Pan-Cancer Patterns of Somatic Copy Number Alteration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
(PTTG1IP/PBF) Predicts Breast Cancer Survival
Repo et al. BMC Cancer (2017) 17:705 DOI 10.1186/s12885-017-3694-6 RESEARCHARTICLE Open Access PTTG1-interacting protein (PTTG1IP/PBF) predicts breast cancer survival Heli Repo1* , Natalia Gurvits1, Eliisa Löyttyniemi2, Marjukka Nykänen3, Minnamaija Lintunen1, Henna Karra4, Samu Kurki5, Teijo Kuopio3, Kati Talvinen1, Mirva Söderström1 and Pauliina Kronqvist1 Abstract Background: PTTG1-interacting protein (PTTG1IP) is an oncogenic protein, which participates in metaphase-anaphase transition of the cell cycle through activation of securin (PTTG1). PTTG1IP promotes the shift of securin from the cell cytoplasm to the nucleus, allowing the interaction between separase and securin. PTTG1IP overexpression has been previously observed in malignant disease, e.g. in breast carcinoma. However, the prognostic value of PTTG1IP in breast carcinoma patients has not previously been revealed. Methods: A total of 497 breast carcinoma patients with up to 22-year follow-up were analysed for PTTG1IP and securin immunoexpression. The results were evaluated for correlations with the clinical prognosticators and patient survival. Results: In our material, negative PTTG1IP immunoexpression predicted a 1.5-fold risk of breast cancer death (p =0.02). However, adding securin immunoexpression to the analysis indicated an even stronger and independent prognostic power in the patient material (HR = 2.5, p < 0.0001). The subcellular location of securin was found with potential prognostic value also among the triple-negative breast carcinomas (n = 96, p = 0.052). Conclusions: PTTG1IP-negativity alone and in combination with high securin immunoexpression indicates a high risk of breast cancer death, resulting in up to 14-year survival difference in our material. Keywords: PTTG1IP, PBF, Immunohistochemistry, Breast cancer, Prognosis Background nucleus, allowing the interaction between separase and Pituitary tumour transforming gene 1 interacting pro- securin [1]. -
Nuclear Localization of PTTG1 Promotes Migration and Invasion of Seminoma Tumor Through Activation of MMP-2
Nuclear Localization of PTTG1 Promotes Migration and Invasion of Seminoma Tumor Through Activation of MMP-2. Emanuela Teveroni International Scientic Institute "Paul VI", ISI, Fondazione Policlinico "A.Gemelli" IRCCS Fiorella Di Nicuolo International Scientic Institute "Paul VI", ISI, Fondazione Policlinico "A.Gemelli" IRCCS Giada Bianchetti Department of Neuroscience, section of Biophysics, Università Cattolica del Sacro Cuore Alan L. Epstein Department of Pathology, Keck school of medicine, University of Southern California, Los Angeles Giuseppe Grande International Scientic Institute "Paul VI", ISI, Fondazione Policlinico "A.Gemelli" IRCCS Giuseppe Maulucci Department of Neuroscience, section of Biophysics, Università Cattolica del Sacro Cuore Marco De Spirito Università Cattolica del Sacro Cuore: Universita Cattolica del Sacro Cuore Alfredo Pontecorvi Division of Endocrinology, Fondazione policlinico "A.Gemelli" IRCCS Domenico Milardi Division of Endocrinology, Fondazione policlinico "A.Gemelli" IRCCS Francesca Mancini ( [email protected] ) International Scientic Institute "Paul VI", ISI, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy https://orcid.org/0000-0002-2459-8815 Research Keywords: PTTG1, seminoma cell lines, testicular cancer, PBF, MMP-2, invasiveness Posted Date: December 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-125309/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/53 Abstract Background: Seminoma is the most common subtype of testicular germ cell tumors (TGCTs) and its molecular patterns have not been fully claried. The pituitary tumor-transforming gene 1 (PTTG1) is a securin, inhibitor of premature sister chromatid segregation during mitosis and is overexpressed in many cancers. PTTG1 shows the ability to sustain the invasiveness of several cancer types through its transcriptional activity. -
Dissecting the DNA Binding Landscape and Gene Regulatory Network of P63 and P53
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.145540; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dissecting the DNA binding landscape and gene regulatory network of p63 and p53 Konstantin Riege1, Helene Kretzmer2, Simon S. McDade3, Steve Hoffmann1, Martin Fischer1,# 1 Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany 2 Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany 3 Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK Running title: p63 GRN vs p53 GRN #To whom correspondence should be addressed. Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.145540; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The transcription factor (TF) p53 is the best-known tumor suppressor, but its ancient sibling p63 (ΔNp63) is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available in recent years, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network (GRN). -
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus Dromedarius
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department Electrical and Computer Engineering of 2009 Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius Abdulaziz M. Al-Swailem King Abdulaziz City for Science and Technology Maher M. Shehata King Abdulaziz City for Science and Technology Faisel M. Abu-Duhier King Abdulaziz City for Science and Technology Essam J. Al-Yamani King Abdulaziz City for Science and Technology Khalid A. Al-Busadah King Faisal University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Inan, Mehmet S.; and Otu, Hasan H., "Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius" (2009). Faculty Publications from the Department of Electrical and Computer Engineering. 426. https://digitalcommons.unl.edu/electricalengineeringfacpub/426 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Abdulaziz M. Al-Swailem, Maher M. -
Consistent Rearrangement of Chromosomal Band 6P21 with Generation of Fusion Genes JAZF1/PHF1 and EPC1/PHF1 in Endometrial Stromal Sarcoma
Research Article Consistent Rearrangement of Chromosomal Band 6p21 with Generation of Fusion Genes JAZF1/PHF1 and EPC1/PHF1 in Endometrial Stromal Sarcoma Francesca Micci,1 Ioannis Panagopoulos,4 Bodil Bjerkehagen,2 and Sverre Heim1,3 Departments of 1Cancer Genetics and 2Pathology, The Norwegian Radium Hospital; 3Faculty of Medicine, University of Oslo, Oslo, Norway; and 4Department of Clinical Genetics, University Hospital, Lund, Sweden Abstract Little is known about the genetic background of ESS as only 32 Endometrial stromal sarcomas (ESS) represent <10% of all such tumors have been karyotyped and reported scientifically uterine sarcomas. Cytogenetic data on this tumor type are (6–8). The pattern of rearrangements thus detected is nevertheless limited to 32 cases, and the karyotypes are often complex, clearly nonrandom with particularly frequent involvement of but the pattern of rearrangement is nevertheless clearly chromosome arms 6p and 7p (7). Recently, a specific translocation nonrandom with particularly frequent involvement of chro- t(7;17)(p15;q21) leading to the fusion of two zinc finger genes, mosome arms 6p and 7p. Recently, a specific translocation juxtaposed with another zinc finger (JAZF1) and joined to JAZF1 t(7;17)(p15;q21) leading to the fusion of two zinc finger genes, (JJAZ1), was described in a subset of ESS (9). Both genes, the JAZF1 at 7p15 and JJAZ1 at 17q21, contain sequences encoding zinc finger juxtaposed with another zinc finger (JAZF1) and joined to JAZF1 (JJAZ1), was described in a subset of ESS. We present motifs characteristic of DNA-binding proteins. The gene fusion three ESS whose karyotypes were without the disease-specific results in expression of a tumor-specific mRNA transcript V V t(7;17) but instead showed rearrangement of chromosomal containing 5 -JAZF1 and 3 -JJAZ1 sequences but retaining the zinc band 6p21, twice as an unbalanced t(6p;7p) and once as a finger motifs from both genes. -
Atlas Journal
Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 5, Sep-Oct 2008 Previous Issue / Next Issue Genes XAF1 (XIAP associated factor-1) (17p13.2). Stéphanie Plenchette, Wai Gin Fong, Robert G Korneluk. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 668-673. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/XAF1ID44095ch17p13.html WWP1 (WW domain containing E3 ubiquitin protein ligase 1) (8q21.3). Ceshi Chen. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 674-680. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/WWP1ID42993ch8q21.html TSPAN1 (tetraspanin 1) (1p34.1). David Murray, Peter Doran. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 681-683. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TSPAN1ID44178ch1p34.html TCL1B (T-cell leukemia/lymphoma 1B) (14q32.13). Herbert Eradat, Michael A Teitell. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 684-686. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TCL1BID354ch14q32.html PVRL4 (poliovirus receptor-related 4) (1q23.3). Marc Lopez. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 687-690. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/PVRL4ID44141ch1q23.html PTTG1IP (pituitary tumor-transforming 1 interacting protein) (21q22.3). Vicki Smith, Chris McCabe. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 691-694. -
PBF, a Proto-Oncogene in Esophageal Carcinoma Received November 18, 2018; Accepted July 26, 2019 1 Introduction
Open Med. 2019; 14: 748-756 Research Article Shi-hai Lian, Jun-ding Song, Yi Huang* PBF, a proto-oncogene in esophageal carcinoma https://doi.org/10.1515/med-2019-0086 received November 18, 2018; accepted July 26, 2019 1 Introduction Esophageal carcinoma (ESCA), with high invasiveness Abstract: Emerging evidence shows that the pituitary and lethality, is a type of malignant tumor occurring in tumour-transforming gene (PTTG)-binding factor (PBF) the digestive system. At present, ESCA is the eighth most functions as a proto-oncogene in some tumors. However, common cancer in the world and the sixth leading cause the precise functions of PBF in tumorigenesis and its of cancer-related deaths [1]. ESCA is classified into eso- action mechanisms remain largely unknown. Here for the phageal adenocarcinoma (EAC or EAD) and esophageal first time we demonstrated that PBF was associated with squamous cell carcinoma (ESCC) according to its histolog- a tumor-related cell phenotype in esophageal carcinoma ical type, while ESCC accounts for 90% of cases of ESCA (ESCA) and identified the involved signaling pathways. worldwide [1, 2]. Despite remarkable improvements in the PBF was up-regulated in ESCA tissues (Data from GEPIA) treatment of ESCA in recent years, the current prognosis and cells. Then we down-regulated PBF in ESCA cell lines, of ESCA is still poor because of the advanced diagnosis Eca-109 and TE-1, by using RNAi technology. Cell function and recurrence after cancer treatment. The 5-year survival analysis suggested that down-regulation of PBF could rate of patients is only 15%-25% [3, 4]. -
Genetic Signatures of Acute Asthma Exacerbation Related with Ineffective Response to Corticosteroid
Allergy Asthma Immunol Res. 2020 Jul;12(4):626-640 https://doi.org/10.4168/aair.2020.12.4.626 pISSN 2092-7355·eISSN 2092-7363 Original Article Genetic Signatures of Acute Asthma Exacerbation Related With Ineffective Response to Corticosteroid Min-Gyu Kang ,1 Hyun-Seung Lee ,2 Kelan G. Tantisira ,3,4 Heung-Woo Park 2,3,5* 1Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea 2Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea 3The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 4Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA 5Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Received: Oct 15, 2019 ABSTRACT Revised: Feb 17, 2020 Accepted: Feb 18, 2020 Purpose: Acute exacerbation (AE) is an important domain of asthma management and may Correspondence to be related with ineffective response to corticosteroid. This study aimed to find mechanisms Heung-Woo Park, MD, PhD of AE using genome-wide gene expression profiles of blood cells from asthmatics and its Department of Internal Medicine, Seoul National University College of Medicine, 103 perturbation by in vitro dexamethasone (Dex)-treatment. Daehak-ro, Jongno-gu, Seoul 03080, Korea. Methods: We utilized lymphoblastoid B cells from 107 childhood asthmatics and peripheral Tel: +82-2-2072-0699 blood mononuclear cells from 29 adult asthmatics who were treated with inhaled Fax: +82-2-742-3291 corticosteroids. We searched for a preserved co-expression gene module significantly E-mail: [email protected] associated with the AE rate in both cohorts and measured expression changes of genes Copyright © 2020 The Korean Academy of belong to this module after Dex-treatment. -
Downloaded from Bioscientifica.Com at 09/28/2021 12:16:49AM Via Free Access
249 W Imruetaicharoenchoke et al. Mutations in PTTG1IP 24:9 459–474 Research Functional consequences of the first reported mutations of the proto-oncogene PTTG1IP/PBF W Imruetaicharoenchoke1,2,3, A Fletcher1,2, W Lu1,2, R J Watkins4, B Modasia1,2, V L Poole1,2, H R Nieto1,2, R J Thompson1,2, K Boelaert1,2, M L Read1,2, V E Smith1,2,* and C J McCabe1,2,* 1Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK 2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK Correspondence 3 Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand should be addressed 4 Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK to C J McCabe *(V E Smith and C J McCabe contributed equally to this work) Email [email protected] Abstract Pituitary tumor-transforming gene 1-binding factor (PTTG1IP; PBF) is a multifunctional Key Words glycoprotein, which is overexpressed in a wide range of tumours, and significantly f COSMIC associated with poorer oncological outcomes, such as early tumour recurrence, distant f TCGA metastasis, extramural vascular invasion and decreased disease-specific survival. f PTTG1IP PBF transforms NIH 3T3 fibroblasts and induces tumours in nude mice, while mice f mutation harbouring transgenic thyroidal PBF expression show hyperplasia and macrofollicular f proliferation Endocrine-Related Cancer Endocrine-Related lesions. Our assumption that PBF becomes an oncogene purely through increased expression has been challenged by the recent report of mutations in PBF within the Catalogue of Somatic Mutations in Cancer (COSMIC) database.