International Journal of Molecular Sciences Article The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling Anil Annamneedi 1,2,3,* , Miguel del Angel 1, Eckart D. Gundelfinger 2,3,4, Oliver Stork 1,2 and Gürsel Çalı¸skan 1,2,* 1 Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany;
[email protected] (M.d.A.);
[email protected] (O.S.) 2 Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany;
[email protected] 3 Leibniz Institute for Neurobiology (LIN), RG Neuroplasticity, 39118 Magdeburg, Germany 4 Institute of Pharmacology & Toxicology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany * Correspondence:
[email protected] (A.A.);
[email protected] (G.Ç.) Abstract: A presynaptic active zone organizer protein Bassoon orchestrates numerous important func- tions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adult- Citation: Annamneedi, A.; del hood. We further provide evidence for a potential involvement of tropomyosin-related kinase B Angel, M.; Gundelfinger, E.D.; Stork, (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. O.; Çalı¸skan,G. The Presynaptic We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates adolescent (~4–5 weeks-old) mice.