikes (S) operating on a millisecond timescale that, along with pauses (P) between spikes constitute a two letter “alphabet” that generates meaningful frequency-encoded signals or neuronal S/P “words” in a primary language. However, when a word from an afferent neuron enters the dendritic-synaptic-dendritic field between two neurons, it is translated into a new frequency-encoded word with the same meaning, but in a different spike-pause language, that is delivered to and understood by the efferent neuron. It is suggested that this unidirectional inter-neuronal language-based word translation step is of utmost importance to brain function in that it allows for variations in meaning to occur. Thus, structural or biochemical changes in dendrites or synapses can produce novel words in the second language that have changed meanings, allowing for a specific signaling experience, either external or internal, to modify the meaning of an original word (learning), and store the learned information of that experience (memory) in the form of an altered dendritic-synaptic-dendritic field. Keywords: biosemiotics; codes; cognition; language; learning; memory; neurons; semiosis Entropy 2009, 11 783 1. Introduction Semiosis is broadly defined as any form of activity, conduct or processes that involve signs including the production of meaning, and semiotics is broadly defined as a study of these processes and their significance in communication. A semiotic system has also been more narrowly defined [1,2] as consisting of signs, meanings, a code and a codemaker and it has been proposed that this code model is a first step toward a scientific understanding of biosemiotics, or biology interpreted as a sign system study, a classification based on the general assertion that all living organisms are semiotic systems. Further, that biosemiotics as a recognizable scientific discipline requires proof that the individual cell is a semiotic system [1]. Based on the more narrow definition, the codemaker is described as the genetic code which determines the nature of proteins synthesized by cells, and that signs and meanings are codemaker-dependent entities. In this article, both the broader and more narrow definitions of semiotics at the cellular level are considered, and an attempt is made to bring together current research in the natural sciences on how cells communicate, learn and store information. In multi-cellular animals, neurons are cells specialized for rapid communication of meaningful information, and their interactions on the cellular level form the basis for semiosis at all higher levels of complexity in all animal forms of life. In this paper evidence is provided that individual neurons possess language (production of meaningful signs), based on codemaker generated “sensors” and that the basic unit for communication (interpretation of signs) consists of two neurons and their field of interacting dendritic and synaptic connections. In order to better understand biosemiotic interactions between neurons there are several premises which form the basis for such an analysis. These are: 1. Encoded messages sent by afferent neurons are meaningful. 2. Messages received by efferent neurons can be interpreted. 3. Messages received by efferent neurons can be acted upon. 4. There is a feedback system between neurons to ascertain successful communication. 5. Meaningful messages can be changed to new meaningful messages that reflect useful changes induced by either external or internal experiences. 6. Communication is an energy consuming process. While the structure of neural codes in complex systems remains to be resolved [3,4], in the following sections, coding methods used by individual neurons to communicate are explored, and possible mechanisms whereby messages can be altered by experience (learning) and the learned information of that experience (memory) can be stored over long periods of time for use in higher cognitive functioning. 2. Neuronal Languages 2.1. Energy requirements for communication The basic function of neurons is to communicate, and they do this by generating coherent intracellular electrophysiological signals, in the form of action potentials (AP’s) or “spikes”, at various encoded frequencies [5,6]. These signals are then translated into a variety of frequency-encoded neurochemical signals transmitted to other neurons at synapses, and subsequently interpreted at some Entropy 2009, 11 784 level in the central nervous system (CNS) neural network [7,8]. Since formation of spikes is an energy expensive process, calculated as using 2.2 × 109 adenosine triphosphate (ATP) molecules per spike [9], it has been proposed that AP’s are generated only when required for specific tasks and that neurons are electro-physiologically inactive most of the time 2.2. Neuronal language formats While information processing in the brain is highly complex, each neuron uses a simple code mechanism for transmitting information. This is in the form of temporal electrophysiological action potentials or spikes (S) of about a 1 millisecond (ms) duration that, along with pauses (P) between spikes constitute a two letter “alphabet” that generates meaningful frequency-encoded signals or neuronal S/P “words” in a primary language. The term “word” for neuronal activity in spikes/s has previously been used to describe the electrophysiological activity of the visual interneuron of the blowfly where each AP was considered a “short” word and trains of AP’s considered “longer” words [10]. In this article a neuronal word is defined as a single AP together with the pause before the next AP (the “short” word) in a ms timeframe. The “longer” word is defined as a “phrase” consisting of a repeated group of two or more short words preceded by, and followed by pauses, and a sentence as a temporal grouping of such words containing a subject, and a predicate that expresses what is stated about the subject. All neuron codes, whether continuous trains of spikes that are characteristic of information transmitted at low frequencies, or bursts of spikes that are characteristic of information transmitted at high frequencies, are made up of interactions between spikes and pauses. There are two theories regarding how these spikes carry encoded information [7]. One is the “spike rate code” which suggests that information is carried in the average rate at which the neuron fires, and that the timing of each spike is random. The other is the “spike timing code” that suggests that specific information is carried not only in the average rate at which a neuron fires, but also in the precise timings between each spike. While it is difficult to investigate how information might be encoded within the intact CNS [3], a study of how some receptors sense and transmit information is informative. In a study of the isolated salt receptor of the blowfly [11], it was observed that information about NaCl molarity was transmitted using a frequency code in the range of 2–120 Hertz (Hz), evident as a linear association between the mean receptor frequency response and the logarithm of molarity (spike rate code). From these results it is also possible to derive the S/P encoded words in a millisecond timeframe (spike timing code) that is associated with each NaCl molar concentration experienced by the receptor (Table 1). Coding mechanisms of the salt, as well as other taste receptors of the fruit fly are similar to that of the blowfly, and have been reviewed [13]. Similar responses have been observed in hamster fungiform taste receptor cells exposed to acid stimulation, where the frequency of spikes varies directly with increasing acidity between pH 2.5 to 5.5 [14]. In this case, the frequency was almost linear, with a mean frequency response of 3.5 Hz (S1P286) at pH 2.5, and a frequency of 0.25 Hz (S1P4000) at pH 5.0. In a study of the responses of receptor B-cells of the antennal taste sensilla of the ground beetle to NaCl and several other salts, the rate of spiking was observed to be increased directly with NaCl concentrations of 0.001, 0.01, 0.10 and 1.00 M resulting in spiking codes of approximately S1P1000; S1P71; S1P29 and S1P23 respectively [15]. Importantly, these cells were also able to distinguish between the different salts tested including NaCl, KCl, sodium acetate, CaCl2 and MgCl2 evident by their production of different Entropy 2009, 11 785 spiking codes for each salt. Thus, use of S/P language in this case was clearly quite rich in the meanings that could be transmitted. Table 1. Response of the isolated salt receptor of the blowfly to the molar concentration of NaCl at 25.5 °C and 80% relative humidity a. Relative NaCl Signal [Hz] S/P encoded wordc refractivenessb (M) (spikes/s) (ms time frame) (ms between spikes) 0.10 2 499 S1P499 0.20 22 45 S1P45 0.25 36 27 S1P27 0.50 52 18 S1P18 1.00 80 12 S1P12 2.00 104 9 S1P9 3.00 120 7 S1P7 a Adapted from [11] b Assumes the total spike length (SL) including an absolute refractory period is 1 ms [12] c P = [1,000 ms – (Hz × SL)]/Hz Single glucosensing neurons in the hypothalamus of the brain can sense the concentration of glucose (Glc) in their environment and respond with changes in spiking frequency [16-18].
Recommended publications
  • Nervous Tissue
    Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria,
    [Show full text]
  • Absence of S100A4 in the Mouse Lens Induces an Aberrant Retina-Specific Differentiation Program and Cataract
    www.nature.com/scientificreports OPEN Absence of S100A4 in the mouse lens induces an aberrant retina‑specifc diferentiation program and cataract Rupalatha Maddala1*, Junyuan Gao2, Richard T. Mathias2, Tylor R. Lewis1, Vadim Y. Arshavsky1,3, Adriana Levine4, Jonathan M. Backer4,5, Anne R. Bresnick4 & Ponugoti V. Rao1,3* S100A4, a member of the S100 family of multifunctional calcium‑binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in diferentiating fber cells of the ocular lens and that S100A4 (−/−) knockout mice develop late‑onset cortical cataracts. Transcriptome profling of lenses from S100A4 (−/−) mice revealed a robust increase in the expression of multiple photoreceptor‑ and Müller glia‑specifc genes, as well as the olfactory sensory neuron‑specifc gene, S100A5. This aberrant transcriptional profle is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of diferentially expressed genes in S100A4 (−/−) lenses identifed Crx and Nrl transcription factors as the most signifcant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high‑density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this fnding, we further documented that S100A4 (−/−) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together,
    [Show full text]
  • Electrical Synapses and Their Functional Interactions with Chemical Synapses
    REVIEWS Electrical synapses and their functional interactions with chemical synapses Alberto E. Pereda Abstract | Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function. Communication between neurons is required for Electrical and chemical synapses are now known to brain function, and the quality of such communica- coexist in most organisms and brain structures, but details tion enables hardwired neural networks to act in a of the properties and distribution of these two modalities of dynamic fashion. Functional interactions between transmission are still emerging. Most research efforts neurons occur at anatomically identifiable cellular have focused on exploring the mechanisms of chemi- regions called synapses. Although the nature of synaptic cal transmission, and considerably less is known transmission has been an area of enormous controversy about those underlying electrical transmission. It was (BOX 1), two main modalities of synaptic transmission — thought that electrical synapses were more abundant namely, chemical and electrical — are now recognized. At in invertebrates and cold-blooded vertebrates than chemical synapses, information is transferred through in mammals.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Neuronal Signaling Neuroscience Fundamentals > the Nerve Cell > the Nerve Cell
    Neuronal Signaling Neuroscience Fundamentals > The Nerve Cell > The Nerve Cell NEURONAL SIGNALING SUMMARY ACTION POTENTIALS See: Action Potentials Key Features • All-or-nothing events • Self-propagating • Conduction speed determined by axon diameter (thicker means faster) and amount of myelination (more myelin means faster transmission). CHEMICAL SYNAPSE Steps of Chemical Synapsis 1) The action potential travels down axon of presynaptic neuron. 2) Vesicle fuses with plasma membrane and releases neurotransmitter into the synaptic cleft. 3) Neurotransmitters bind to ligand-gated ion channels, opening them. 4) Ions entering through the open channels cause a depolarization of the membrane, opening voltage-gated ion channels. 5) Ions pass through these voltage-gated ion channels, causing further depolarization of the membrane. 6) This depolarization (action potential) travels along the membrane as more voltage-gated ion channels are opened. ELECTRICAL SYNAPSE • Cytoplasms of adjacent neurons are connected, allowing ions (and action potentials) to travel directly to the next cell. NEURONAL CODING OF STIMULUS STRENGTH Action Potential Frequency • Stimulus strength is based on frequency of action potentials. Action Potential Strength • Strong stimuli can produce another action potential during the relative refractory period. 1 / 7 ABSOLUTE REFRACTORY PERIOD No further action potentials • Voltage-gated sodium channels are open or inactivated so another stimulus, no matter its strength, CANNOT elicit another action potential. RELATIVE REFRACTORY
    [Show full text]
  • Synapse Transmission
    Synapse Transmission There are two types of synapses found in your body: electrical and chemical. Electrical synapses allow the direct passage of ions and signaling molecules from cell to cell. In contrast, chemical synapses do not pass the signal directly from the presynaptic cell to the postsynaptic cell. In a chemical synapse, an action potential in the presynaptic neuron leads to the release of a chemical messenger called aneurotransmitter. The neurotransmitter then diffuses across the synapse and binds to receptors on the postsynaptic cell. Binding of the neurotransmitter leads to the production of an electrical signal in the postsynaptic cell. Why does the body have two types of synapses? Each type of synapse has functional advantages and disadvantages. An electrical synapse passes the signal very quickly, which allows groups of cells to act in unison. A chemical synapse takes much longer to transmit the signal from one cell to the next; however, chemical synapses allow neurons to integrate information from multiple presynaptic neurons, determining whether or not the postsynaptic cell will continue to propagate the signal. Neurons respond differently based on information transmitted by multiple chemical synapses. Let’s take a closer look at the structure and function of each type of synapse. Electrical synapses transmit action potentials via the direct flow of electrical current at gap junctions. Gap junctions are formed when two adjacent cells have transmembrane pores that align. The membranes of the two cells are linked together and the aligned pores form a passage between the cells. Consequently, several types of molecules and ions are allowed to pass between the cells.
    [Show full text]
  • Synaptic Transmission Dr
    Synaptic Transmission Dr. Simge Aykan Department of Physiology Synaptic Transmission • Biological process by which a neuron communicates with a target cell across a synapse • Synapse is an anatomically specialized junction between two neurons, at which the electrical activity in a presynaptic neuron influences the electrical activity of a postsynaptic neuron • Synapse can be between a neuron and a • Neuron • Muscle • Gland cell Synaptic Transmission • The average neuron forms several thousand synaptic connections and receives a similar number • The Purkinje cell of the cerebellum receives up to 100,000 synaptic inputs • 1011 neurons, 1014 (100 trillion!) synapses Synaptic Transmission • Electrical synapse transmission: transfer of electrical signals through gap junctions • Chemical synaptic transmission: release of a neurotransmitter from the pre-synaptic neuron, and neurotransmitter binding to specific post-synaptic receptors Electrical Synapses • Connection through gap junctions • Narrow gap between membranes (3 nm) • Connexin connexon gap junction • Direct ion passage from one neuron to another • Big enough for many small organic molecules to pass through (1-2 nm) • Mostly between dendrites Electrical Synapses • Electrical postsynaptic potential (PSP) induced by ionic current flow (1 mV or less) Electrical Synapses • Advantages • Extremely rapid • Orchestrating the actions of large groups of neurons • Can transmit metabolic signals between cells • Less common in vertebrate nervous system • Require a large area of contact; restricting
    [Show full text]
  • The Formation of Chemical Synapses Between Cell-Cultured Neuronal Somata
    The Journal of Neuroscience, March 1988, 8(3): 1032-l 038 The Formation of Chemical Synapses Between Cell-Cultured Neuronal Somata P. G. Haydon Department of Zoology, Iowa State University, Ames, Iowa 50011 The study of the development and plasticity of chemical releaseof neurotransmitter from the growth cone, and within synaptic connections is frequently restricted by the lack of secondsof contact, miniature postsynaptic currents can be de- access to the synaptic terminals. This can, in part, be over- tected in the postsynaptic muscle cell (Xie and Poo, 1986). come by plating neurons into cell culture where all regions However, such transmissiondoes not representthe fully differ- of a neuron are made experimentally accessible. However, entiated synaptic connection. For example, after the presynaptic the small size of synaptic terminals still makes direct ex- neurite contacts the musclemembrane, alterations in the spatial perimental manipulation difficult. In this study we have found, distribution of postsynaptic AChRs occur (for review, see in the absence of neurite extension, directly contacting cell Schuetzeand Role, 1987). Although suchstudies have provided somata (diameter 50-100 pm) will form chemical synapses. insight into the development of synaptic transmission,little is Identified neurons 85 and B19 of Helisoma were plated into known about the physiological development of the presynaptic culture under conditions that promote adhesion between cell terminal. The small size of synaptic terminals has made it dif- pairs. Under these conditions, neurite outgrowth was absent, ficult to directly record and control presynaptic membranepo- but action potentials in B5 evoked inhibitory postsynaptic tential during development, as has proved possiblein a limited potentials in B19 that were reversed in sign by the injection number of mature preparations (Auerbach and Bennett, 1969; of chloride ions and were blocked by tubocurare (10m5 M), Martin and Ringham, 1975; Llinas et al., 1981a, b; Wojtowicz reduced extracellular Ca2+, and Cd*+ ions.
    [Show full text]
  • Astrocyte Effects on Hippocampal Synaptogenesis in Culture and Near-Field Microscopy Robert Thomas Doyle Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 Astrocyte effects on hippocampal synaptogenesis in culture and near-field microscopy Robert Thomas Doyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Neuroscience and Neurobiology Commons, and the Neurosciences Commons Recommended Citation Doyle, Robert Thomas, "Astrocyte effects on hippocampal synaptogenesis in culture and near-field microscopy " (2001). Retrospective Theses and Dissertations. 423. https://lib.dr.iastate.edu/rtd/423 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Nervous System Consists of Billions
    CHAPTER 13 SYNAPSES he nervous system consists of billions possess a swelling at their ends. The of neurons, each one an individual boutons, whether from myelinated or Tcell, receiving signals from some unmyelinated fibers, are always found in other cells and generating signals of its own close proximity to a soma, axon, or dendrite to be sent to other cells. We consider here of another cell or to another bouton. how these signals are transferred from one At the site of the termination of a fiber, neuron to another. In most cases, there is a the specializations of the terminal and the gap between neurons that must be bridged in cell it contacts are called collectively a order for transmission to continue synapse. Synapses on somas are termed throughout the nervous system. In some axosomatic synapses; those on dendrites are cases, there appears to be no gap between termed axodendritic; and those on other axons or boutons are axoaxonic. The fiber's bouton is called the presynaptic element and the structure it contacts is the postsynaptic element. A schematic diagram of a synapse is shown in Figure 13- 1A. The pre- and postsynaptic elements are separated by a space 15-200 nm wide, known as the synaptic cleft. At the synapse, the membrane of the postsynaptic Figure 13-1A. A schematic diagram of a synapse indicating elementthe pre- is slightly thickened, and there is and postsynaptic elements with synaptic specializations. the neurons. Transmission between cells connected in this way is believed to occur by purely electrical events. How these two kinds of transmission occur is the subject of this chapter.
    [Show full text]
  • S41467-019-11854-X.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-11854-x OPEN TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex Xiaohui Lv1, Si-Qiang Ren1,2, Xin-Jun Zhang1, Zhongfu Shen2, Tanay Ghosh3,4, Anjin Xianyu1,5, Peng Gao1,6, Zhizhong Li1, Susan Lin1,6, Yang Yu1, Qiangqiang Zhang1, Matthias Groszer3 & Song-Hai Shi1,2,5,6 1234567890():,; Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate pro- genitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogen- esis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex. 1 Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. 2 IDG/ McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China.
    [Show full text]
  • Axon (Nerve Fiber)—
    Chapter 12 *Lecture PowerPoint Nervous Tissue *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The nervous system is one of great complexity • Nervous system is the foundation of our conscious experience, personality, and behavior • Neurobiology combines the behavioral and life sciences 11-2 Overview of the Nervous System • Expected Learning Outcomes – Describe the overall function of the nervous system. – Describe its major anatomical and functional subdivisions. 11-3 Overview of the Nervous System • Endocrine and nervous systems maintain internal coordination – Endocrine system: communicates by means of chemical messengers (hormones) secreted into to the blood – Nervous system: employs electrical and chemical means to send messages from cell to cell 12-4 Overview of the Nervous System • Nervous system carries out its task in three basic steps • Sense organs receive information about changes in the body and the external environment, and transmit coded messages to the spinal cord and the brain • Brain and spinal cord process this information, relate it to past experiences, and determine what response is appropriate to the circumstances • Brain and spinal cord issue commands to muscles and gland cells to carry out such a response 12-5 Overview of the Nervous System • Nervous system has two major anatomical subdivisions – Central nervous system (CNS) • Brain and spinal cord
    [Show full text]