Characterization of Two Novel Myelin Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Two Novel Myelin Proteins Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universtität München Characterization of two novel myelin proteins Karin Schaefer aus Nordenham 2009 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von PD Dr. Winklhofer betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 15.12.2009 …………………………………….. (Karin Schaefer) Dissertation eingereicht am 15.12.2009 1. Gutachter PD Dr. Konstanze Winklhofer 2. Gutachter Prof. Dr. Christian Haass Mündliche Prüfung am 08.03.2010 Contents 1 SUMMARY ........................................................................................................................................... 1 2 INTRODUCTION ................................................................................................................................... 4 2.1 GLIAL CELLS ................................................................................................................................................... 4 2.2 EVOLUTION OF MYELIN .................................................................................................................................... 4 2.3 MYELINATING GLIA ......................................................................................................................................... 6 2.3.1 Myelin composition and structure ................................................................................................... 8 2.3.2 Axo-glia support ............................................................................................................................. 21 2.3.3 Metabolism of myelinating glia as risk factor for disease ............................................................. 21 2.3.4 Myelination in zebrafish ................................................................................................................. 23 2.4 MICROARRAY EXPRESSION SCREEN TO IDENTIFY NOVEL MYELIN SPECIFIC GENES ......................................................... 26 2.5 PROMOTERS DRIVING EXPRESSION IN MYELINATING GLIA ...................................................................................... 28 3 RESULTS ............................................................................................................................................. 31 3.1 ZWILLING .................................................................................................................................................... 31 3.1.1 Gene structure ............................................................................................................................... 31 3.1.2 Phylogenetic conservation of Zwilling-A and -B proteins and the zwilling locus............................ 32 3.1.3 mRNA expression ........................................................................................................................... 34 3.1.4 Zwilling protein .............................................................................................................................. 36 3.2 CLAUDIN K .................................................................................................................................................. 39 3.2.1 Claudin k gene ................................................................................................................................ 39 3.2.2 Claudin k protein structure ............................................................................................................ 39 3.2.3 Phylogeny ....................................................................................................................................... 41 3.2.4 mRNA expression ........................................................................................................................... 44 3.2.5 Claudin k antibodies ....................................................................................................................... 46 3.2.6 Claudin k protein expression and localization in cells and tissues during development ................ 48 3.2.7 Claudin k protein localization in cells ............................................................................................. 52 3.2.8 Morpholino knock down ................................................................................................................ 54 3.2.9 Other Claudins related to zebrafish myelin .................................................................................... 57 3.3 CLAUDIN K PROMOTER .................................................................................................................................. 60 3.3.1 Conservation of claudin promoter in teleost .................................................................................. 60 3.3.2 Tol2 mediated Gal4-UAS expression system .................................................................................. 61 3.3.3 mb eGFP under the control of claudin k promoter specifically and strongly labels the processes of myelinating glia. ........................................................................................................................................... 62 3.3.4 Claudin k promoter driving fluorescently tagged Claudin k ........................................................... 64 4 DISCUSSION ....................................................................................................................................... 68 4.1 ZWILLING ................................................................................................................................................... 68 4.2 CLAUDIN K .................................................................................................................................................. 71 4.3 CLAUDIN K PROMOTER .................................................................................................................................. 76 5 METHODS .......................................................................................................................................... 80 5.1 SEQUENCE DATA ANALYSIS ............................................................................................................................. 80 5.1.1 Database searches ......................................................................................................................... 80 5.1.2 Motive Searches............................................................................................................................. 80 5.1.3 Alignments ..................................................................................................................................... 80 5.1.4 Construction of phylogenetic trees ................................................................................................ 80 5.1.5 Synteny .......................................................................................................................................... 80 5.1.6 Percent identity plot ...................................................................................................................... 81 5.1.7 Ks/Ka value .................................................................................................................................... 81 5.2 MOLECULARBIOLOGAL METHODS .................................................................................................................... 81 5.2.1 5’-RACE .......................................................................................................................................... 81 5.2.2 RT-PCR ........................................................................................................................................... 82 5.2.3 Claudin k promoter ........................................................................................................................ 83 5.2.4 Fluorescently tagged Claudin k ...................................................................................................... 84 5.2.5 Agarose gel electrophoresis ........................................................................................................... 86 5.2.6 Restriction digests .......................................................................................................................... 86 5.2.7 Gateway cloning ............................................................................................................................ 86 5.2.8 Transformation of competent E.coli .............................................................................................. 87 5.2.9 Analyzing transformants by PCR.................................................................................................... 87 5.2.10 Amplification and preparation of plasmids ............................................................................... 87 5.2.11 Amplification and preparation of BAC ...................................................................................... 87 5.2.12 Measuring DNA and RNA absorbance ...................................................................................... 88 5.2.13 Sequencing ................................................................................................................................ 88 5.3 FISH HUSBANDRY AND CARE TAKING ................................................................................................................
Recommended publications
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Molecular Profiling of Peripheral Blood Is Associated with Circulating Tumor Cells Content and Poor Survival in Metastatic Castration-Resistant Prostate Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 12 Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer Mercedes Marín-Aguilera1, Òscar Reig1,2, Juan José Lozano3, Natalia Jiménez1, Susana García-Recio1,4, Nadina Erill5, Lydia Gaba2, Andrea Tagliapietra2, Vanesa Ortega2, Gemma Carrera6, Anna Colomer5, Pedro Gascón4 and Begoña Mellado1,2 1 Translational Genomics Group and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 2 Medical Oncology Department, Hospital Clínic, Barcelona, Spain 3 Bioinformatics Platform Department, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain 4 Laboratory of Translational Oncology, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain 5 Althia, Barcelona, Spain 6 Medical Oncology Department, Hospital Plató, Barcelona, Spain Correspondence to: Begoña Mellado, email: [email protected] Keywords: circulating tumor cells, peripheral blood, microarrays, cell search system Received: January 22, 2015 Accepted: February 14, 2015 Published: March 12, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The enumeration of circulating
    [Show full text]
  • Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
    ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
    [Show full text]
  • Molecular Dynamics Simulations of Tight Junction Proteins
    Molecular Dynamics Simulations of Tight Junction Proteins Eleni Fitsiou This dissertation is submitted for the degree of Doctor of Philosophy August 2020 Department of Chemistry I would like to dedicate this dissertation to my husband Antonios and sons Dimitrios and Ioannis. ii “Wisdom begins in wonder” Socrates iii Declaration I, Eleni Fitsiou, declare that this thesis titled ‘Molecular Dynamics Simulations of Tight Junction Proteins’ has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Where I have quoted from the work of others, the source is always given. Lancaster University, UK iv Abstract Tight junctions (TJs) are specialised cell-cell structures that serve primarily as a barrier to molecular transport through the intercellular space between the cells. The claudin family of proteins are the main structural and functional components of the TJ strands that circumscribe the cells. The detailed molecular organisation at the TJs is not entirely resolved, being relatively inaccessible by current experimental methods. Here, we have employed molecular dynamics simulations using both atomistic and coarse-grained models to investigate the TJ structure formed by claudin-1 using self-assembly coupled with free energy calculations and enhanced sampling techniques. A feature of the studies is that the self-assembly simulations have been carried out using atomistic detail (a first) by simulating only the extracellular domains of claudin-1 in an implied membrane. The results show that the cis-interaction can occur in the absence of trans-interacting partners and that a claudin dimer is the smallest stable unit.
    [Show full text]
  • Supplementary Figure S1 Functional Characterisation of Snmp:GFP
    doi: 10.1038/nature06328 SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE LEGENDS Figure S1 | Functional characterisation of SNMP fusion proteins. Dose-response curve for cVA in Or67d neurons of wild-type (Berlin), SNMP mutant (Or67d- GAL4/+;SNMP1/SNMP2), SNMP:GFP rescue (Or67d-GAL4/UAS- SNMP:GFP;SNMP1/SNMP2) and YFP(1):Or83b/SNMP:YFP(2) rescue (Or67d:GAL4,UAS-YFP(1):Or83b/UAS-SNMP:YFP(2);SNMP1,Or83b2/SNMP2,Or83b1 ) animals. Mean responses are plotted (± s.e.m; wild-type n=47, SNMP mutant n=46, SNMP:GFP rescue n=20; YFP(1):Or83b/SNMP:YFP(2) rescue n=22; ≤4 sensilla/animal, mixed genders). Wild-type and SNMP:GFP rescue responses to cVA are not significantly different (ANOVA; p>0.1175). YFP(1):Or83b/SNMP:YFP(2) rescue responses to cVA are highly significantly different from SNMP mutants and from wild- type (ANOVA; p<0.0001), indicating partial rescue. Figure S2 | Cell type-specific rescue of SNMP expression. a, Immunostaining for mCD8:GFP (anti-GFP, green) and LUSH (magenta) in LUSH-GAL4/UAS-mCD8:GFP animals reveals faithful recapitulation of endogenous expression by the LUSH-GAL4 driver. b, Two-colour RNA in situ hybridisation for SNMP (green) and Or67d (magenta) in antennal sections of wild-type, Or67d neuron SNMP rescue (Or67d-GAL4/UAS- SNMP;SNMP1/SNMP2) and support cell SNMP rescue (LUSH-GAL4/UAS- SNMP;SNMP1/SNMP2) animals. www.nature.com/nature 1 Benton et al., Figure S1 ) -1 wild-type 120 SNMP:GFP rescue 80 YFP(1):Or83b/SNMP:YFP(2) rescue 40 Corrected response (spikes s 0 SNMP-/- 0 0.1 1 10 100 cVA (%) www.nature.com/nature 2 Benton
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Tight Junction Structure and Function Revisited
    Trends in Cell Biology Review Tight Junction Structure and Function Revisited Tetsuhisa Otani 1,2,3,*,@ and Mikio Furuse1,2,3 Tight junctions (TJs) are intercellular junctions critical for building the epithelial Highlights barrier and maintaining epithelial polarity. The claudin family of membrane pro- Tight junction strand formation and teins play central roles in TJ structure and function. However, recent findings membrane apposition formation are have uncovered claudin-independent aspects of TJ structure and function, and differentially regulated. additional players including junctional adhesion molecules (JAMs), membrane Claudins form charge-selective small lipids, phase separation of the zonula occludens (ZO) family of scaffolding pores, while junctional adhesion mole- proteins, and mechanical force have been shown to play important roles in TJ cules regulate the formation of size- structure and function. In this review, we discuss how these new findings have selective large pores. the potential to transform our understanding of TJ structure and function, and Tight junction proteins regulate epithelial how the intricate network of TJ proteins and membrane lipids dynamically polarity, although how tight junctions interact to drive TJ assembly. form a membrane fence remains unclear. Tight Junctions Regulate Epithelial Barrier and Polarity Tight junction associated membrane proteins regulate tight junction assembly – Tight junctions (TJs) are epithelial intercellular junctions located at the most apical region of cell in conjunction with zonula occludens cell contacts. TJs are structurally defined by electron microscopy. On ultrathin sections, TJs protein phase separation, membrane appear as a region with close apposition of adjacent plasma membranes where adjacent plasma lipids, mechanical force, and polarity signaling proteins.
    [Show full text]
  • The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation Through Modulation of NOTCH Signaling
    The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation through Modulation of NOTCH Signaling This information is current as Almudena Ruiz-García, Susana López-López, José Javier of September 25, 2021. García-Ramírez, Victoriano Baladrón, María José Ruiz-Hidalgo, Laura López-Sanz, Ángela Ballesteros, Jorge Laborda, Eva María Monsalve and María José M. Díaz-Guerra J Immunol published online 29 August 2016 Downloaded from http://www.jimmunol.org/content/early/2016/08/27/jimmun ol.1600421 Supplementary http://www.jimmunol.org/content/suppl/2016/08/27/jimmunol.160042 http://www.jimmunol.org/ Material 1.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 29, 2016, doi:10.4049/jimmunol.1600421 The Journal of Immunology The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation through Modulation of NOTCH Signaling Almudena Ruiz-Garcı´a,1 Susana Lo´pez-Lo´pez,1 Jose´ Javier Garcı´a-Ramı´rez, Victoriano Baladro´n, Marı´a Jose´ Ruiz-Hidalgo, Laura Lo´pez-Sanz, A´ ngela Ballesteros, Jorge Laborda, Eva Marı´a Monsalve, and Marı´a Jose´ M.
    [Show full text]
  • Research Article a Robust Topology-Based Algorithm for Gene Expression Profiling
    International Scholarly Research Network ISRN Bioinformatics Volume 2012, Article ID 381023, 11 pages doi:10.5402/2012/381023 Research Article A Robust Topology-Based Algorithm for Gene Expression Profiling Lars Seemann,1 Jason Shulman,2 and Gemunu H. Gunaratne1 1 Department of Physics, University of Houston, Houston, TX 77204, USA 2 Department of Physics, Richard Stockton College of New Jersey, Pomona, NJ 08240, USA Correspondence should be addressed to Gemunu H. Gunaratne, [email protected] Received 3 August 2012; Accepted 30 August 2012 Academic Editors: B. Haubold and K. Yura Copyright © 2012 Lars Seemann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Early and accurate diagnoses of cancer can significantly improve the design of personalized therapy and enhance the success of therapeutic interventions. Histopathological approaches, which rely on microscopic examinations of malignant tissue, are not conducive to timely diagnoses. High throughput genomics offers a possible new classification of cancer subtypes. Unfortunately, most clustering algorithms have not been proven sufficiently robust. We propose a novel approach that relies on the use of statistical invariants and persistent homology, one of the most exciting recent developments in topology. It identifies a sufficient but compact set of genes for the analysis as well as a core group of tightly correlated patient samples for each subtype. Partitioning occurs hierarchically and allows for the identification of genetically similar subtypes. We analyzed the gene expression profiles of 202 tumors of the brain cancer glioblastoma multiforme (GBM) given at the Cancer Genome Atlas (TCGA) site.
    [Show full text]
  • Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
    14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity.
    [Show full text]
  • Tight Junctions: from Simple Barriers to Multifunctional Molecular Gates
    Tight Junctions: From simple barriers to multifunctional molecular gates Ceniz Zihni1, Clare Mills1, Karl Matter1# and Maria S Balda1# Department of Cell Biology UCL Institute of Ophthalmology University College London London EC1V 9EL, UK # Address for correspondence UCL Institute of Ophthalmology University College London Bath Street London EC1V 9EL United Kingdom Tel – 44 20 7608 4014/6861 Fax – 44 20 7608 4034 E-mail: [email protected]/[email protected] Main body of text: 5983 words 1 Epithelia and endothelia separate different tissue compartments and protect multicellular organisms form the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Here, we discuss recent advances in our understanding of the molecular architecture and cellular functions of tight junctions. Microscopists in the 19th century described the paracellular space between neighbouring cells within an epithelial sheet to be sealed by a “terminal bar”, a structure later resolved by electron microscopy into a composite of distinct cell-cell junctions that is now called the epithelial junctional complex and is formed by tight junctions, adherens junctions and desmosomes1,2. As the former two junctions are more tightly associated and often reside at the apical end of the lateral membrane, they are often referred to as the apical junctional complex (however, in endothelia, tight junctions and adherens junctions can be intercalated) (Fig.
    [Show full text]